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Abstract 

Knowledge-based potentials are used widely in protein folding and inverse folding algorithms. Two kinds of derivation 
methods are used. (1)  The interactions in a database of known protein structures are assumed to obey a Boltzmann 
distribution. (2) The stability of the native folds relative to a manifold of misfolded structures is optimized. Here, a set 
of previously derived contact and secondary structure propensity potentials, taken as the “true” potentials, are employed 
to construct an artificial protein structural database from protein fragments. Then, new sets of potentials are derived to 
see how they are related to the true potentials. Using the Boltzmann distribution method, when the stability of the 
structures in the database lies within a certain range, both contact potentials and secondary structure propensities can be 
derived separately with remarkable accuracy. In general, the optimization method was found to be less accurate due to 
errors in the “excess energy” contribution. When the excess energy terms are kept as a constraint, the true potentials are 
recovered exactly. 
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Recently, simplified, coarse-grained models of proteins have at- 
tracted much interest because they may offer a practical approach 
to solving the protein folding problem (Wilson & Doniach, 1989; 
Sippl, 1995; Finkelstein & Reva, 1996; Kolinski & Skolnick, 1996; 
Miyazawa & Jernigan, 1996). The advantage of these protein mod- 
els is their greatly reduced computational costs. However, because 
many detailed features of real proteins are omitted, there is a great 
deal of uncertainty as to their range of validity. Many models have 
been proposed (Levitt, 1976; Ueda et al., 1978; Maiorov & Crip- 
pen,  1992;  Sippl, 1995; Mimy & Domany, 1996; Miyazawa & 
Jernigan, 1996; Park & Levitt, 1996; Liwo et al., 1997; Ulrich 
et al., 1997), but it  is not clear which formulation is best or which 
set of potential parameters is more accurate (Kocher et al., 1994; 
Godzik et  al., 1995; Jones & Thornton, 1996). Thus, the current 
situation calls for careful examination of the theoretical founda- 
tions of the potential derivation methods. In this study, we focus on 
the parameterization methods under the assumption that the for- 
mulation of the potential functions  is correct. 

One term used commonly in the simplified potentials is the 
amino acid pair-specific contact potentials. These are designed to 
approximate interactions between noncovalently bonded amino acid 
residues. Other terms are employed to reflect local propensities of 
amino acid sequences for secondary structures (Kolinski et a]., 
1995; Rooman et al., 1995). Such potentials have been shown to be 
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a valuable tool in structure modeling, protein folding, and inverse 
folding  studies  (Kocher  et al., 1994;  Sippl,  1995; Kolinski & 
Skolnick, 1996). In general, the methods used to derive contact 
potentials from a database of known protein structures can be 
classified into the two categories described below. 

B o l t m n n  distribution method 

The residue-residue contact frequencies observed in the native 
protein structures are assumed to obey a Boltzmann distribution. 
Thus, 

E,, = -ksT]og(N,yb”‘Ned/N,;“p‘““d~, (1A) 

where i and j denote the amino acid residue types; Ei is the ex- 
tracted contact energy for an i-j contact; kB is the Boltzmann’s 
constant; T has a unit of temperature whose value is undetermined; 
N ~ b s r w r d  is  the number of i-j residue contacts observed in a struc- 
tural database; NrPeCfed is the number of i-j contacts expected in a 
reference state where there  are  no preferential interactions, such as 
in  an unfolded random coil or in a randomly collapsed, compact 
state of proteins. 

It is unclear how to define the reference state precisely, because 
it  is an imaginary state that has no available structural database. In 
practice, the reference state  is often built on the basis of the quasi- 
chemical approximation. This treats amino acid residues in pro- 
teins as unconnected entities in a thermodynamic equilibrium. It 
was suspected that such a crude approximation could cause serious 
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bias in the derived potentials (Miyazawa & Jemigan, 1996). How- 
ever, in a recently developed method (Skolnick et al., 1997), the 
effects of chain connectivity, secondary structure, and chain com- 
pactness were explicitly included in construction of the reference 
state. It was found that these effects do not make a difference  in the 
derived potentials. Thus,  in this study, the quasichemical reference 
state  was  chosen  (Godzik  et al., 1995). Hence, 

where i and j denote the  amino acid types, xi and xi are the  mole 
fraction of amino acid residues i and j in the database (also called 
the amino acid composition), 

and No is the total number of observed contacts in the database, 
I.e., 

I ,  

One should note that the presumed Boltzmann distribution ex- 
pressed in Equation 1 is unusual, because a Boltzmann distribution 
usually describes an equilibrium within a particular system. Here, 
a database of different structures  is considered. To understand the 
physical basis of the Boltzmann distribution across a database of 
structures, Finkelstein et al. (1995) proposed a theory based on 
random energy models of proteins and showed that a Boltzmann- 
like distribution arises naturally from low-energy conformations of 
random heteropolymers. A serious concern was raised about the 
presumed Boltzmann distribution in a recent study of Thomas and 
Dill (1996). In their two-dimensional lattice models, there are two 
residue types (hydrophobic,  H,  and polar, P). Pairs of residues 
interact with each other when they are in contact, with an energy 
of - 1 for HH contacts and zero for HP or PP contacts. Because HP 
and PP contacts have equal energy, then, according to a Boltzmann 
distribution, an equal number of HP and PP contacts would be 
expected in the database of calculated minimum energy structures. 
However, significantly more HP contacts than PP contacts were 
found. It was argued that the problem originated from the fact that 
different types of contacts are not independent of each other  due to 
chain connectivity. 

Optimization method 

Here, the assumption is that the native fold of a protein is the 
conformation with the lowest free energy and the protein has evolved 
to nearly optimum thermodynamic stability. The potential param- 
eters  are obtained by optimizing the stability of the native folds 
relative to misfolded structures (Goldstein et al., 1992; Maiorov & 
Crippen, 1992;  Mimy & Shakhnovich, 1996). It was shown that 
the optimization procedure can recover the “true” potentials with a 
high linear correlation coefficient (ranging from 0.84 to 0.91) (Mimy 
& Shakhnovich, 1996). However, the repulsive terms  in  the po- 
tentials were systematically underestimated when compared with 
the attractive terms. The potentials also seemed to be overopti- 
mized because the derived potentials gave  an  even higher stability 
than the true potentials. 

There are also doubts about the optimization principle itself. 
After all, the native proteins may not have been maximally opti- 
mized for stability through evolution because it  is known that 
sometimes mutations introduced in the native proteins can yield 
more stable proteins (Lim  et al., 1994). The unique stable fold of 
a protein is apparently an essential feature required by its biolog- 
ical function. However, once that feature is achieved, there may 
not be any evolutionary pressure to make the protein even more 
stable (Serrano et al., 1993). 

In summary, problems apparently exist in both of the potential 
derivation methods. The derived potentials and the true potentials 
correlate to some extent, but it is not simply a linear relationship, 
as expected previously, Consequently, it  is necessary to examine 
the relationship between the derived and the true potentials in 
greater detail to search for  the factors that affect the derived po- 
tentials. Thus, we have designed a simple model in which the true 
potentials are known and have applied various derivation methods 
to the databases constructed from minimum energy structures ac- 
cording to such true potentials. To avoid confusion, we note here 
that the term true potentials represents the original potentials used 
to construct the library of model structures; these  do not necessar- 
ily correspond to the potentials experienced by real proteins. The 
derived potentials are those extracted from the constructed models 
of proteins. Our approach is similar to the works mentioned above 
(Mirny & Shakhnovich, 1996;  Thomas & Dill, 1996), but here 
different questions were asked. Our study stresses the importance 
of generating native protein-like features in  the constructed data- 
bases. Special attention was paid to examining how the stability of 
the structures affects the derived potentials and to identifying the 
necessary conditions for recovery of the true potentials. In addi- 
tion, we address the question of what happens when there are 
different kinds of contributions to the potentials. Specifically, we 
explored the  case where contact potentials and secondary structure 
propensities are considered simultaneously. 

Following Godzik et al. (1995), the contact potentials can be 
decomposed into “ideal” terms and “excess” terms, defined as 

= (E,,  + Ej,)/2, 

E T  = E,  - (Et, + E,j)/2, (2B) 

where i and j denote residue types, Eii, Ejl, and E ,  are contact 
energies. The ideal term ( E F )  defines a contact distribution 
where the mixing energy is zero. Godzik et al. showed that the 
excess term ( E Y )  largely depends on Nibsewed, regardless of the 
choice of the reference state (NFpected). In terms of E r ,  poten- 
tials derived from various different methods were  shown to agree 
with each other rather well (correlation coefficients typically range 
from 50 to 70%) despite differences in the contact definitions and 
data sets.  Thus,  the  excess terms can be viewed as an intrinsic 
characteristic of native proteins. In the artificially constructed data- 
base of protein structures, the excess terms should agree with those 
from the real native proteins. Otherwise, the database can be viewed 
as being nonnative protein-like. 

Another useful term is the quantity 7,. which is defined as 

Comparing Equation 3 with Equations 2A and 2B, it is easy to see 
that the numerator in Equation 3 is the excess energy term, whereas 
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the denominator is the difference in ideal terms. This  factor is used 
because it is an invariant when Eii, Ejj, and E ,  are subject to a 
linear transformation. Thus,  if the true potentials and the derived 
potentials correlate linearly, the corresponding q, factor should be 
the same. Otherwise, the relationship between the two sets of 
potentials must be nonlinear. 

Results 

Model of proteins and database construction 

A library of fragments excised from known native protein struc- 
tures constitutes our structural database. These  fragments are com- 
pact (with radii of gyration calculated from C, coordinates of less 
than 14 A) and have the same size  (90 residues), but have different 
conformations (the RMS deviation, RMSD, of the C, trace be- 
tween any pair of structures is  greater than 7.5 &. A total of 2,553 
fragments were extracted from 190 nonhomologous proteins, which 
are listed in Table 1 .  

For any given sequence, the pseudo native structure of this 
sequence  is defined to be the conformation that has the lowest 
energy among all the conformations in the library. Using this def- 
inition, databases of such pseudo native structures were generated 
for a large number of random sequences. 

To study the effect of structural stability on derived potentials, 
the pseudo native structures were sorted into different databases 
according to their stability measured in terms of their Z-scores 
(Sippl, 1993;  see Equation 8). Structures of high stability were 
obtained by random searches in sequence space. The choice of 
Z-score as a measure of stability seems to be appropriate because 
the energy spectrum of all conformations forms a well-defined 
Gaussian distribution. 

Care  was  also taken to keep the  amino acid composition ap- 
proximately fixed  in the constructed structural databases. Amino 
acid sequences were generated by randomly picking residues from 
a residue pooI having pre-defined amino acid residue composition. 

L. Zhang and J. Skolnick 

Starting from random sequences, Figure 1 shows  the limiting val- 
ues of Z-scores arising from a search of  the sequence space. The 
initial random sequences had Z-scores around -3.5, and then 
evolved to sequences having Z-scores between - 10 and - 15. At 
each step of the search process, two mutation sites were randomly 
chosen in a sequence, and  the residues were swapped within the 
sequence. In this way, the amino acid composition remains the 
same during the search process. 

The compactness of the constructed protein models was moni- 
tored by the radius of gyration (calculated from the coordinates of 
the C, atoms). Figure 2 shows the histograms of the radius of 
gyration of the protein models. The distribution of radius of gy- 
ration in all constructed databases is almost the same. Therefore, 
the constructed model proteins are very similar to the natural pro- 
teins in terms of amino acid composition and compactness. 

In the constructed structural databases, some  conformations were 
seen to occur much more often than others. About 17% of the 
conformations defined in the library are taken by 50% of the 
sequences as their lowest-energy conformation. However, because 
those sequences sharing a common conformation are not homol- 
ogous to each other, they are not considered redundant structures 
in our analysis. A somewhat similar phenomenon was observed in 
some  simple lattice models (Li et al., 1996). It was argued that 
such preferred structures are more “designable” and thus should 
prevail in nature through evolution. The relevance of our results to 
fold “designability” is beyond the scope of this study, but it will be 
addressed in future work. 

Deriving potentials with the  Boltzmann distribution 

HP model 

First, we consider the simplest case, the HP model, which has 
two residue types: H and P. The potential parameter set consists of 
only three energies: EHH,  EHP,  and EPP for HH, HP, and PP con- 
tacts, respectively. EHH,  EHp,  and Epp are referred to as the true 

Table 1. Proteins selected from the Protein Data Bank used to derive the potentials“ 

2PCY lmolA  lhbg 2apr 2msbB 8fabB 1 mbc lcolA 3sdpA 4cpv 
2scpA lgmfA lycc 1 prcC 1 ifc lrbp 4PtP 2rhe 3cd4 2tb4H 
1 acx lcobA lpaz 2azaA 2pabA 2gcr 2tbvA 2cna 2er7E 5hvpA 
lf3g 4fgf lnsbA 7timA 1 gox 1 ald lpii lwsyA 6xia 5mbA 
2taaA 4enl 5p2  1 4fxn 3chy 5cpa 2trxA lgPlA 1 cseE 4dfrA 
3adk 3pgm 1 rhd 4Pfk 3pgk 2yhx 2gbP 21iv 3grs 
1  trb 61dh lgky  lipd 2Pgd 8adh 1 g d l 0  7aatA 2tsl  lphh 31zm 
1121 9mt 2sarA 1 fkf 1 snc  1 aps 2sicI 8atcB 2tscA 4cla 
1 PYP 9wgaA 9pap 3blm 2CPP 8atcA 1 csc 1 ace 3cOx 2cpkE 

2cpl lgof lsbp 2bbkH lpda 1 nar 1 tml lcmbA lede 1 gpb 

1 poc 2sim 1 alkA ldsbA 2dnjA IpoxA 2hhmA lndk lminB 1 rcb 

lfbpA  1  flu 1 gstA 3dY 1 lap IovaA 1 I f i  lwsyB  2cyp 2glsA 
3pmgA 8acn 2reb 6tmnE lhgeA 3gapA lprcH 1 shaA 1 ads 2end 

1 rec 2mnr 3tgl 1 aozA lsltA lItsA 2abk 2ayh 1 btc 2glt 

2madL lapa 1 gal lavhA 1cauA ltplA latr 1 aak 1 add h a t  

1 gdhA 2mtaC 2tmdA 3ecaA lcde 1 hmy 1 tie 2aaiB lglaG 1 tbpA 
lula 2baa lcid IatnA 1 nipB lmioC lmypC 2bpa2 I hc6 2pia 
1 tca 1 top lchmA 1 hslA 1 sacA 1 trkA 2bb2 1 Iba lvmoA 3sc2A 
3sc2B 1 bnh 1 bbrE IhplA 3aahA 2polA I afnA I PkP 1 P a  1 tahA 

aThe PDB naming convention is used in the following list. The fifth letter in a name denotes the chain label. 
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potentials, whereas the derived potentials are denoted as E ~ H ,  ELp, 
and Ebp, which were calculated from Equation 1. 

Note that if the true potentials are multiplied by a constant or a 
constant is added to the potentials, the minimum energy structures 
remain the same. Therefore, a linear transformation operating on 
the true potentials does not change the derived potentials. This 
allowed us to use  the  factor vPH, defined by Equation 3, to repre- 
sent the true potentials. vpH alone  is an adequate descriptor for all 
the true potentials. If the derived potentials and true potentials 
correlate linearly, v p ~  (calculated from EHH,  EHP,  and Epp) should 
be equal to $H (calculated from E;IH, EAp, and Ebp). 

Figure 3 shows how the derived potentials are related to the true 
potentials in the HP model. The true potentials were E H H  = - 1, 
Epp = 0, and EHP varied from - 1.5 to 1 .O. From Equation 3, it 
follows that vpH = EHp + 0.5. The derived potentials were  cal- 
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Fig. 2. Histograms of radius of gyration of proteins for proteins in the 
conformational library (dashed line) and proteins in constructed databases 
(solid lines). The constructed databases correspond to those shown in 
Table 5 .  

culated according to Equation 1, with XH = x p  = 1/2.  For each set 
of true potentials, 1,OOO lowest-energy (nondegenerate) structures 
were calculated for 1,000 random sequences. These constitute the 
structural database for the derivation of ELH, Ehp. Ebp. The  z-scores 
of such structures are around -4.1. 

From Figure 3, we see that as the true EHP increases, the derived 
Efip and Ebp increases, whereas the derived E;IH decreases. The 
relationships are monotonic, but apparently nonlinear. However, 
the relationship between vpH and &H seems simpler. Linear fitting 
vpH to $H yields 

qbH = 0.42~pH - 0.02, (4) 

with a linear correlation coefficient of 0.994. 
It is interesting to note that $H/qpH = 0.42 is a constant for any 

vpH value. What then determines $ H / ~ P H ?  Surprisingly, it  was 
found that it  depends  on how stable the structures are. Equation 4 
holds for structures having Z-scores around -4.1, whereas for 
structural databases with lower Z-score ranges, larger v b ~ / v p ~  

ratios are observed (see Table 2; note that each row represents 
the results obtained from a structural database characterized by 
2-scores).  The only case in which the derived potentials match the 
true potentials was in  the database with structures having Z-scores 
around -9.6, where the $H/TPH ratio is close to 1. 

It should be noted that the first row in Table 2 closely corre- 
sponds to the results obtained from the two-dimensional HP lattice 
models (Thomas & Dill, 1996). Thomas  and Dill used the same 
“true” potentials (EHH:EHP:EPP = -1:O:O). and found that the 
derived potentials rank as E;IH < E;Ip < Ebp. Because a complete 
set of short-chain lattice structures (excluding those that have de- 
generate ground state) was used in their study to extract the de- 
rived potentials, the Z-scores of such structures, on average, are not 
expected to be less negative than our databases. Thus, their results 
should correspond to our study in the case of,random.sequences,- 
where the same ranking of the derived potentials  can be found. But 
for databases with more negative Z-scores, the bias in the derived 
potentials diminishes. 

These results suggest that the only way of recovering the true 
potentials is to take into account the stability of the structures. 
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Table 2. Ability to recover contact potentials in HP models 
using  the Boltunann distribution method“ 

( Z )  k RMSD E ~ H  ELP E ~ P  V b H h P H  

-4.1 & 0.4 
-4.3 f 0.3 
-5.2 ? 0.2 
-6.2 k 0.2 
-7.2 ? 0.2 
-8.1 +_ 0.2 
-9.0 i 0.4 
-9.6 i 0.8 
-9.9 ? 1.0 

-0.56 
-0.59 
-0.70 
-0.80 
-0.90 
- 0.99 
- 1.08 
-1.14 
-1.17 

0. I9 
0.22 
0.32 
0.43 
0.57 
0.75 
0.99 
1.21 
I .39 

0.5 1 
OS4 
0.65 
0.77 
0.91 
1.03 
1.19 
1.27 
1.26 

0.41 
0.44 
0.5 1 
OS6 
0.63 
0.73 
0.83 
0.95 
1.11 

aE;i~ ,  E&p, and Ebp are the derived contact potentials for HH, HP,  and PP 
contacts, respectively. The “true” energies are: EHH = - 1; EHp = Epp = 0. 
Each database characterized by the range of 2-scores  contains 1,000 
structures. 

When the structural database is composed of structures with “ap- 
propriate” stability, the distortion in the Boltzmann distribution is 
diminished so that  the true potentials can be recovered accurately. 

Models with 20 natural amino acid types 

Next, proteins containing 20 natural amino acid types were con- 
sidered. The  amino acid composition in the constructed databases 
was kept the same  as that in the native proteins listed in Table 1 .  
Now the number of contact potential parameters is 210 (listed in 
Table 3), which is much more than in the HP model. Qualitatively, 
the  same relationship was  observed between the derived and the 
true potentials. 

In the database constructed from random sequences without 
screening for stability, Z-scores of their lowest energy structures 
are around -3.5. As shown in the first row of Table 4, the poten- 
tials derived from this database linearly correlate with the true 
potentials (their correlation coefficient is 0.94). However, differ- 
ences  in potentials similar to those found for the HP models also 
exist here. Figure 4 shows the relationship between factor qlj and 
76. Here, q, and q; were calculated from the true potentials and 
the derived potentials, respectively (using Equation 3). The  ratio 
q;/qij 0.46  is a constant largely independent of residue types. 
qi/q, is thus simply denoted as q’/q. Because q’/q is less than 
1 .O, there is a systematic bias  in the derived potentials, which is the 
same as that identified for the HP models. 

Again,  the stability of structures  was found to affect q‘/q. 
Table 4 shows the results obtained from databases of structures 
with various ranges of Z-scores. q‘/q appears to increase as Z-scores 
decrease. Among the databases listed, of particular interest is the 
one with Z-scores around -8, where q’/q is close to 1.0. The 
contact potentials derived from a database of structures having 
Z-scores around -8 are shown in Figure 5. The true potentials and 
the derived potentials indeed correlate remarkably well. 

Thus, it becomes important to have an estimate of the Z-scores 
of native protein structures with their native sequences. We took 
the sequences of the proteins listed in Table 1 ,  whose size is less 
than 200 residues, and we threaded them (without gaps) though all 
the tertiary structures of proteins listed in Table 1. Using the po- 
tentials listed in Table 2, the Z-scores of native structures were 
calculated (shown in Fig. 6). The Z-scores of native sequences 

appear to be lower than those of random sequences. This  is ex- 
pected because the stability of native folds of proteins may have 
been acquired through long-time evolution. The average Z-scores 
of the native sequences is -8.0. Most of the Z-scores fall within 
the range of - 10 to -7. Most proteins with Z-scores less negative 
than this range were found to be nonglobular and to form multi- 
meric complexes. This result suggests that the stability of real 
native proteins is within a range that does not cause a bias in the 
Boltzmann distribution described in Equation 1. 

However, it should be noted that there is a great deal of uncer- 
tainty in our estimated range of Z-scores of real native proteins 
because the actual potential energy function of a real protein is  not 
known. Our so-called true potentials are true for our artificial 
proteins, but may not be true for real proteins. Nevertheless, for the 
protein models with 20 amino acid types and a wide range of 
Z-scores, the correlation between the derived and “true” potentials 
is always high. Thus, substantial errors are unlikely to arise in the 
derived potentials for real proteins. 

Deriving contact potentials along with secondary 
structure propensities 

Next, we examine how contact potentials and secondary structure 
propensities influence each other in potential derivations. NOW, the 
conformational energy of the protein model is defined by 

where the summations are  over all the residues of a sequence; E,] 
is  the contact potential, C, = 1 if residue i and residue j are in 
contact; otherwise, Cil = 0; EI; is the secondary structure pro- 
pensity of residue j in the secondary structure type p (for the 
derivation of E;, see Methods). Here p can be ‘‘a” (3,*-helix and 
a-helix), “/3” @-strand), or “7” (coil and turns). 

The assumed true contact potentials and secondary structure 
propensities are listed in Table 3. Structural databases, each with 
5,000 minimum energy structures, were constructed. The struc- 
tures were sorted into different databases according to their range 
of Z-scores. 

In Table 5,  each row represents the results obtained from a 
structural database. Contact potentials were derived using Equa- 
tion l ,  whereas the secondary structure propensities were derived 
using Equation 7. In general, both kinds of potentials were recov- 
ered with high correlation. Thus, introducing secondary structure 
preferences does not seem to hinder the recovery of both potentials. 

However, it should be noted that, in the constructed structural 
databases, the relative weight of the  contact preferences to sec- 
ondary structure propensities is not the same as that observed in 
the native proteins listed in Table 1 .  Here, the weight of the po- 
tentials was reflected in the “slopes” of the linear fit  of derived 
potentials to the true potentials (Table 5).  Relatively stronger sec- 
ondary structure preferences were found in more stable structures. 

For structures having Z-scores around -8, it was found that 
q’/q is  close to 1.0. Along with the high correlation coefficient, the 
potentials derived from this database are considered most accurate. 
This result suggests that we can expect the derived potentials to be 
reliable, provided that the Z-scores of native proteins lie in an 
appropriate range and the functional form being used here to cal- 
culate conformational energies is correct. 
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Table 4. Effect of structural stability on derived potentials 
in  the protein models with 20 amino acid typesa 

(Z) _t RMSD r A 3 a ' h  4.0 1 
-3.5 k 0.4 0.94 0.81 - 0.02 0.46 
-5.1 f 0.1 0.96 1.18 0.06  0.64 
-6.1 f 0.1 0.96  1.46 0.16 0.73 
-7.1 f 0.2 0.96 1.75 0.29 0.85 
-7.9 f 0.4 0.96 2.03 0.45 1.01 
-8.9 f 0.4 0.95 2.42 0.70 1.21 
-9.9 t 0.7 0.94  2.68 0.94 1.34 

ar is the linear correlation coefficient between the derived and the true 
contact potentials; A and B are the slope and intercept, respectively, ob- 
tained from the linear least-square fitting of the derived potentials to the 
true potentials; v ' / ~  was obtained from linear fitting 11,; to ail for contact 
types that satisfies the condition that lEii - E,1 > 1.0. Note that errors in  
a,, become substantial when IE,, - Ej,1 is small. Each database character- 
ized by the range of Z-scores contains 5,000 structures. 

:I 4.0 . ~ ~ " L  1 

1 """-1~ . J 
-2 0 -1 0 0 0  1.0 2 0  30 

"True" polentral 

Fig. 5. Comparison between the true contact potentials and potentials de- 
rived from a database that has Z-scores around -8. 

Deriving contact potentials by optimizing Z-scores training set 2, the optimization procedure drove (Z)hom to con- 

For the optimization method, it was found that whether or not 
secondary structure propensity is included makes no difference in 
the derived potentials; thus, we report here only the results that 
were obtained with known secondary structure propensities. The 
optimization method we used was adopted from that of Mimy  and 
Shakhnovich (1996) and was applied to two sets of constructed 
structures. Each set contains 100 lowest-energy structures, but has 
different ranges of Z-scores. The first set, training set 1, was com- 
posed of random sequences with Z-scores around -3.5. The sec- 
ond set, training set 2, has 2-scores around -8, which is thought 
to be the most native protein-like. 

Starting from random values, the derived contact potentials were 
put through a Monte Carlo procedure to optimize the harmonic 
mean of the 2-scores ((Z)ham = 100/{81/Z,}) for each set of 100 
structures (see Table 6). As shown in Figure 7, for proteins in 

-0.5 F 
-1 .o -1 t .o -0.5 0.0 0.5 1 .O 

17 

Fig. 4. Plot 7' versus 77. The derived potentials were computed from the 
database of random sequences without screening for stability (Z-scores of 
the structures are around -3.2). Note that data were plotted only for 
contact types that satisfy IE;, - Ej,I > 1.0 and 1 7 7 1  < 1.0. 

verge to -10.3 after 4,500 cycles of optimization, whereas the 
derived potentials became increasingly correlated with the true 
potential, approaching a correlation coefficient of 0.74. The final 
derived potential is plotted against the true potential in Figure 8. 
Clearly, the repulsive terms in the true potentials tend to be sys- 
tematically underestimated. This tendency may be intrinsic to the 
optimization procedure rather than to the details of the model of 
proteins because the same trend was also observed by Mirny and 
Shakhnovich (1996) in their lattice models. 

Because the derived potentials were optimized with respect to 
their training sets, it is necessary to check how the derived poten- 
tials perform on a test set of other sequences. As shown in Table 6, 
we calculated the Z-scores using the derived potentials for two 
additional testing sets of structures. Little difference was observed 
between the test set proteins and the training set proteins. It is 
strilung to see that, even for the testing sets of proteins, the Z-scores 
calculated from derived potentials are lower than those calculated 

" 
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Fig. 6. Z-score of native protein structure. Z-scores were calculated by the 
potentials listed in Table 3. 
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Table 5. Deriving contact potentials along with secondary structure propensity” 

Contact  potential  a-Propensity  P-Propensity 

(Z) f RMSD r A B 7’/7 r A B r A B 

-3.5 k 0.3 0.94 0.77 -0.02 0.60 0.95 0.37 -0.01 0.95 0.54 -0.02 
-4.1 f 0.1 0.95 0.90 -0.01 0.61 0.98 0.48 -0.02 0.96 0.63 -0.02 
-5.1 f 0.1 0.96 1.11 0.04 0.74 0.99 0.70 -0.01 0.98 0.81 - 0.02 
-6.1 f 0.1 0.96 1.34 0.12 0.85 0.99 0.93 -0.01 0.98 0.98 - 0.02 
-7.1 f 0.1 0.97 1.58 0.22 0.90 0.99 1.14 0.01 0.99 1.15 -0.01 
-8.1 t 0.1 0.96 1.85 0.34 1.01 0.98 1.39 0.04 0.97 1.29 0.0 1 
-9.0 f 0.2 0.96 2.10 0.5 1 1.08 0.97 1.66 0.08 0.95 1.44 0.03 

-10.4 f 1.0 0.95 2.50 0.80 1.37 0.96 2.09 0.16 0.90 1.66 0.1 1 

ar denotes the linear  correlation coefficients between the derived and the true potentials; A and B are the slope and intercept obtained 
from the linear  least-square fitting of the derived potentials to the true potentials; 7‘ /q  is defined as in Table 4. Each database 
characterized by the range of 2-scores contains 5,000 structures. 

from the true potentials. This means that the derived potentials, in 
general, are able to place the “native folds” at even more stable 
positions than the true potentials. Thus,  the derived potentials ap- 
pear to be overoptimized. Evidently, this is because the repulsive 
terms in the potentials were diminished. The difficult dilemma is 
that, before the derived potentials are overoptimized, they have not 
converged, but, once convergence has been reached, the potentials 
are overoptimized. 

Further investigation revealed that these problems are particu- 
larly associated with the excess contributions to the potentials (see 
Equation 2B). The optimization procedure was altered such that 
the excess terms were kept as a constraint and only the ideal terms 
need to be parameterized. Starting  from random, the derived ideal 
terms eventually converged to the “true” ideal terms with a linear 
correlation coefficient of 0.95 (Fig. 9). However, when the ideal 
terms were kept as a constraint, the derived excess  terms only 
correlated with the “true” excess term with a correlation coefficient 
of 0.26. 

Discussion 

First of all, it  is reassuring to see that the derivation methods in 
many cases  can recover the true potentials quite accurately. Con- 

Table 6. Average Z-scores of training 
and testing set of proteinsa 

Structure set (Z)truc (z)dwwcd 

Training set-I -3.5 f 0.4 -4.5 * 0.6 
Testing set-I -3.5 f 0.4 -4.5 f 0.6 
r 0.74 

Training set-2 
Testing  set-2 

-8.1 f 0.1 -10.8 t 0.8 
-8.1 f 0.1 -10.6 f 0.8 

0.74 

“(Z), , ,  is the average  Z-score calculated from the true potential; (Z)dP,ived 

is calculated from the potentials derived though the optimization proce- 
dure; r is the linear correlation coefficient between the derived  potential 
and the true potentials. Set 1 structures  are  from  random sequences, whereas 
set 2 structures are ‘‘designed” sequences. so thev have lower Z-scores. 

sidering that database-derived potentials have been shown to per- 
form well in inverse folding (Sippl, 1995) and that the derived 
potentials make good physical sense [they can be rationalized in 
terms of hydrophobicity, electrostatic interactions, etc. (Godzik, 
1996; Miyazawa & Jernigan, 1996)], this provides us with greater 
confidence in the accuracy of the derived potentials. However, one 
has to bear in mind that the conclusions reached from our study are 
based on the assumption that the formulation of the potentials is 
correct. The key to successful force  field development may lie  in 
their formulation rather than in the parameterization. For structural 
prediction purposes, it may prove necessary to modify the defini- 
tion of contact potentials and include additional terms in the energy 
functions to better assess  packing, hydrogen bonding, etc., in 
proteins. 

Second, it was found that different types of potentials can be 
derived separately using the Boltzmann distribution method. Con- 
tact potentials and secondary structure propensities were recovered 
separately from our constructed structural databases with remark- 

-9.0 1 \\-”””” I 
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3000.0 4000 0 0 0  1 
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Fig. 7. Contact potentials derived by optimizing (Z)hm. The bottom line 
denotes the correlation  coefficient between the derived and true uotentials: 
the top solid line denotes the harmonic mean’of the Z-scores of proteins in 

- training set 2 and the dashed line denotes that of proteins in test set 2. 
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Fig. 8. Comparison of the true contact potentials and the potentials derived 
by optimizing the Z-scores. 

able accuracy. However, because the contact potentials derived 
from a-helical proteins are different from those derived from P-sheet 
proteins (Godzik et al., 1995), the contact energy in proteins must 
be truly backbone dependent to account for this effect. 

An important conclusion reached from this study is that stability 
of  the  sttuctures in a database  can affect the derived potentials. The 
effect of stability was seen in (1) the relative magnitude of excess 
versus ideal terms (defined in terms of T factor); and (2) the 
relative weighting of contact potentials versus secondary structure 
propensities. 

The Boltzmann distribution method can sometimes fail. The 
errors in the derived potentials are  evident  in  the  HP  models [both 
in  our model and in the models of Thomas & Dill (1996)], but are 
less apparent in the models with 20 amino acid types. Our results 
thus do not contradict the results of Thomas  and Dill, but depict a 
more general relationship between the derived and the "true" po- 
tentials. Our results of HP models and models with 20 amino acid 

-2.0 
-2.0 -1.0 0.0 1.0 20 

"TNe" E,, 

Fig. 9. Comparison of the ideal terms of the true contact potentials and 
that of potentials derived by optimizing the Z-scores. The excess terms are 
set as constraints in the optimization procedure. 

types elucidate a consistent picture: the bias in  the presumed Boltz- 
mann distribution is best described by the ratio of ? I / ? ,  which 
increases with the stability of the  structures in the database. How- 
ever, the contact potentials derived from real proteins may happen 
to be very accurate because the stability of real native proteins is 
within a range that introduces little bias in the presumed Boltz- 
mann distribution. In fact, from thermodynamic experimental data, 
the  2-scores of small proteins are estimated to be around -10 (L. 
Zhang & J. Skolnick, unpubl. work). 

In general, the stability optimization method may  be less accu- 
rate than the Boltzmann method of deriving potentials. Our results 
are similar to Mirny and Shakhnovich (1996), who also found that 
the derived potentials systematically underestimate the repulsive 
terms. Because this phenomenon has been observed in various 
model systems, we believe the problem is rooted in the fact that 
native proteins are not maximally optimized in terms of contact 
potentials. Simply driving the Z-scores to their minima only results 
in overoptimization, which distorts the derived potentials. A new 
insight from our study is that the errors in the derived potentials are 
mostly in the excess, but not in the ideal, contribution. In contrast, 
in the Boltzmann distribution method, the excess terms (regardless 
of sign) are underestimated relative to the ideal terms. 

Because of the simplicity of the protein models used, the rele- 
vance of this study to real proteins may be questionable. One of the 
concerns is that the  size of the studied model's conformational 
space may be too small. However, this limited size does not seem 
to affect the results obtained in this study. We observed that even 
taking a subset of these  2,553 conformations made no difference. 
We also used lattice models of proteins (Kolinski & Skolnick, 
1994) to define the conformational library and obtained similar 
results (data not shown). It remains to be seen whether the results 
obtained here still hold for the cases where the conformational 
space is much larger. However, given that similar results can be 
obtained from very different models of proteins, the conclusions 
reached from this study are unlikely to be artifacts of the models 
we used. 

Methods 

Conformational  library 

The names of the proteins used to construct a library of peptide 
fragments  are listed in Table 1. A sliding window of 90 residues, 
each step sliding by 1 residue, was used to excise the fragments  for 
all these proteins. To exclude noncompact and redundant struc- 
tures, fragments having a radius of gyration larger than 14 8, (only 
C, atoms are counted) were discarded, as were the fragments that 
can be superimposed onto each other within 7.5 A RMSD (only C, 
atoms are counted).  This resulted in 2,553 fragments, which were 
then used as the conformational library. It was assumed that any 
given sequence with a length of 90 residues could take only a 
conformation within this library. 

The contact maps are frozen, i.e., when a new sequence is 
threaded in one of the 2,553 fragments, the contact map remains 
the same  as in the original fragment. This is equivalent to as- 
suming that all amino  acids have the same size  and there is no 
repacking of the side-chain groups upon mutation. The defini- 
tion of a contact is that there  are two heavy atoms within 4.5 8, 
belonging to side  chains of two residues and there is no  cova- 
lent bond between the two residues. 
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Calculation of secondary structure propensity 

In this study, we used a three-state classification of protein sec- 
ondary structure types: ‘‘a” (a-helix, 3io-helix), “,B” (p strand), 
and ‘$7’’ (coil  and turn). The secondary propensity of a residue is 
denoted as EL, which is the energy of a residue  of type i in 
secondary structure p (/L can be “a,” “p,” or “7”). The definition 
of E$ follows that of the method of Chou and Fasman (1974): 

where f; is the observed frequency of residue i in state p; (f,) is 
the observed frequency of state p averaged over all residues. Using 
NL as the observed  number of residues of type i in state p, we have 

and 

where the summation is over  all 20 amino acid types ( k ) .  Because 
it is only the relative differences between EA, EL, and E;, that have 
any real meaning, we take  the “y” state (coil and turns) as the 
reference state so that E; is  set to zero and the helix propensity of 
an amino acid residue becomes 

and  the  P-strand propensity of an amino acid residue becomes 

Construction of the structural database 

The protocol used to construct a structural database is  as follows: 

1. Assume a set of “true” potentials. 

2.  Generate a random amino acid sequence by randomly picking 
residues from a pool of amino acid residues with a pre-defined 
amino acid residue composition. 

3. Use the true potentials to calculate the conformational energies 
for all conformations in the constructed library and pick the 
lowest-energy conformation. Sequences that have two lowest- 
energy conformations with equal energy (these cases were rare) 
are discarded. 

4. If it  is required that the lowest energy of a sequence should have 
a Z-score in a specified range, then mutations are introduced in 
the sequence by swapping residues within the sequence (muta- 

tion sites were selected randomly), and step 3 is repeated until 
the Z-score of the lowest-energy conformation is appropriate. 

5. Repeat steps 2 , 3 ,  and 4 until a desired number of lowest-energy 
conformations are collected. 

Definition of Z-scores 

We measure the stability of a conformation in terms of Z-scores, 
defined as follows: 

where ( E )  is the conformational energy averaged over the confor- 
mational library for a given sequence, is the standard deviation 
of this  ensemble,  and Eo is the conformational energy of interest. 
Note that the Z-scores were used in two different contexts in this 
study: (1) for constructing databases of lowest-energy structures, 
the Z-scores of lowest-energy conformation were calculated by 
true potentials as a criterion for selecting sequences; and (2) for 
deriving the potentials through optimization of 2-scores, the 2-scores 
of given folds were calculated using “guessed’ potential param- 
eters. The  two  cases should not be confused: the Z-scores were 
optimized by introducing mutations in the sequences in the first 
case, whereas in the second case, the Z-scores were optimized by 
adjusting “guessed” potentials. 

Correlation coeficient 

The correlation coefficient between two sets of numbers ({x;}, b,}, 
i = 1, 2, 3 , .  . ., N )  is defined as follows: 

where X = 2 x , / N ,  j = x y , / N  and the summations are over i from 
1 to N .  
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