Nucleotide Sequence Corresponding to Five Chemotaxis Genes in Escherichia coli

NORIHIRO MUTOH AND MELVIN I. SIMON*

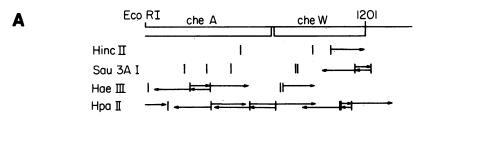
Division of Biology, California Institute of Technology, Pasadena, California 91125

Received 10 September 1985/Accepted 24 October 1985

The nucleotide sequence of DNA which contains five chemotaxis-related genes of *Escherichia coli*, *cheW*, *cheR*, *cheB*, *cheY*, and *cheZ*, and part of the *cheA* gene was determined. Molecular weights of the polypeptides encoded by these genes were calculated from translated amino acid sequences, and they were 18,100 for *cheW*, 32,700 for *cheR*, 37,500 for *cheB*, 14,100 for *cheY*, and 24,000 for *cheZ*. Nucleotide sequences which could act as ribosome-binding sites were found in the upstream region of each gene. After the termination codon of the *cheW* gene, a typical rho-independent transcription termination signal was observed. There are no other open reading frames long enough to encode polypeptides in this region except those which code for the two previously reported genes *tar* and *tap*.

Many of the genes that are required for bacterial chemotaxis have been identified, and their gene products have been characterized in both Escherichia coli and Salmonella typhimurium (1, 4, 10, 12, 17, 22). Two operons that are adjacent to each other on the bacterial genome encode 10 chemotaxis-related functions. The Mocha operon includes the *motA* and *motB* genes that are responsible for coupling flagella rotation to energy supplied by the electrochemical gradient across the cell membrane. Adjacent to these genes are the cheA and cheW genes that are required for chemotaxis (1, 12, 17). The second operon includes the *tar* and *tap* genes, which are responsible for the synthesis of transmembrane receptor proteins (2, 7), the cheR and cheB genes, which reversibly methylate the transmembrane proteins and are responsible for adaptation (5, 20, 23), and the cheY and cheZ genes, which are thought to play a central role in generating a signal that regulates bacterial flagella rotation (1, 3, 12, 15, 17). In the past 10 years, we have learned how to measure and analyze components of the chemotaxis system in a variety of sophisticated ways; however, we still do not understand the basis for the signal transduction process, i.e., how the binding of a specific attractant molecule to a receptor generates a signal that regulates flagellar rotation. One approach to this problem involves the manipulation of the levels of the chemotaxis gene products and the isolation and purification of the gene products to study their biochemical properties. This approach would be greatly facilitated by the availability of the nucleic acid sequence of the genes responsible for chemotaxis. The tar and tap gene sequences have been published (8). In this paper, we report the DNA sequence and the derived amino sequences for the cheW, cheR, cheB, cheY, and cheZ genes and for part of the cheA gene.

MATERIALS AND METHODS


Enzymes and chemicals. All restriction enzymes used in this study were purchased from Bethesda Research Laboratories, Inc., and New England BioLabs, Inc. T4 DNA ligase was obtained from Bethesda Research Laboratories. M13-mp7 replicative-form DNA was from Bethesda Research Laboratories, and M13-mp8 and M13-mp9 were purchased from P-L Biochemicals, Inc. Dideoxy nucleotide triphosphates and primers were purchased from Bethesda Research Laboratories. $[\alpha^{-32}P]dATP(3,000 \text{ Ci/mmol})$ was from Amersham Corp. DNA fragments were obtained by gel electrophoresis after digestion with restriction enzymes. Agarose gel (0.8%) was used to separate fragments more than 600-base-pairs long, and 5% polyacrylamide gels were used for fragments that were smaller than 600 base pairs. DNA sequencing was done by the procedures described by Heidecker et al. (7).

DNA sequencing. A 9.6-kilobase *Eco*RI fragment of pAK108 (2) was purified by gel electrophoresis. This fragment was cut with a variety of restriction enzymes, and the resulting fragments were cloned into M13-mp7, -mp8, or -mp9 phage. The hybrid phages were grown on *Escherichia coli* JM103 in L broth (1% tryptone [Difco Laboratories], 0.5% yeast extract, 0.5% sodium chloride). Phage DNA was purified by phenol extraction and ethanol precipitation. Sequencing was done with the purified phage DNA templates and the 26-base pair primer.

RESULTS

The plasmid pAK108 (2) carries an EcoRI fragment of 9.6 kilobases. This DNA includes the sequences corresponding to half of the cheA gene and the complete cheW gene and the chemotaxis operon which includes the two genes encoding the chemosensory transducers, tar and tap, and four other chemotaxis-related genes, cheR, cheB, cheY, and cheZ. Figure 1 shows the strategy used to determine the nucleotide sequence. Appropriate restriction fragments were cloned into the M13 vectors, and initial sequencing was done at random. Overlapping sequences were matched by scanning the sequences and compiling them with a computer program. All of the sequencing was done so that there were at least two separate determinations for each segment, and the ends of each sequence were overlapped by a sequence determined for a separate fragment. The numbering scheme chosen was essentially arbitrary, with number one corresponding to the middle of the EcoRI site that defined the start of the fragment carrying the cheA gene (Fig. 1A and 2). Nucleotide 1198 of this segment corresponded to the first nucleotide of the sequence that Krikos et al. (8) previously published for the tar gene. In the same way, the sequence of the second segment that encoded the cheR, cheB, cheY, and cheZ genes

^{*} Corresponding author.

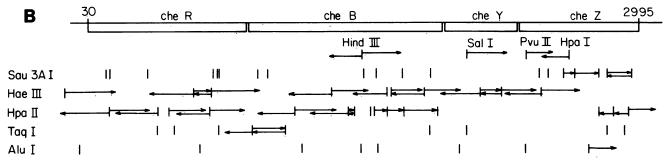


FIG. 1. Strategy for DNA sequencing. (A) Schematic drawing of the fragment extending from the EcoRI site in the middle of the *cheA* gene to the end of the *cheW* gene. The *cheW* gene ends at nucleotide 1201, with nucleotide number 1 corresponding to the G residue in the EcoRI site. The restriction fragments that were sequenced were derived by digestion with the enzymes shown on the right side. The arrows indicate the direction and the extent of sequencing. (B) Map of the region downstream from the *tap* gene. The numbering is arbitrary, with nucleotide number 30 corresponding to the A in the first codon of the *cheR* gene. The vertical lines indicate the position of specific restriction sites, and the horizontal arrows indicate the extent of sequencing of fragments obtained with specific restriction enzymes.

was numbered from 1 to 3,063 (Fig. 1B, 3, 4). Nucleotide 1 of this sequence corresponded to nucleotide 3450 of the *tap* sequence that was published previously (8). This data therefore links up the sequence previously published (8) and provides continuous sequence information covering seven chemotaxis genes and 7.7 kilobase pairs of DNA.

Figure 2 shows the last part of the sequence of the cheA gene and the complete sequence of the cheW gene. The cheW gene is the last gene in the Mocha operon, which comprises the motA, motB, cheA, and cheW genes. Downstream of this operon is the next operon in the chemotaxis series, which includes the tar, tap, cheR, cheB, cheY, and cheZ genes. In screening the sequence corresponding to cheW, we found a single open reading frame including nucleotides 701 to 1201. This open reading frame specified a polypeptide of 167 amino acid residues with a calculated molecular weight of 18,000. This value is only slightly larger than the molecular weight of the cheW gene product estimated from sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labeled cheW gene product (10, 18). The ATG start codon was selected because it gave the longest open reading frame and because 11 base pairs upstream from this ATG codon there is a sequence, AAGG, which could act as part of the ribosome-binding site for the translation of the cheW gene product. At the end of the cheW open reading frame, there is an inverted repeat sequence followed by a cluster of T residues. This is typical of a rho-independent transcription termination signal (14) and could represent the signal for the termination of the Mocha operon transcript. Preceding the open reading frame that represents the cheW sequence, there is another long, contiguous, uninterrupted open reading frame which extends to the end of the fragment. Figure 2 shows the translated product of this open reading frame; it corresponds to the C-terminal end of the cheA gene product.

Figure 3 shows the sequence starting at the end of the tap gene. The nucleotides TGA at positions 18, 19, and 20 correspond to the termination codon of the *tap* gene. There is a long open reading frame that starts with an ATG codon at nucleotide 30 and terminates with a TAA codon at nucleotide 890. This open reading frame is preceded by sequence AAGG, which could be part of the ribosomebinding site (16). The polypeptide encoded by this open reading frame has a calculated molecular weight of 32,700 and consists of 286 amino acids. The molecular weight of the cheR gene product has been reported to be 28,000 (10, 18) and is very similar to the molecular weight derived from the product encoded by this open reading frame. There is no other long, extensive open reading frame that we could discern that covers this region, and therefore, we have assigned this open reading frame to the cheR gene.

The next long open reading frame begins at an ATG codon at nucleotide 893 and ends with a TAA codon at nucleotide 1942. This open reading frame specifies 349 amino acid residues encoding a polypeptide with a molecular weight of 37,500, which agrees with the 38,000 molecular weight reported for the *cheB* gene product. Interestingly, this open reading frame is preceded by a sequence, AAGGA, which could act as part of the ribosome-binding site (16). However, this sequence is also a portion of the coding region of the cheR gene. Thus, there is an apparent overlap between the sequences that encode the cheR gene and sequences that might act as the ribosome-binding site for the beginning of translation of the large open reading frame corresponding to the cheB gene. Further evidence to support the contention that this open reading frame corresponds to the *cheB* gene comes from the finding of an SstII restriction endonuclease recognition site (CCGCGG, nucleotide 1070 to 1075) which was reported to exist in the cheB gene by Slocum and Parkinson (19). In previous labeling experiments in which

1	GA ATT Ile	CTC Leu																									80
81	GCA CC Ala Pro																										161
162	CAG AN Gin Ly																										242
243	GCC AT																										323
324	CCC CG Pro Ar																										404
405	TCT CC Cys Cl																										485
486	CGC TA																										566
567	CCC GG Pro Gl																										647
		,							•	-	-																
648	CGC GA	A CAA	CGT	ATG	CCC	AAC					ATG	AGTA	***	AGCT	AACA			CC G									730
731		A CAA u Gln C GAG	CGT Arg CCG	ATG Met TCA	GCG Ala GGC	AAC Asn CAG	Thr GAA	Ala TTT	Ala CTG	GTA	TTT	ACC	стт	GCT	GAT	N GAA	GAG	hr G	iy M GCT	et T	hr A GAT	sn V	al 1 CTC	hr I	.ys I GTC	Leu G CAG	730 811
731	Arg Gla	A CAA u Gln C GAG r Glu C CGT	CGT Arg CCG Pro GGC	ATG Met TCA Ser TAC	CCC Ala GCC Gly GAT	AAC Asn CAG Gln CAG	Thr GAA Glu GTA	Ala TTT Phe ACA	Ala CTG Leu CGG	GTA Val ATT	TTT Phe GCG	ACC Thr	CTT Leu ACG	GCT Gly CCA	GAT Asp GCG	GAA Glu TTI	GAG GAG Glu	hr G TAC Tyr	iy M GGT Gly GGC	et T ATT Ile GTC	hr A GAT Asp ACG	ATC	al T CTC Leu	hr I AAA Lys CGC	ys I GTC Val	CAG CAG CIn CGTT	
731 812	Arg Gli GCC AG Ala Se GAG AT	A CAA u Gln C GAG r Glu C CGT e Arg G CCG	CGT Arg CCG Pro GGC Gly ATT	ATG Met TCA Ser TAC Tyr GTT	GCC Ala GCC Gly GAT Asp GAC	AAC Asn CAG Gln CAG Gln TTA	Thr GAA Glu GTA Val CGA	Ala TTT Phe ACA Thr	Ala CTG Leu CGG Arg AAG	GTA Val ATT Ile TTC	TTT Phe GCG Ala AGC	ACC Thr AAC Asn CAG	CTT Leu ACG Thr GTG	GGT Gly CCA Pro GAT	GAT Asp GCG Ala GTG	GAA Glu TTT Phe GAC	GAG Glu ATC Ile TAT	hr G TAC Tyr AAA Lys	GGT Gly GGC Gly GAC	et T ATT Ile GTC Val AAC	hr A GAT Asp ACG Thr ACG	ATC The ATC The ATC AST AST	al 1 CTG Leu CTG Leu GTI	hr I AAA Lys CGC Arg	ys I GTC Val GCC GCC GCC GTC	CAG CAG CIN CGTT VA1 CCTG	811
731 812 893	Arg Gla GCC AG Ala Se GAG AT Glu II ATT GT	A CAA U Gln C GAG r Glu C CGT e Arg G CCG l Pro	CGT Arg CCG Pro GGC Gly ATT Ile CAG	ATG Met TCA Ser TAC Tyr GTT Val CGG	GCC Ala GCC Gly GAT Asp GAC Asp GTC	AAC Asn CAG Gln CAG Gln TTA Leu GTC	Thr GAA Glu GTA Val CGA Arg GGC	Ala TTT Phe ACA Thr ATT Ile ATC	Ala CTG Leu CGC Arg AAG Lys GTG	GTA Val ATT Ile TTC Phe GTT	TTT Phe GCG Ala AGC Ser GAC	ACC Thr AAC Asn CAG Gln GGC	CTT Leu ACG Thr GTG Val GTC	GGT Gly CCA Pro GAT Asp TCA	GAT Asp GCG Ala GTG Val GAC	GAA Glu TTT Phe GAC Asp	GAG Glu ATC Ile TAT Tyr CTT	hr G TAC Tyr AAA Lys AAC Asn TCA	GGT Gly GGC Gly GAC Asp TTG	et T ATT Ile GTC Va! AAC Asn ACG	hr A GAT Asp ACG Thr ACG Thr GCG	ATC Ile ATC Ile AAT Asr GT/ Val	Val 1 CTG Leu CTG Leu Val CAA	hr I AAA Lys CGC Arg ATC Ile	GTC	CAG CAG CIN CIN CIN CIN CIN CIN CIN CIN CIN CIN	811 892
731 812 893 974	Arg Cla GCC AG Ala Se GAG AT Glu II ATT GT Ile Va AAT CT	A CAA U Gln C GAG T Glu C CGT E Arg G CCG I Pro C GGA U Gly G GAA	CGT Arg CCG Pro CGC Gly ATT Ile CAG Gln TTT	ATG Met TCA Ser TAC Tyr GTT Val CGC Arg GCC	GCC Ala GCC Gly GAT Asp GAC Asp GTC Val GTC	AAC Asn CAG Gln CAC Gln TTA Leu GTC Val	Thr GAA Glu GTA Val CGA Arg GCC Gly CTT	Ala TTT Phe ACA Thr ATT Ile ATC Ile TCA	Ala CTC Leu CCC Arg AAC Lys CTC Val ACA	GTA Val ATT Ile TTC Phe GTT Val GAA	TTT Phe GCG Ala AGC Ser GAC Asp TAT	ACC Thr AAC Asn CAG Gln Gln GCC Gly CTC	CTT Leu ACG Thr GTG Val GTC Val ACT	GGT Gly CCA Pro GAT Asp TCA Ser GGA	GAT Asp GCG Ala GTG Val GAC Asp CTG	GAA Glu TTT Phe GAC Asp GC CTC CTC CTC	GAG Glu ATC Ile TAT Tyr CTT Leu GCA	hr G TAC Tyr AAA Lys AAC Asn TCA Ser CTG	GGT Gly GGC Gly GGC Asp TTC Leu GGC	et T ATT Ile GTC Va! AAC Asn ACC Thr GAC	hr A GAT Asp ACG Thr ACG Thr GCG Ala	ATC Ile ATC Ile ATC Asr ST/ Val GAC GL ATC	Val T CTG Leu CTG Leu CTG Val CAA Gln TTG	ATI	GTC GCC GCC GCC GCC GCC GCC GCC GCC GCC	CAG CAG CIN CIN CIT Val CITG Leu CCG Pro CTG	811 892 973 1054
731 812 893 974 1055	Arg Cli GCC AG Ala Se GAG AT Glu Il ATT GT Ile Va AAT CT Asn Le GCA CC	A CAA U GIN C GAG r GIU C CGT e Arg G CCG I Pro C GGA U GIY G GAA	CGT Arg CCG Pro GCC Gly ATT Ile CAG Gln TTT Phe	ATC Met TCA Ser TAC Tyr GTT Val CCC Arg GCC Ala CTC	CCC Ala GCC Cly CAT Asp GAC Asp CTC Val CTC CTC	AAC Asn CAG Gln CAG Gln TTA Leu GTC Val ACG Thr AAC	Thr GAA Glu GTA Val CGA Arg GGC Cly CTT Leu AGC	Ala TTT Phe ACA Thr ATT Ile ATC Ile TCA Ser GAA	Ala CTG Leu CGC Arg AAG Lys GTC Val ACA Thr GAG	GTA Val ATT Ile TTC Phe GTT Val GAA Glu ATG	TTT Phe GCC Ala AGC Ser GAC Asp TAT Tyr GCC	ACC Thr AAC Asn CAG Gln GCC Gly CTC Leu CTC	CTT Leu ACC Thr GTC Val GTC Val ACT Thr	GGT Gly CCA Pro GAT Asp TCA Ser GGA Gly GAT	GAT Asp GCG Ala GTG Val GAC Asp CTG Leu AGC	M GAA Glu TTT Phe GAC Asp Val GCC Gly GCC	GAG GAG GAG ATC ATC Ile TAT CTT Leu GCA Ala	TAC Tyr AAA Lys AAC Asn TCA Ser CTG Leu	GGT Gly GGC Gly GAC Asp TTG Leu GGC Gly GAA	et T ATT Ile GTC Val AAC Asn ACG Thr GAC Asp GTG	hr A GAT Asp ACG Thr ACG Thr GCG Ala CGG Arg GCG	ATC ATC ATC ATC ATC ATC C C C C C C C C	CTG CTG CTG CTG CTG CTG CTG CTG CAA CIN CAA CIN CAA CIN CAA	AAA CGCC CGCC CGCC Arg ATC Ile ATT Ile	ys I GTC Val GCC GCC GTC CC CC CC CC CC CC CC CC CC CC CC CC C	CAG CAG CIN COTT Val CCTG Leu CCG Pro CCG CTG CTG Val	811 892 973 1054 1135

1311 CCGATAACGA GATCAACTTC TTTTCAGGAA GCTGCCTTAT GATTAACCGT 1360

FIG. 2. Nucleotide sequence of the *cheA* fragment and the *cheW* gene. The sequences are shown, with the reading frame indicated by the spacing of the codons. The corresponding amino acids are listed below each codon. The underlined sequences represent the cluster of thymidylate residues that may mark the termination of the *mocha* transcription unit.

the *cheR* and *cheB* gene products were synthesized and labeled with [35 S]methionine, the *cheR* gene product always appeared to be synthesized at lower levels than the *cheB* gene product (18). One reason for this observation may come from the finding that the open reading frame corresponding to the *cheB* gene product included approximately 20 methionine residues, while the open reading frame for the *cheR* gene product only included 6 methionine residues. Thus, the specific activity of the two gene products could vary by more than a factor of three even if they were synthesized at exactly the same rates.

Figure 4 shows the sequences corresponding to the *cheY* and *cheZ* genes. The product of the *cheY* gene was reported to be a small polypeptide of molecular weight 8,000 (10, 18). The open reading frame corresponding to this polypeptide was found to start at nucleotide 1957 and extend to nucleotide 2343. This reading frame encoded a polypeptide comprising 129 amino acid residues with a molecular weight of 14,100. The calculated molecular weight was slightly higher than that estimated from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data. The putative ribosome-binding sequence was AGGAG, corresponding to nucleotides 1946 to 1950. Slocum and Parkinson (19) indicated the presence of an *SalI* restriction endonuclease recognition site in the *cheY* gene. A *SalI* recognition site was found at nucleotides 2074 to 2079 in this opening reading frame. The

cheB gene ended at nucleotide 1943 and, thus, there was a space of 15 base pairs between the translated regions of the two genes. This space included a sequence that could serve as a ribosome-binding site. Matsumura et al. (9) reported the nucleotide sequence of the cheY gene. The sequence shown here is identical to the one that they reported. After the cheYgene, there was another long open reading frame, which we assigned to the cheZ gene. The cheY gene ended with a termination nucleotide TGA, corresponding to nucleotide 2347. There was then a space of 11 nucleotides before the next ATG, which started the long open reading frame extending from nucleotide 2359 to 2999. This could encode a polypeptide corresponding to 214 amino acid residues with a molecular weight of 24,000. This molecular weight corresponded well to that of the cheZ gene product estimated by polyacrylamide gel electrophoresis. There was a PvuII restriction endonuclease recognition site 38 to 43 nucleotides downstream of the ATG start codon, and this again was consistent with the report of Slocum and Parkinson (19) that a PvuII recognition site is found in the early part of the cheZ gene. A ribosome-binding site could correspond to the sequence AGGA which is 11 base pairs from the start of the cheZ gene. There would be a 1-base overlap between the termination codon of the open reading frame corresponding to cheY and the putative ribosome-binding site for the cheZgene product. We explored the sequence further down-

411				TAC Tyr																								491
492				GAA Glu																								572
573				TTC Phe																								653
654	Ala	Pro	Leu	Asn	Leu	Leu	Ala	Lys	Gln	Tyr	Thr	Val	Pro	Gly	Pro	Phe	Asp	Ala	Ile	Phe	Cys	Arg	Asn	Val	Met	Ile	Tyr	734
735	Phe	Asp	Gln	Thr	Thr	Gln	Gln	Glu	Ile	Leu	Arg	Arg	Phe	Val	Pro	Leu	Leu	Lys	Pro	Asp	Gly	Leu	Leu	Phe	Ala	Cly	His	815
816																									TAA	8	90	
891	Ser Glu Asn Phe Ser His Leu Glu Arg Arg Phe Thr Leu Arg Gly Gln Thr Val Tyr Ala Leu Ser Lys Asp 891 CGATGAGCAA AATCAGGGTG TTATCTGTCG 920																											
865	che l CGG1		IG C	GCTA	AGTA/	A GGA	11 <u>11</u>	CG		AGC Ser																		949
950				ATC Ile																								1030
1031				CCC Pro																								1111
1112				ATG Met																								11 92 -
1193				TTT Phe																								1273
1274				GCA Ala																								1354
1355	Ser	Glu	Lys	Leu	Ile	Ala	Ile	Gly	Ala	Ser	Thr	Gly	Gly	Thr	Glu	Ala	Ile	Arg	His	Val	Leu	Gln	Pro	Leu	Pro	Leu	Ser	1435
1 436	Ser	Pro	Ala	Leu	Leu	Ile	Thr	Gln	His	Met	Pro	Pro	Gly	Phe	Thr	Arg	Ser	Phe	Ala	Asp	Arg	Leu	Asn	Lys	Leu	Cys	Gln	1516
1517	Ile	Gly	Val	Lys.	Glu	Ala	Glu	Asp	Cly	Glu	Arg	Val	Leu	Pro	C1 y	His	Ala	Tyr	Ile	Ala	Pro	Gly	Asp	Arg	His	Met	Glu	1597
1598	Leu	Ser	Arg	Ser	Gly	Ala	Asn	Tyr	Gln	Ile	Lys	Ile	His	Asp	Gly	Pro	Ala	Val	Asn	Arg	His	Arg	Pro	Ser	Val	Asp	Val	1678
1679	Leu	Phe	His	Ser	Val	Ala	Lys	Gln	Ala	Gly	Arg	Asn	Ala	Val	Gly	Val	Ile	Leu	Thr	Gly	Met	Gly	Asn	Asp	Gly	Ala	Ala	1759
1760	Gly	Met	Leu	Ala	Met	Arg	Gln	Ala	Gly	Ala	Trp	Thr	Leu	Ala	Gln	Asn	Glu	Ala	Ser	Cys	Val	Val	Phe	G1 y	Met	Pro	Arg	1840
1841	Glu	Ala	Ile	Asn	Net	Gly	Gly	Val	Cys	Glu	Val	Val	Asp	Leu	Ser	Gln	Val											1921
1922				ATA Ile			TAA	ATC	IGGAC	; TCI	CAA/	TGC	CGGA	TAAA	GA	197	70											

TGGTATCCTG AAGTGATTGA GAAGCCGCT ATG ACT TCA TCT CTG CCC TGT GGG CAA ACG TCT TTA TTG TTA CAG ATG ACC GAG CGC Net Thr Ser Ser Leu Pro Cys Gly Gln Thr Ser Leu Leu Gln Met Thr Glu Arg

CTG GCG CTT TCC GAC GCG CAT TTT CGG CGG ATA AGT CAA TTG ATC TAT CAA CGA GCC GGG ATC GTT CTG GCT GAC CAT AAA

Leu Ala Leu Ser Asp Ala His Phe Arg Arg Ile Ser Gln Leu Ile Tyr Gln Arg Ala Gly Ile Val Leu Ala Asp His Lys 168 CCC GAC ATG GTT TAC AAC CGA CTG GTT CGT CGT TTG CGT TCG CTG GGA CTG ACG GAT TTC GGT CAT TAT CTG AAC TTG CTG

Arg Asp Met Val Tyr Asn Arg Leu Val Arg Arg Leu Arg Ser Leu Gly Leu Thr Asp Phe Gly His Tyr Leu Asn Leu Leu 249 GAA TCT AAT CAG CAC AGC GGT GAC TGG CAG GGG TTT ATC AAT TCG CTG ACC ACG AAT CTG ACG CCA TTT I C CGT GAC GCA

Glu Ser Asn Gln His Ser Gly Glu Trp Gln Ala Phe Ile Asn Ser Leu Thr Thr Asn Leu Thr Ala Phe Phe Arg Glu Ala 330 CAT CAT TTC CCT CTG CTC GCG GAT CAC GCA CCT CCC CGT TCT GCC GAG TAT CGC GTA TCG AGC GCG GCC TCC ACC GCC

His His Phe Pro Leu Leu Ala Asp His Ala Arg Arg Gly Ser Gly Glu Tyr Arg Val Trp Ser Ala Ala Ala Ser Thr Gly

FIG. 3. Nucleotide sequence of the cheR and cheB genes. The TAA codon that corresponds to the termination of the cheB gene is underlined to show that the ribosome-binding site for the cheB gene overlaps with the translated sequence of the cheR gene.

stream from the cheZ open reading frame and did not discover a long stretch of T residues or an inverted repeat sequence that could correspond to transcription signals similar to those found at the end of the Mocha operon. On the other hand, we did not find any other long, extensive open reading frames. We suggest that the cheZ gene may represent that last gene product in the cotranscribed unit corresponding to the chemotaxis genes.

che R

1

87

86

167

248

329

410

164

che Y 1928 GCGATACGTA TTTAAATCAG GAGTGTGAA ATG GCG GAT AAA GAA CTT AAA TTT TTG GTT GTG GAT GAC TTT TCC ACC ATG CGA CGC 2013 Met Ala Asp Lys Glu Leu Lys Phe Leu Val Val Asp Asp Phe Ser Thr Met Arg Arg 2014 ATA GTG CGT AAC CTG CTG AAA GAG CTG GGA TTC AAT AAT GTT GAG GAA GCG GAA GAT GCC GTC GAC GCT CTC AAT AAG TTG 2094 Ile Val Arg Asn Leu Leu Lys Glu Leu Gly Phe Asn Asn Val Glu Glu Ala Glu Asp Gly Val Asp Ala Leu Asn Lys Leu 2095 CAG GCA GGC GGT TAT GGA TTT GTT ATC TCC GAC TGG AAC ATC CCC AAT ATC GAT GGC CTG GAA TTG CTG AAA ACA ATT CGT 2175 Gin Ala Gly Gly Tyr Gly Phe Val Ile Ser Asp Trp Asn Met Pro Asn Met Asp Gly Leu Glu Leu Leu Lys Thr Ile Arg 2176 GCC GAT GGC GCG ATG TCG GCA TTG CCA GTG TTA ATG GTG ACT GCA GAA GCC AAG AAA GAG AAC ATC ATT GCT GCG GCG CAA 2256 Ala Asp Gly Ala Met Ser Ala Leu Pro Val Leu Met Val Thr Ala Glu Ala Lys Lys Glu Asn lle Ile Ala Ala Ala Gln 2257 GCG GCG GCC AGT GGC TAT GTG GTG AAG CCA TTT ACC CCC GCG AGG CTC GAG GAA AAG CTC AAG AAA ATC TTT GAG AAA CTG 2337 Ala Gly Ala Ser Gly Tyr Val Val Lys Pro Phe Thr Ala Ala Thr Leu Glu Glu Lys Leu Asn Lys Ile Phe Glu Lys Leu 2338 GGC ATG TGA GGAT GCGACTATGA TGCAACCATC AATCAAACCT 2380 Gly Met che Z 2328 TGAGAAACTG GGCATGT<u>CA</u>G GATGCGACT ATG ATG CAA CCA TCA ATC AAA CCT GCT GAC GAG CAT TCA GCT GGC GAT ATC ATT GCG 2413 Met Met Gln Pro Ser Ile Lys Pro Ala Asp Glu His Ser Ala Gly Asp Ile Ile Ala 2414 CGC ATC GGC AGC CTG ACG CGT ATG CTG CGC GAC AGT TTG CGG GAA CTG GGG CTG GAT CAG GCC ATT GCC GAA GCG GCG GAA 2494 Arg Ile Gly Ser Leu Thr Arg Met Leu Arg Asp Ser Leu Arg Glu Leu Gly Leu Asp Gln Ala Ile Ala Glu Ala Ala Glu 2495 GCC ATC CCC GAT GCG CGC GAT CGT TTC TAC TAT GTT GTG CAG ATC ACC GCC CAG CCT GCG GCG CGC GCC CTG AAC AGT GTT 2575 Ala Ile Pro Asp Ala Arg Asp Arg Leu Tyr Tyr Val Val Gin Met Thr Ala Gin Ala Ala Giu Arg Ala Leu Asn Ser Val 2576 GAG GCG TCA CAA CCG CAT CAG GAT CAA ATC GAG AAA TCA GCA AAA GCG TTA ACC CAA CGT TGG GAT GAC TGG TTT GCC GAT 2656 Glu Ala Ser Gln Pro His Gln Asp Gln Met Glu Lys Ser Ala Lys Ala Leu Thr Gln Arg Trp Asp Asp Trp Phe Ala Asp 2657 CCG ATT GAC CTT GCC GAC GCC CGT GAA CTG GTA ACA GAT ACA CGA CAA TTT CTG CCA GAT GTA CCC GCG CAT ACC AGC TTT 2737 Pro Ile Asp Leu Ala Asp Ala Arg Glu Leu Val Thr Asp Thr Arg Gln Phe Leu Ala Asp Val Pro Ala His Thr Ser Phe 2738 ACT AAC GCG CAA CTG CTG GAA ATC ATG ATG GCG CAG GAT TTT CAG GAT CTC ACC GGC CAG GTC ATT AAG CGG ATG ATG GAT 2818 Thr Asn Ala Gin Leu Leu Glu Ile Met Met Ala Gin Asp Phe Gin Asp Leu Thr Gly Gin Val Ile Lys Arg Met Met Asp 2819 GTC ATT CAG GAG ATC GAA CGC CAG TTG CTG ATG GTG CTG TTG GAA AAC ATC CCG GAA CAG GAG TCG CGT CCA AAA CGT GAA 2899 Val Ile Gin Glu Ile Glu Arg Gin Leu Leu Met Val Leu Leu Glu Asn Ile Pro Glu Gin Glu Ser Arg Pro Lys Arg Glu 2900 AAC CAG AGT TTG CTT AAT GGA CCT CAG GTC GAT ACC AGC AAA GCC GGT GTG GTA GCC AGT CAG GAT CAG GTG GAC GAT TTG 2980 Asn Gln Ser Leu Leu Asn Gly Pro Gln Val Asp Thr Ser Lys Ala Gly Val Val Ala Ser Gln Asp Gln Val Asp Asp Leu 2981 TTC GAT AGT CTT GGA TTT TGA TTTGTATTC CCTGATGTGG CGTGACCACG TCATATCAGG CCTTCTGATA AGGCGATGAC GCC 3063 Leu Asp Ser Leu Gly Phe

FIG. 4. Nucleotide sequence of the cheY and cheZ genes. In the lower part of the figure, the TGA sequence corresponding to the termination of the cheY gene is underlined to indicate the relationship and spacing between the cheY and cheZ genes.

DISCUSSION

One of the best-characterized sensory transducing systems is the one involved in bacterial chemotaxis. Thus far, many of the experiments dealing with bacterial chemotaxis have focused on describing its components. However, the system is ideally suited to both genetic and biochemical manipulation. Experiments can be designed to modify genes and gene products and to study their interaction both in the whole organisms and in the test tube. The final stage in the characterization of the chemotaxis system is the description of the nucleotide sequence of the genes that encode the proteins involved in generating intracellular signals. The DNA sequence allows for precise gene manipulation, the preparation of overproducers, and site-specific mutagenesis. In this paper, we have described the DNA sequence of five genes that are centrally involved in regulating signal transduction in E. coli chemotaxis.

All of the sequences presented here have been tested for homology with an extensive collection of known protein sequences in the Bionet collection and by R. Doolittle of the University of California, San Diego. Thus far, no significant homology has been found between the *cheW*, *cheR*, *cheY*, or *cheZ* sequences and the other sequences in the libraries. However, the C-terminal fragment of the *cheA* gene did show a significant match with the C-terminal portion of the sequence corresponding to the *envZ* gene (11). When the stretch of amino acids between Phe 335 to Thr 391 of the envZ sequence was aligned with amino acids Phe 30 to Met 86 of the *cheA* C-terminal sequence shown in Fig. 2, without introducing any gaps, 15 amino acid identities were found. While this is not sufficient homology to suggest a direct relationship between the function of the *envZ* gene product and the product of the *cheA* gene, it is sufficient to suggest that these proteins may be ancestrally related. *envZ* is a component of a pathway of information processing. It is thought to be in part responsible for sensing changes in levels of different outer membrane proteins in *E. coli* (11). It is thus possible that the C-terminal portion of the EnvZ protein and the CheA protein may have evolved from a common ancestral protein that played some role in a primitive pathway for sensory transduction.

Hydropathy profiles of all of the sequences were determined, and they do not indicate any special regions that might be membrane associated. We would perhaps have predicted this result, since all of these gene products were found to be soluble cytoplasmic proteins in previous work (13). The codon usage in general was found to be fairly typical of that for *E. coli* proteins with the exception of the GGA and GGG codons, which were used significantly more frequently than expected (6).

The *cheR* and *cheB* gene products are involved in mediating the reversible methylation of the chemotaxis receptors. It is interesting that their coding regions apparently overlap so that the termination of the *cheR* translation may be coordinated with the initiation of translation of *cheB*. The *cheY* gene product is also produced at higher stoichiometric levels than the other gene products. This may be the result of the apparent ribosome-binding site preceding *cheY*. This sequence has very good correspondence to the canonical ribosome-binding sequence (14). There may be other structural features of the mRNA gene product that enhance translation. They are not apparent from our analysis thus far.

This work, together with previously published sequences, provides the complete nucleotide sequence of the Meche operon and the complete sequence of the cheW gene.

ACKNOWLEDGMENTS

This work was supported by a Public Health Service grant from the National Institute of Health. We thank R. Doolittle for analyzing the protein sequences presented in this paper for sequence homology with other proteins. His computer analyses found the homologies between the *cheA* and the *envZ* genes.

LITERATURE CITED

- 1. Aswad, D., and D. E. Koshland, Jr. 1975. Isolation, characterization and complementation of *Salmonella typhimurium* chemotaxis mutants. J. Mol. Biol. 97:225-235.
- 2. Boyd, A., A. Krikos, and M. Simon. 1981. Sensory transducers of *E. coli* are encoded by homologous genes. Cell 26:333–343.
- Clegg, D. O., and D. E. Koshland, Jr. 1984. The role of a signaling protein in bacterial sensing: behavioral effects of increased gene expression. Proc. Natl. Acad. Sci. USA 81:5056-5060.
- DeFranco, A. L., and D. E. Koshland, Jr. 1981. Molecular cloning of chemotaxis genes and overproduction of gene products in the bacterial sensing system. J. Bacteriol. 147:390-400.
- Goy, M. F., M. S. Springer, and J. Adler. 1977. Sensory transduction in *Escherichia coli*: role of a protein methylation reaction in sensory adaptation. Proc. Natl. Acad. Sci. USA 74:4964–4968.
- 6. Grosjean, H., and W. Fiers. 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209.
- 7. Heidecker, G., J. Messing, and B. Gronenbaum. 1980. A versatile primer for DNA sequencing in the M13mp2 cloning system. Gene 10:69-73.
- Krikos, A., N. Mutoh, A. Boyd, and M. I. Simon. 1983. Sensory transducers of *E. coli* are composed of discrete structural and functional domains. Cell 33:615-622.

- 9. Matsumura, P., J. J. Rydel, R. Linzmeier, and D. Vacante. 1984. Overexpression and sequence of the *Escherichia coli cheY* gene and biochemical activities of the CheY protein. J. Bacteriol. 160:36-41.
- Matsumura, P., M. Silverman, and M. Simon. 1977. Synthesis of mot and che gene products of Escherichia coli programmed by hybrid ColE1 plasmids in minicells. J. Bacteriol. 132:996-1002.
- Mizuno, T., E. T. Wurtzel, and M. Inouye. 1982. Osmoregulation of gene expression. II. DNA sequence of *envZ* gene of the *ompB* operon of *Escherichia coli* and characterization of its gene product. J. Biol. Chem. 257:13692–13698.
- 12. Parkinson, J. S. 1978. Complementation analysis and deletion mapping of *Escherichia coli* mutants defective in chemotaxis. J. Bacteriol. 135:45-53.
- 13. Ridgway, H. F., M. Silverman, and M. I. Simon. 1977. Localization of proteins controlling motility and chemotaxis in *Escherichia coli*. J. Bacteriol. 132:657-665.
- 14. Rosenberg, M., and D. Court. 1979. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet. 13:319–353.
- 15. Segall, J. E., A. Ishihara, and H. C. Berg. 1985. Chemotactic signaling in filamentous cells of *Escherichia coli*. J. Bacteriol. 161:51-59.
- Shine, J., and L. Dalgarno. 1974. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosomal binding sites. Proc. Natl. Acad. Sci. USA 71:1342-1346.
- 17. Silverman, M., and M. Simon. 1976. Operon controlling motility and chemotaxis in *E. coli*. Nature (London) **264**:577–580.
- Silverman, M., and M. Simon. 1977. Identification of polypeptides necessary for chemotaxis in *Escherichia coli*. J. Bacteriol. 130:1317-1325.
- 19. Slocum, M. K., and J. S. Parkinson. 1983. Genetics of methylaccepting chemotaxis proteins in *Escherichia coli*: organization of the *tar* region. J. Bacteriol. 155:565-577.
- Springer, W. R., and D. E. Koshland, Jr. 1977. Identification of a protein methyltransferase as the *cheR* gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. USA 74:533-537.
- Stock, J. B., and D. E. Koshland, Jr. 1978. A protein methylesterase involved in bacterial sensing. Proc. Natl. Acad. Sci. USA 75:3659-3663.
- 22. Tsui Collins, A. L., and B. A. D. Stocker. 1976. Salmonella typhimurium mutants generally defective in chemotaxis. J. Bacteriol. 128:754-765.
- Yonekawa, H., H. Hayashi, and J. S. Parkinson. 1983. Requirement of the *cheB* function for sensory adaptation in *Escherichia coli*. J. Bacteriol. 156:1228–1235.