Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Oct;7(10):2118–2126. doi: 10.1002/pro.5560071008

Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity.

B C Finzel 1, E T Baldwin 1, G L Bryant Jr 1, G F Hess 1, J W Wilks 1, C M Trepod 1, J E Mott 1, V P Marshall 1, G L Petzold 1, R A Poorman 1, T J O'Sullivan 1, H J Schostarez 1, M A Mitchell 1
PMCID: PMC2143846  PMID: 9792098

Abstract

The binding of two 5-substituted-1,3,4-thiadiazole-2-thione inhibitors to the matrix metalloproteinase stromelysin (MMP-3) have been characterized by protein crystallography. Both inhibitors coordinate to the catalytic zinc cation via an exocyclic sulfur and lay in an unusual position across the unprimed (P1-P3) side of the proteinase active site. Nitrogen atoms in the thiadiazole moiety make specific hydrogen bond interactions with enzyme structural elements that are conserved across all enzymes in the matrix metalloproteinase class. Strong hydrophobic interactions between the inhibitors and the side chain of tyrosine-155 appear to be responsible for the very high selectivity of these inhibitors for stromelysin. In these enzyme/inhibitor complexes, the S1' enzyme subsite is unoccupied. A conformational rearrangement of the catalytic domain occurs that reveals an inherent flexibility of the substrate binding region leading to speculation about a possible mechanism for modulation of stromelysin activity and selectivity.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker J. W., Marcy A. I., Rokosz L. L., Axel M. G., Burbaum J. J., Fitzgerald P. M., Cameron P. M., Esser C. K., Hagmann W. K., Hermes J. D. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 1995 Oct;4(10):1966–1976. doi: 10.1002/pro.5560041002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Reinemer P., Huber R., Kleine T., Schnierer S., Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994 Mar 15;13(6):1263–1269. doi: 10.1002/j.1460-2075.1994.tb06378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borkakoti N., Winkler F. K., Williams D. H., D'Arcy A., Broadhurst M. J., Brown P. A., Johnson W. H., Murray E. J. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat Struct Biol. 1994 Feb;1(2):106–110. doi: 10.1038/nsb0294-106. [DOI] [PubMed] [Google Scholar]
  5. Brown P. D., Giavazzi R. Matrix metalloproteinase inhibition: a review of anti-tumour activity. Ann Oncol. 1995 Dec;6(10):967–974. doi: 10.1093/oxfordjournals.annonc.a059091. [DOI] [PubMed] [Google Scholar]
  6. Browner M. F., Smith W. W., Castelhano A. L. Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry. 1995 May 23;34(20):6602–6610. doi: 10.1021/bi00020a004. [DOI] [PubMed] [Google Scholar]
  7. Chambers A. F., Matrisian L. M. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997 Sep 3;89(17):1260–1270. doi: 10.1093/jnci/89.17.1260. [DOI] [PubMed] [Google Scholar]
  8. Dhanaraj V., Ye Q. Z., Johnson L. L., Hupe D. J., Ortwine D. F., Dunbar J. B., Jr, Rubin J. R., Pavlovsky A., Humblet C., Blundell T. L. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure. 1996 Apr 15;4(4):375–386. doi: 10.1016/s0969-2126(96)00043-3. [DOI] [PubMed] [Google Scholar]
  9. Esser C. K., Bugianesi R. L., Caldwell C. G., Chapman K. T., Durette P. L., Girotra N. N., Kopka I. E., Lanza T. J., Levorse D. A., MacCoss M. Inhibition of stromelysin-1 (MMP-3) by P1'-biphenylylethyl carboxyalkyl dipeptides. J Med Chem. 1997 Mar 14;40(6):1026–1040. doi: 10.1021/jm960465t. [DOI] [PubMed] [Google Scholar]
  10. Fini M. E., Parks W. C., Rinehart W. B., Girard M. T., Matsubara M., Cook J. R., West-Mays J. A., Sadow P. M., Burgeson R. E., Jeffrey J. J. Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury. Am J Pathol. 1996 Oct;149(4):1287–1302. [PMC free article] [PubMed] [Google Scholar]
  11. Finlay G. A., Russell K. J., McMahon K. J., D'arcy E. M., Masterson J. B., FitzGerald M. X., O'Connor C. M. Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients. Thorax. 1997 Jun;52(6):502–506. doi: 10.1136/thx.52.6.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gowravaram M. R., Tomczuk B. E., Johnson J. S., Delecki D., Cook E. R., Ghose A. K., Mathiowetz A. M., Spurlino J. C., Rubin B., Smith D. L. Inhibition of matrix metalloproteinases by hydroxamates containing heteroatom-based modifications of the P1' group. J Med Chem. 1995 Jul 7;38(14):2570–2581. doi: 10.1021/jm00014a010. [DOI] [PubMed] [Google Scholar]
  13. Grams F., Crimmin M., Hinnes L., Huxley P., Pieper M., Tschesche H., Bode W. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry. 1995 Oct 31;34(43):14012–14020. doi: 10.1021/bi00043a007. [DOI] [PubMed] [Google Scholar]
  14. Ingman T., Sorsa T., Suomalainen K., Halinen S., Lindy O., Lauhio A., Saari H., Konttinen Y. T., Golub L. M. Tetracycline inhibition and the cellular source of collagenase in gingival crevicular fluid in different periodontal diseases. A review article. J Periodontol. 1993 Feb;64(2):82–88. doi: 10.1902/jop.1993.64.2.82. [DOI] [PubMed] [Google Scholar]
  15. Li J., Brick P., O'Hare M. C., Skarzynski T., Lloyd L. F., Curry V. A., Clark I. M., Bigg H. F., Hazleman B. L., Cawston T. E. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure. 1995 Jun 15;3(6):541–549. doi: 10.1016/s0969-2126(01)00188-5. [DOI] [PubMed] [Google Scholar]
  16. Lovejoy B., Hassell A. M., Luther M. A., Weigl D., Jordan S. R. Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry. 1994 Jul 12;33(27):8207–8217. doi: 10.1021/bi00193a006. [DOI] [PubMed] [Google Scholar]
  17. MacDougall J. R., Matrisian L. M. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 1995 Dec;14(4):351–362. doi: 10.1007/BF00690603. [DOI] [PubMed] [Google Scholar]
  18. Marcy A. I., Eiberger L. L., Harrison R., Chan H. K., Hutchinson N. I., Hagmann W. K., Cameron P. M., Boulton D. A., Hermes J. D. Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated form. Biochemistry. 1991 Jul 2;30(26):6476–6483. doi: 10.1021/bi00240a018. [DOI] [PubMed] [Google Scholar]
  19. Matrisian L. M. Matrix metalloproteinase gene expression. Ann N Y Acad Sci. 1994 Sep 6;732:42–50. doi: 10.1111/j.1749-6632.1994.tb24723.x. [DOI] [PubMed] [Google Scholar]
  20. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  21. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997 Mar-Apr;378(3-4):151–160. [PubMed] [Google Scholar]
  22. Ray J. M., Stetler-Stevenson W. G. The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Respir J. 1994 Nov;7(11):2062–2072. [PubMed] [Google Scholar]
  23. Saus J., Quinones S., Otani Y., Nagase H., Harris E. D., Jr, Kurkinen M. The complete primary structure of human matrix metalloproteinase-3. Identity with stromelysin. J Biol Chem. 1988 May 15;263(14):6742–6745. [PubMed] [Google Scholar]
  24. Serni U., Fibbi G., Anichini E., Zamperini A., Pucci M., Mannoni A., Matucci A., Benucci M., Del Rosso A., Del Rosso M. Plasminogen activator and receptor in osteoarthritis. J Rheumatol Suppl. 1995 Feb;43:120–122. [PubMed] [Google Scholar]
  25. Snyder R. W., Stamer W. D., Kramer T. R., Seftor R. E. Corticosteroid treatment and trabecular meshwork proteases in cell and organ culture supernatants. Exp Eye Res. 1993 Oct;57(4):461–468. doi: 10.1006/exer.1993.1148. [DOI] [PubMed] [Google Scholar]
  26. Spurlino J. C., Smallwood A. M., Carlton D. D., Banks T. M., Vavra K. J., Johnson J. S., Cook E. R., Falvo J., Wahl R. C., Pulvino T. A. 1.56 A structure of mature truncated human fibroblast collagenase. Proteins. 1994 Jun;19(2):98–109. doi: 10.1002/prot.340190203. [DOI] [PubMed] [Google Scholar]
  27. Stams T., Spurlino J. C., Smith D. L., Wahl R. C., Ho T. F., Qoronfleh M. W., Banks T. M., Rubin B. Structure of human neutrophil collagenase reveals large S1' specificity pocket. Nat Struct Biol. 1994 Feb;1(2):119–123. doi: 10.1038/nsb0294-119. [DOI] [PubMed] [Google Scholar]
  28. Stöcker W., Grams F., Baumann U., Reinemer P., Gomis-Rüth F. X., McKay D. B., Bode W. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 1995 May;4(5):823–840. doi: 10.1002/pro.5560040502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Terada T., Kitamura Y., Nakanuma Y. Normal and abnormal development of the human intrahepatic biliary system: a review. Tohoku J Exp Med. 1997 Jan;181(1):19–32. doi: 10.1620/tjem.181.19. [DOI] [PubMed] [Google Scholar]
  30. Wetmore D. R., Hardman K. D. Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3). Biochemistry. 1996 May 28;35(21):6549–6558. doi: 10.1021/bi9530752. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES