Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2465–2468. doi: 10.1002/pro.5560071125

Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily.

E Schröder 1, C P Ponting 1
PMCID: PMC2143874  PMID: 9828014

Abstract

Peroxiredoxins catalyze reduction of hydrogen peroxide or alkyl peroxide, to water or the corresponding alcohol. Detailed analysis of their sequences indicates that these enzymes possess a thioredoxin (Trx)-like fold and consequently are homologues of both thioredoxin and glutathione peroxidase (GPx). Sequence- and structure-based multiple sequence alignments indicate that the peroxiredoxin active site cysteine and GPx active site selenocysteine are structurally equivalent. Homologous peroxiredoxin and GPx enzymes are predicted to catalyze equivalent reactions via similar reaction intermediates.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruchhaus I., Richter S., Tannich E. Removal of hydrogen peroxide by the 29 kDa protein of Entamoeba histolytica. Biochem J. 1997 Sep 15;326(Pt 3):785–789. doi: 10.1042/bj3260785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chae H. Z., Robison K., Poole L. B., Church G., Storz G., Rhee S. G. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7017–7021. doi: 10.1073/pnas.91.15.7017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chivers P. T., Prehoda K. E., Raines R. T. The CXXC motif: a rheostat in the active site. Biochemistry. 1997 Apr 8;36(14):4061–4066. doi: 10.1021/bi9628580. [DOI] [PubMed] [Google Scholar]
  5. Choi H. J., Kang S. W., Yang C. H., Rhee S. G., Ryu S. E. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol. 1998 May;5(5):400–406. doi: 10.1038/nsb0598-400. [DOI] [PubMed] [Google Scholar]
  6. Claiborne A., Miller H., Parsonage D., Ross R. P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J. 1993 Dec;7(15):1483–1490. doi: 10.1096/fasebj.7.15.8262333. [DOI] [PubMed] [Google Scholar]
  7. Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. doi: 10.1111/j.1432-1033.1983.tb07429.x. [DOI] [PubMed] [Google Scholar]
  8. Holm L., Sander C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 1998 Jan 1;26(1):316–319. doi: 10.1093/nar/26.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995 Mar 15;3(3):239–243. doi: 10.1016/s0969-2126(01)00153-8. [DOI] [PubMed] [Google Scholar]
  10. Hudson-Taylor D. E., Dolan S. A., Klotz F. W., Fujioka H., Aikawa M., Koonin E. V., Miller L. H. Plasmodium falciparum protein associated with the invasion junction contains a conserved oxidoreductase domain. Mol Microbiol. 1995 Feb;15(3):463–471. doi: 10.1111/j.1365-2958.1995.tb02260.x. [DOI] [PubMed] [Google Scholar]
  11. Jacobson F. S., Morgan R. W., Christman M. F., Ames B. N. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem. 1989 Jan 25;264(3):1488–1496. [PubMed] [Google Scholar]
  12. Jin D. Y., Chae H. Z., Rhee S. G., Jeang K. T. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem. 1997 Dec 5;272(49):30952–30961. doi: 10.1074/jbc.272.49.30952. [DOI] [PubMed] [Google Scholar]
  13. Kang S. W., Baines I. C., Rhee S. G. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem. 1998 Mar 13;273(11):6303–6311. doi: 10.1074/jbc.273.11.6303. [DOI] [PubMed] [Google Scholar]
  14. Kang S. W., Chae H. Z., Seo M. S., Kim K., Baines I. C., Rhee S. G. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem. 1998 Mar 13;273(11):6297–6302. doi: 10.1074/jbc.273.11.6297. [DOI] [PubMed] [Google Scholar]
  15. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  16. Katti S. K., Robbins A. H., Yang Y., Wells W. W. Crystal structure of thioltransferase at 2.2 A resolution. Protein Sci. 1995 Oct;4(10):1998–2005. doi: 10.1002/pro.5560041005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kortemme T., Creighton T. E. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol. 1995 Nov 10;253(5):799–812. doi: 10.1006/jmbi.1995.0592. [DOI] [PubMed] [Google Scholar]
  18. Ladenstein R., Epp O., Bartels K., Jones A., Huber R., Wendel A. Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2.8 A resolution. J Mol Biol. 1979 Oct 25;134(2):199–218. doi: 10.1016/0022-2836(79)90032-9. [DOI] [PubMed] [Google Scholar]
  19. Lim Y. S., Cha M. K., Kim H. K., Uhm T. B., Park J. W., Kim K., Kim I. H. Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochem Biophys Res Commun. 1993 Apr 15;192(1):273–280. doi: 10.1006/bbrc.1993.1410. [DOI] [PubMed] [Google Scholar]
  20. Martin J. L., Bardwell J. C., Kuriyan J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature. 1993 Sep 30;365(6445):464–468. doi: 10.1038/365464a0. [DOI] [PubMed] [Google Scholar]
  21. Martin J. L. Thioredoxin--a fold for all reasons. Structure. 1995 Mar 15;3(3):245–250. doi: 10.1016/s0969-2126(01)00154-x. [DOI] [PubMed] [Google Scholar]
  22. Montemartini M., Nogoceke E., Singh M., Steinert P., Flohé L., Kalisz H. M. Sequence analysis of the tryparedoxin peroxidase gene from Crithidia fasciculata and its functional expression in Escherichia coli. J Biol Chem. 1998 Feb 27;273(9):4864–4871. doi: 10.1074/jbc.273.9.4864. [DOI] [PubMed] [Google Scholar]
  23. Nogoceke E., Gommel D. U., Kiess M., Kalisz H. M., Flohé L. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem. 1997 Aug;378(8):827–836. doi: 10.1515/bchm.1997.378.8.827. [DOI] [PubMed] [Google Scholar]
  24. Pahl H. L., Baeuerle P. A. Oxygen and the control of gene expression. Bioessays. 1994 Jul;16(7):497–502. doi: 10.1002/bies.950160709. [DOI] [PubMed] [Google Scholar]
  25. Pearson W. R. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics. 1991 Nov;11(3):635–650. doi: 10.1016/0888-7543(91)90071-l. [DOI] [PubMed] [Google Scholar]
  26. Poole L. B. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry. 1996 Jan 9;35(1):65–75. doi: 10.1021/bi951888k. [DOI] [PubMed] [Google Scholar]
  27. Ren B., Huang W., Akesson B., Ladenstein R. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J Mol Biol. 1997 May 23;268(5):869–885. doi: 10.1006/jmbi.1997.1005. [DOI] [PubMed] [Google Scholar]
  28. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  29. Shau H., Kim A. T., Hedrick C. C., Lusis A. J., Tompkins C., Finney R., Leung D. W., Paglia D. E. Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stresses. Free Radic Biol Med. 1997;22(3):497–507. doi: 10.1016/s0891-5849(96)00372-3. [DOI] [PubMed] [Google Scholar]
  30. Shichi H., Demar J. C. Non-selenium glutathione peroxidase without glutathione S-transferase activity from bovine ciliary body. Exp Eye Res. 1990 May;50(5):513–520. doi: 10.1016/0014-4835(90)90040-2. [DOI] [PubMed] [Google Scholar]
  31. Sodano P., Xia T. H., Bushweller J. H., Björnberg O., Holmgren A., Billeter M., Wüthrich K. Sequence-specific 1H n.m.r. assignments and determination of the three-dimensional structure of reduced Escherichia coli glutaredoxin. J Mol Biol. 1991 Oct 20;221(4):1311–1324. doi: 10.1016/0022-2836(91)90935-y. [DOI] [PubMed] [Google Scholar]
  32. Tartaglia L. A., Storz G., Brodsky M. H., Lai A., Ames B. N. Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J Biol Chem. 1990 Jun 25;265(18):10535–10540. [PubMed] [Google Scholar]
  33. Tsuji K., Copeland N. G., Jenkins N. A., Obinata M. Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. Biochem J. 1995 Apr 15;307(Pt 2):377–381. doi: 10.1042/bj3070377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES