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Abstract 

A new method is presented for identifying distantly related homologous proteins that are unrecognizable by conventional 
sequence comparison methods. The method combines information about functionally conserved sequence patterns with 
information about structure context. This information is encoded in stochastic discrete state-space models (DSMs) that 
comprise a new family of hidden Markov models. The new models are called sequence-pattern-embedded DSMs 
(pDSMs).  This method can identify distantly related protein family members with a high sensitivity and specificity. The 
method is illustrated with trypsin-like serine proteases and globins. The strategy for building pDSMs is presented. The 
method has been validated using carefully constructed positive and negative control sets. In addition to the ability to 
recognize remote homologs, pDSM sequence analysis predicts secondary structures with higher sensitivity, specificity, 
and 43 accuracy than DSM analysis, which omits information about conserved sequence patterns. The identification of 
trypsin-like serine proteases in new genomes is discussed. 

Keywords: globin; Hidden Markov Model (HMM); homology identification; serine protease; sequence comparison; 
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The sequencing of the whole genomes of different organisms con- 
tinues to supply an enormous amount of  new protein sequence 
information. The inferring of homology to the proteins with known 
structure and/or function is the most common method of annotat- 
ing these new sequences. Sequence comparison (for review, see 
Hubbard, 1997) is the direct approach for inferring homology. 
However, homologous proteins having little sequence similarities 
are often statistically undetectable by conventional sequence com- 
parison methods (Gibrat et al., 1996; Holm & Sander, 1996). Ho- 
mology or common ancestry in such cases can be inferred from 
their common three-dimensional structure and function (Murzin 
et al., 1995; Michie et al., 1996). 

A few examples (Holm & Sander, 1995, 1997) have shown that 
structural similarity, detected by comparing three-dimensional struc- 
tures of proteins, can successfully find remote, but highly proba- 
ble, homologs when combined with the identification of functionally 
conserved residues. Since direct homology identification based on 
the comparison of three-dimensional structures is limited to pro- 
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teins with known structures, it has very limited application to 
recently determined sequences. Moreover, even when protein func- 
tion information is not available from direct experimental work, 
the identification of a functionally conserved sequence pattern in- 
dicates the possible functional role of proteins (we use the term 
sequence pattern in a broad sense, it can be as simple as one amino 
acid in each conserved position or be as complicated as  a complete 
profile), because the key residues in the active sites of enzymatic 
proteins are always functionally conserved (Bairoch, 1991) in a 
conserved three-dimensional structural context (Lesk & Chothia, 
1980; Greer, 1990; Stocker & Bode, 1995). 

We describe a new method of sequence analysis that combines 
structure-fold recognition with the identification of functionally 
conserved sequence patterns for identifying remote homologs. There 
have been several reports that incorporate structural information to 
varying degrees, either in the sequence pattern descriptions, such 
as ARIADNE (Lathrop et  al., 1987) and Scrutineer (Sibbald & 
Argos, 1990), or to restrict the consensus sequence template in the 
structurally conserved regions of the sequence (Taylor, 1986). How- 
ever, those methods rely primarily on sequence information. Our 
method uses new probabilistic structural models (discrete state- 
space models (DSMs)) (Stultz et al., 1993, 1997; White et al., 
1994) that contain the functionally conserved sequence pattern 
elements. The functionally conserved sequence pattern is embed- 
ded in a DSM by replacing the amino acid probability distributions 
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associated with particular secondary structural states, with the dis- 
tributions of the conserved sequence pattern elements. We refer to 
these new DSMs as sequence-pattern-embedded DSMs (pDSMs). 

In this paper, the pDSM method is validated on the recognition 
of homologs in two protein families. The first is the trypsin-like 
serine protease family (we use the names serine proteases and 
trypsin-like serine proteases interchangeably) (Greer, 1990), which 
is diverse in both structure and sequence. The second is the well- 
studied globin family (Lesk & Chothia, 19801, which also contains 
very divergent sequences. In addition to recognizing distant ho- 
mologs, the pDSM method provides improved secondary structure 
prediction. We discuss the application of the method in genome 
research, as illustrated by the identification of new trypsin-like 
serine proteases in recently sequenced genomes. 

Results 

Trypsin-like serine proteases 

Homology identification 
The results of homology identification for serine proteases are 

listed in Table 1. The conserved sequence pattern we chose (see 
Materials and methods: pDSM for trypsin-like serine proteases) 
covers all of the sequences in the two positive sets (see Materials 
and methods: pDSM for trypsin-like serine proteases) from the 
PDB and Genbank. Therefore, the sensitivity of the conserved 
sequence pattern searches is 100% for both positive sets. The 
average sensitivity of BLAST searches, with a reasonably high 
cutoff score (lo-’)), was 65% for PDB and 78% for Genbank. 
Searches using only the DSM’s structure model recognize the ser- 
ine protease fold with 84% sensitivity on PDB and 60% on Gen- 
bank. In contrast, the pDSM searches, which use both the conserved 
sequence pattern and the structure model, achieved a sensitivity of 
100% on both positive sets. 

Since all of the sequences in the negative control set have the 
minimal conserved pattern (see Materials and methods: pDSM for 
trypsin-like serine proteases), the specificity of the conserved se- 
quence pattern searches is 0% by definition. In contrast, BLAST 
achieves an average specificity of 100%. The DSM searches for 
serine proteases have a specificity of 88%. By combining the 
structure information and the minimal conserved sequence pattern 
in our pDSMs, we obtain a specificity of 93%. 

Table 1. Sensitivity and specificity of serine protease 
homology identification by different methods a 

Sensitivity Specificity 

PDB(32)  Genbank(l11)  PDB(206) 
Search method (%a) (%j 

Conserved sequence 100 100 0 
Pattern 
BLAST 65  78 100 
DSM 84  60  88 
pDSM 100  100  93 

“Number of sequences in each dataset are shown in parentheses. 

Half (7 out of 14) of the false positives (a false positive is a 
protein in the negative control set that is incorrectly classified as a 
serine protease) actually have all 8-folds, and  they have the His- 
Asp-ser pattern in their primary sequences, but their secondary 
structural elements are packed differently than serine proteases. 
Consequently, the His, Asp, and Ser residues that are recognized 
are not close to each other in  the three-dimensional structure. One 
of these false positives, IHAVA (Allaire et al., 1994), is a cysteine 
proteinase, but has a similar fold to chymotrypsin-like serine pro- 
teases. Residues His44 and Asp84 of  lHAVA can be aligned with 
the two conserved His57 and Asp102 in three chymotrypsins. (We 

Table 2. The potential trypsin-like serine proteases in genomes 
identified by pDSM sequence analysis 

Prediction 

Comment 

Prediction 

Comment 

Prediction 

Comment 

Prediction 

Comment 

B. subtilis : MPR-PBS 

( I )  Probability: 0.85 
( 2 )  Serine protease domain: 104-313 
(3) Catalytic triad: His146, Aspl91, Ser267 

( I )  Annotation”: extracellular metalloprotease 

(2) Weakly similar to ITRY and IELT (PDB), similar to 

(3) Signature‘: TRYPSIN-HIS 
(4) Alignment with known serine protease: Figure 1 

(Rufo et al., 1996) 

GSEPpBACLIh (SWISS-PROT) 

E. coli: b1598 

(1 )  Probability: 0.86 
(2) Serine protease domain: entire sequence 
(3) Catalytic triad: His84, Asp145, Ser223 

( I )  Annotation: 24% identical to MPR-BACSU 
(2) Weakly similar to MPR-PBS  and  GSEP-BACLI 

(3) Signatures: TRYPSIN-HIS and TRYPSIN-SER 
(4) Alignment with known serine protease: Figure I 

(SWISS-PROT) 

S. cerevisiae: YNL123W 

( I )  Probability: 0.85 
(2) Serine protease domain: 76-286 
(3) Catalytic triad: Hisl21,  AspIS2, Ser236 

( I )  Annotation: weak similarity to C. jejuni serine protease 
(2) Similar to HTRA-ECOLI (SWISS-PROTj 
(3) Signature: none 
(4) Alignment with known serine protease: Figure 2 

C. eleguns : CEIV000158 

(1) Probability: 0.95 
(2) Serine protease domain: entire sequence 
(3) Catalytic triad: His69, Aspll7. Ser212 

( I )  Annotation: similar to peptidase family S 1 (trypsin) 
(2) Similar to IPFX,  etc.d 
(3) Signature: TRYPSIN-HIS and TRYPSIN-SER 
(4) Alignment with known serine proteases: Figure 3 

“The annotations are obtained from the original genome databases. 
hGSEP-BACLI has recently been identified as a remote homolog of 

trypsin-like serine proteases by sequence analysis (Alexandre et al., 1996; 
Pearson, 1997). 

1991). 
‘The signatures of serine proteases are defined in PROSITE (Bairoch, 

dCEIVOOOISX matches many serine proteases by BLAST search. 
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refer to the residue numbers according to the  sequence alignment 
based on the chymotrypsinogen (Hartley & Kauffman, 1966). The 
catalytic triad is numbered as His57, AsplO2, and Ser195.) The 
conserved Ser195 of chymotrypsins was replaced by Cys172 in 
lHAVA, but in that neighborhood there is a Ser178. So not sur- 
prisingly, lHAVA has been predicted as the serine protease by the 
pDSM search. This false positive demonstrates the ability of the 
pDSM search to  find remote homologs. Although this  cysteine 
proteinase is considered to  be a remote homolog of trypsin-like 
serine proteases (Alexandre et al., 1996), we assigned it to the 
negative control set for the study, because the presence of the 
complete catalytic triad is required for all positives. 

In summary, the pDSMs identify serine protease homologs with 
a high sensitivity comparable with that of the conserved sequence 
pattern or the DSM alone and  the  BLAST searches. In particular, 
the higher sensitivity of pDSM vs. DSM  searches  shows that the 
embedding of the sequence pattern helps to improve the fold rec- 
ognition significantly. The BLAST search with a cutoff of is 
the most specific method for identifying homologs, but it has low 
sensitivity. The conserved sequence pattern searches  are  the least 
specific. The  structure information encoded in the pDSMs appar- 
ently accounts for the high specificity of the searches. 

More sensitive sequence search methods have been published 
recently. A new iterative version of BLAST  called PSI-BLAST 
(Altschul et al., 1997) has been shown to achieve higher sensitivity 
than BLAST by recruiting a position-specific score matrix. The 
PROBE program (Neuwald  et al., 1997)  exploits similar logic as 
PSI-BLAST but in addition generates multiple sequence alignment 

models. We compared our method with the publicly available PSI- 
BLAST. Since PSI-BLAST is available only over the internet (http:// 
www.ncbi.nlm.nih.gov/cgi-gin/BLAST/nph-psi-blast), the method 
cannot be applied to our positive and negative control sets. We 
therefore summarize the PSI-BLAST sensitivity and specificity 
separately rather than in  the  same table. We submitted our PDB 
positive controls to the PSI-BLAST server using the default pa- 
rameters ( E  = 0.01). The results show that by starting from a single 
query sequence in one of the two serine protease clusters, all the 
sequences within the  same cluster are returned along with a vary- 
ing number of sequences from the other cluster. If we calculate the 
sensitivity in the  same way as for BLAST (Equation 1 in Materials 
and methods) and only count those returned sequences that are in 
our positive control sets, PSI-BLAST achieved the 85% sensitivity 
for serine proteases. 

We get a similar result for the globins with a higher sensitivity 
of 92%. These numbers are significantly higher than those from 
the original BLAST search. In addition, PSI-BLAST  has very high 
specificity under the default parameter setting. The only false pos- 
itives were streptavidin for  the serine protease case, and  this pro- 
tein does have a similar beta barrel fold. Only one  false positive 
was found in the globin case, a parvalbumin, an all alpha protein 
like the globins. These results support the use of an iterative search 
starting with a single sequence and using each of its matched 
sequences to initiate additional searches until no new matches are 
found. It is a very efficient way to find remote homologs. The 
method does, however, require that the entire range of taxonomic 
variation is well represented in the database searched. This  is  best 
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Fig. 1. The  multiple  sequence  alignment of h4PR-PBS from E. subtilis and b1598  from E. coli aligned  with lELT in  the PDB, a known 
trypsin-like  serine  protease  with  a solved crystal  structure.  The  secondary  structure of lELT is indicated  above  the  sequences. p Strands 
are shown as arrows, and  the ending helix is shown as a bar.  The catalytic  triad of His, Asp, and Ser  is  highlighted in boxes. The  highly 
conserved  residues are  indicated in boldface. 
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Fig. 2. The multiple  sequence  alignment of YNL123W from S. cerevisiue and HTRA-ECOLI from E. coli aligned with lSGPE in  the 
PDB, a known trypsin-family  serine  protease  with a solved  crystal  structure. The secondary structure of lSGPE is indicated  above  the 
sequences. p Strands  are shown as arrows,  and  the  ending  helix is shown as a bar. The catalytic  triad of His, Asp,  and  Ser is  highlighted 
in  boxes. The highly  conserved  residues are indicated  in  boldface. 

illustrated in the  globin  case, for which  the  sensitivity  is  only 42% 
rather  than  the  above  noted  92% if each of our  positive  control 
sequences is used  to  initiate  single  BLAST  search. 

Searching  the  genome databases 
To illustrate  the  application of the pDSM  method in genome 

research, we searched  five  recently  sequenced  genomes for trypsin- 
like serine  proteases: Bacillus subtilis (http://www.pasteur.fr/Bio/ 
SubtiList.html)  (Kunst  et al., 1997), Caenorhabditis elegans (http:// 
www.sanger.ac.uk/Projects/C-elegans/), Escherichia coli (http:// 
www.genetics.wisc.edu/)  (Blattner et al., 1997), Methanococcus 
jannaschii (http://www.tigr.org/tdb/mdb/mdb.html) (Bult et al., 
1996),  and Saccharomyces cerevisiae (http://speedy.mips.biochem. 
mpg.de/) (Mewes et al., 1997). The results are  presented in 

Table  2. To our surprise, we found only one  trypsin-like  serine 
protease  but  several  subtilisin-like  serine  proteases  in  all  genomes 
except for M. jannaschii. 

The four serine  proteases  were  predicted by the pDSM  method 
with  high  probabilities.  Additional  tests  were  made  to  support  the 
pDSM prediction.  These  include:  (1)  BLAST  search  against  PDB, 
SWISS-PROT,  (2)  consensus  pattern  search  against  PROSlTE (Bai- 
roch,  1991),  and  (3)  sequence  aligned with experimentally  verified 
serine  proteases  (Figs. 1-3). The  aligned  positions of predicted 
catalytic  triads with the  experimentally  identified  triads  are  high- 
lighted. Among the  four  examples,  only  CEIV000158  shows  sig- 
nificant  sequence  similarity to known  serine  proteases.  By  a  method 
of transitive  search  similar to that  used  by  PSI-BLAST,  YNL123W 
is related  to ISGPE through an htrA-family  serine  protease  (Lip- 
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Fig. 3. The sequence  alignment of CEIV000158 from C. elegans with lPFXC in the PDB, a known trypsin-family  serine  protease  with 
a solved  crystal  structure. The secondary structure  of lPFXC is indicated  above  the  sequences. p Strands  are shown as  arrows,  and  the 
ending  helix  is shown as a bar. The catalytic  triad of His, Asp, and  Ser  is  highlighted  in  boxes. The highly  conserved  residues  are 
indicated  in  boldface. 
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inska et al., 1989), HTRA-ECOLI from SWISS-PROT. MPR-PBS 
was originally classified experimentally as metalloprotease (Rufo 
et  al., 1990). 

Why does the MPR-PBS classification based on sequence analy- 
sis differ from its classification from biochemical experiments? 
The experiments (Rufo et al., 1990) involved PMSF, a serine pro- 
tease inhibitor, but the inhibition experiment as described in the 
paper had no positive controls. Moreover, there are serine prote- 
ases, such as v8 protease, that are known to be resistant to PMSF 
inhibitor. Also, the evidence for the involvement of metal ion is not 
very convincing given the high EDTA concentration (25 mM). An 
alternative explanation of the involvement of metal ion was given 
in Alexandre et  al. (1996) based on homologous modeling of the 
active site. In conclusion, we classify MPR-PBS as a trypsin-like 
serine protease. 

Secondary structure prediction 
In Table 3, we present fully cross-validated secondary structure 

predictions for all of the 32 serine proteases in the positive set from 
the PDB (see Materials and methods: Model validation). Both 
DSM and pDSM results are reported. 

A residue is predicted to be in a strand when the probability of 
being in a strand for that residue is higher than 0.5. The probability 
is computed using the optimal smoothing algorithm (Stultz et al., 
1993). The secondary structure prediction was compared with the 
secondary structure assignment by DSSP (the region assigned as  E 
in DSSP and more than two residues long is considered to be a 
strand) (Kabsch & Sander, 1983) (Fig. 4). The agreement with 
DSSP is measured by sensitivity and specificity of strand predic- 
tion and the Q3 accuracy (the percentage of all residues that are 
correctly predicted to belong to one of the three types of secondary 
structures: helix, strand, and coil). As expected, the pDSM predic- 
tion reliability is higher than the DSM prediction reliability be- 
cause of the additional sequence pattern information. The average 
sensitivity increases from 61  to 69%, average specificity increases 
from 83 to 86%, and average 4 3  accuracy increases from 69 to 
76%. This is not surprising given that improved fold recognition 
(Table 1) allows us to choose the proper model more often,  as 
demonstrated by the significantly improved secondary structure 
prediction of IABIH,  lDST,  IPCU,  IPFXC, and 3RP2A. More- 
over, the pDSMs provide more accurate secondary structure pre- 
diction over DSMs, even when they both represent the proper 
structures. The decreased standard deviations of all three quantities 
demonstrate that the secondary structure prediction by pDSM analy- 
sis is more stable. 

Globins 

Homology identification 
The sensitivities and specificities of homology identification for 

globins by four different methods are summarized in Table 4. Like 
the sensitivity results for serine proteases in Table 1, the highest 
sensitivity of 100% is achieved by both conserved sequence pat- 
tern searches and the pDSM searches. In contrast, the average 
sensitivity of BLAST  searches, at is only 42%.  This is 
attributed to the fact that globins fall into six clusters according to 
sequence similarity (see Materials and methods: pDSM for glo- 
bins). The low BLAST sensitivity reflects the low sequence sim- 
ilarity between any two of these clusters. In contrast, the DSM and 
pDSM searches are influenced much less by the low sequence 
similarity. 
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Table 3. The Q3 accuracy, sensitivity, and specificity of strand 
prediction for positive serine proteases from the PDB 
by DSMs and pDSMs a 

Q3 (%I Sensitivity (%) Specificity (%) 
~ 

Loci DSM  pDSM  DSM  pDSM  DSM 

1 ABIH 
lACBE 
1 ARB 
1 BIT 
IBMAA 
1 BRA 
1 BTP 
IDST 
1 ELT 
1 FUJA 
IGBAA 
1 HCGA 
IHFl 
1 HNEE 
1 HPGA 
lHYLA 
1 LMWB 
1 PCU 
1 PFA 
1 PFXC 
lPYTC 
lPYTD 
1 RTFB 
1 SGC 
1 SGPE 
1 SGT 
1 TON 
1 TRY 
2CP1 
2KAI 
2SFA 
3RP2A 
Average 
STD 

46 
66 
63 
73 
78 
77 
77 
37 
83 
78 
65 
75 
76 
83 
68 
77 
79 
39 
72 
43 
74 
62 
80 
69 
67 
80 
72 
76 
75 
80 
71 
58 
69 
12 

76 
70 
67 
78 
82 
79 
80 
76 
83 
76 
63 
77 
81 
84 
73 
77 
81 
79 
75 
73 
72 
70 
82 
71 
68 
80 
82 
82 
76 
82 
70 
74 
76(64) 

5 

28 
54 
41 
60 
69 
60 
64 
23 
76 
62 
43 
72 
65 
75 
66 
61 
72 
35 
68 
91 
50 
54 
67 
73 
68 
76 
59 
68 
62 
59 
69 
75 
61 
15 

69 
57 
59 
68 
78 
71 
71 
70 
82 
70 
42 
75 
74 
79 
75 
71 
81 
68 
71 
66 
56 
55 
75 
77 
72 
79 
64 
78 
65 
68 
72 
63 
69(56) 
9 

88 
79 
87 
86 
85 
88 
91 
87 
91 
89 
86 
85 
89 
94 
75 
89 
85 
91 
85 
24 
85 
77 
90 
71 
72 
92 
83 
91 
85 
92 
78 
54 
83 
13 

~ 

pDSM 

87 
83 
82 
91 
88 
93 
92 
89 
90 
83 
86 
88 
95 
92 
75 
84 
86 
93 
87 
85 
83 
83 
88 
68 
68 
89 
95 
93 
93 
94 
72 
85 
86(81) 

~ 

7 

"The DSSP secondary structure assignments are  taken  as  the  true sec- 
ondary structure. The numbers  in parentheses, listed in the row  Average, 
were obtained using the GOR algorithm (Gamier et al., 1978) and  are for 
comparison only. The numbers in row STD are the standard deviations of 
each column. 

The sensitivity of DSM searches is 58%. In these searches, 88% 
(23 out of 26) of the positives were correctly predicted as a class 
proteins, but they were misclassified into nonglobin folds. The 
100% sensitivity of the pDSM searches is achieved because the 
pDSM has the conserved sequence pattern embedded in its struc- 
tural model. 

The conserved sequence pattern searches have 0% specificity, as 
expected, while the average specificity of BLAST searches is 100%. 
The DSM specificity is  90%, and the pDSM specificity is 97%, 
both higher than the corresponding specificities for serine prote- 
ases in Table 1. The probable reason for this improvement is that 
globins have less structural variability than serine proteases. Only 
one DSM and one pDSM are needed to model the globin family, 
while the serine proteases are modeled by eight DSMs and eight 
pDSMs (two secondary structure topologies, each having four ranges 
of sequence length). 
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Fig. 4. An example of secondary structure prediction of hydrolase (PDB locus: IFUJA) by pDSM.  The probability of being in a strand 
is calculated by a smoothing algorithm. The prediction of being in  a strand is  made when the probability is higher than 0.5. The  DSSP 
strand assignments are indicated by boxes. The catalytic sites are denoted by asterisks. Strands E3, E4, E5, and E10 are predicted with 
zero or one residue difference from  DSSP assignments. Strand E7, E8, and E12 are predicted with positional shift. El,  E2, and El 1 
are lengthened, and E6 is shortened. Strand E9 is missed by pDSM prediction. There is also a  false strand prediction between E6 
and E7. 

Secondary structure prediction 
A residue is predicted to be in  a helix if the probability of the 

residue being in  a helix is larger than 0.5. As shown in  the fully 
cross-validated results of Table 5 ,  the pDSM prediction of second- 
ary structure for globins is better than the DSM prediction alone. 
The average sensitivity of helix prediction is significantly higher 
(92% for pDSM compared to 73% for  DSM), the specificity is a 
little higher (52% for pDSM compared to 48% for DSM), and the 
4 3  accuracy is also significantly higher (80% for pDSM compared 
to 66% for DSM). Compared to the secondary structure prediction 

Table 4. Sensitivity and specz9city of homology  identification 
for globins by different methods 

Sensitivity Specificity 
(26 proteins) (77 proteins) 

Search method (%I  (%I 

of serine proteases in Table 3, the sensitivity of helix prediction for 
globins is higher than the sensitivity of strand prediction for serine 
proteases, and the specificity is lower. 

The higher sensitivity can be attributed to two factors. First, 
DSM analysis and most other secondary structure prediction meth- 
ods are generally better at predicting helices than predicting strands. 
Second, the structure of globins is much less variable than serine 
proteases. Therefore, the DSM analysis for globins predicted the 
helices with a fairly high accuracy. Actually, helices have been 
slightly overpredicted, as we can tell from the relatively low spec- 
ificities of helix prediction. In addition to the slight overprediction 
of helices, the relatively low specificity is also due  to the low loop 
content of the globins. The helices in globins are usually connected 
by very short loops or turns. The number of residues in nonhelix 
regions of a globin is usually 30-50 (we count helix C as a normal 
helix, although DSSP sometimes assigns it as a 3-10 helix), while 
globins are 150 residues long on average. Therefore, the specificity 
is very sensitive to the wrong prediction of helices. 

Conserved sequence pattern 100 0 
BLAST 42 100 
DSM 58 90 
pDSM 100 97 

Discussion 

The  pDSM method has the following limitations. First, at least one 
determined structure is required for building a model. However, 
since no  statistical training procedure is needed for model building, 
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Table  5. The Q3 accuracy, sensitivity, and specificity of helix 
prediction for globins by DSMs and pDSMsa 

4 3  (%I Sensitivity (%) Specificity (%) 

Loci  DSM  pDSM  DSM  pDSM  DSM  pDSM 

IASH 
lBBBA 
lBVC 
lCMYB 
1 ECA 
1 FDHG 
1 FLP 
1 FSLA 
IGDI 
1 HBG 
IHBHA 
lHBHB 
1 HBIA 
lHDSA 
1 HDSB 
1 HLB 
1 HLM 
1 ITHA 
1 LHS 
IMBA 
1 MYT 
1 OUTA 
1 OUTB 
1 SCTA 
1 SCTB 
2LHB 
Average 
STD 

76 
77 
88 
25 
47 
55 
82 
76 
83 
78 
51 
61 
51 
58 
43 
76 
72 
76 
86 
80 
76 
55 
25 
58 
80 
80 
66 
18 

82 
82 
87 
77 
71 
80 
85 
83 
85 
80 
83 
81 
84 
72 
60 
75 
72 
81 
88 
79 
82 
82 
79 
79 
84 
81 
80(62) 
6 

89 
91 
96 
19 
45 
45 
95 
91 
97 
94 
53 
61 
53 
61 
49 
99 
99 
91 
96 
91 
94 
45 
19 
53 
91 
95 
73 
26 

92 
92 
94 
91 
90 
91 
92 
92 
92 
92 
94 
93 
92 

100 
88 
97 
95 
92 
96 
90 
95 
88 
89 
88 
91 
94 
92(62) 

3 

34 
36 
64 
92 
28 
57 
44 
32 
41 
32 
50 
54 
41 
54 
45 
41 
39 
40 
59 
46 
34 
56 
88 
60 
37 
42 
48 
16 

51 
53 
67 
39 
26 
49 
67 
59 
65 
49 
58 
46 
62 
42 
28 
43 
43 
57 
64 
49 
52 
67 
55 
47 
60 
51 
52(74) 
11 

"The  DSSP  secondary  structure  assignments  are  taken  as  the  true  sec- 
ondary  structure.  The  numbers in parentheses,  listed in the  row  Average, 
were  obtained  using  the GOR algorithm  (Gamier  et al., 1978) and are for 
comparison only. The numbers in row  STD  are  the  standard  deviations of 
each  column. 

the pDSM method does not require a large set of known homol- 
ogous sequences or structures. Second, our current pDSMs are 
designed for single-domain globular proteins and are currently not 
suited for multiple-domain proteins. Third, the mapping of struc- 
ture information from three to one dimension loses some informa- 
tion, such as the three-dimensional arrangement of the secondary 
structure elements and/or residue contacts. This limitation may 
explain why half (7 out of 14) of the false positives predicted by 
the pDSM  as serine proteases have P-folds with the nonprotease 
packing. 

The currently most successful means of inferring a protein's 
biochemical function is by homology, which is normally estab- 
lished through recognizable sequence similarity. However, when 
the query sequence is not sufficiently similar in sequence, a method 
is needed to detect remote homologs. With the complete sequenc- 
ing of several genomes, there is  a pressing need for such methods. 
To meet this need, the pDSM method exploits both sequence in- 
formation (functionally conserved sequence pattern) and structure 
information that is encoded in  DSMs.  Our  pDSM method uses the 
entire sequence to estimate the overall structural context in which 
a very limited amount of conserved sequence similarity may still 
be recognized. 
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The conditional probabilities of observing each amino acid, given 
a residue's structural environment (or state), are obtained statisti- 
cally from a large representative set of known protein structures. 
This representative set is not limited to any one particular protein 
family, which gives us the freedom to build pDSMs for  a protein 
family for which we have only one determined structure. 

We intentionally used minimal sequence patterns for serine pro- 
teases and for globins as a very stringent test. However, the real 
conserved sequence patterns from multiply aligned sequences are 
generally more informative. We wanted to show that even with 
very limited patterns structure information could help improve 
specificity while significantly increasing sensitivity. A more gen- 
eral pattern could be used, such as a standard profile (Gribskov 
et al., 1987; Henikoff & Henikoff, 1991), which would be expected 
to further improve the specificity. It may also be possible, using 
mutational information such as that arising from alanine scanning 
(Cunningham & Wells, 1989), to suggest key residues for inclusion 
in a pDSM when insufficient sequence examples are available for 
conserved profile construction. 

The pDSM analysis is both more sensitive and more specific 
than DSM analysis, because pDSMs put three constraints on ho- 
mology identification: (1) the functionally conserved sequence pat- 
tern must be present, (2) the estimated secondary structure topology 
must be consistent with the fold,  and (3) the conserved sequence 
pattern must occur in the correct structural context. In contrast, 
two-step methods, which look first for the conserved pattern and 
then check for the fold separately, do not impose the third constraint. 

We are not suggesting that pDSM is superior in performance to 
all other threading methods. Instead, our results show that by es- 
sentially using the same threading method (DSMs in this paper) 
and embedding minimum sequence information, the fold recogni- 
tion method can be used to recognize remote homologs with im- 
proved performance on fold recognition and secondary structure 
prediction. Earlier, Lathrop and Smith (1996) demonstrated in a 
threading analysis that the leghemoglobin can be more accurately 
aligned with the myoglobin structural model with two histidine 
residue positions fixed. We present in this paper a more systematic 
and thorough study of a similar method. 

Materials  and  methods 

Discrete  state-space models 

We have developed an extension of discrete state-space models 
(DSMs) (White, 1988; Stultz et al., 1993; White et al., 1994) to 
recognize a probable protein homolog that is unrecognizable by 
sequence comparison. It has been demonstrated that DSMs can be 
used to recognize proteins with similar folds by relying on similar 
patterns of implied structural states (Stultz et al., 1993) rather than 
sequence similarity. The DSMs are convenient mathematical struc- 
tures for encoding information about patterns of secondary struc- 
tures associated with different folds.  The DSMs have the same 
mathematical structure as hidden Markov models ( H " s )  (Rabiner, 
1989). The DSMs, however, are built from the physical interpre- 
tation of a given structural fold to encompass all possible mem- 
bers. In contrast, most applications of HMMs in protein analysis 
have been based primarily on statistical analysis of training data- 
sets. Such  HMMs  are trained to represent either sequence profiles 
of protein families with amino acid sequences as the training data 
(Krogh  et al., 1994; Eddy, 1996; Sonnhammer et  al., 1997) or 
structure profiles of protein folds with the secondary structure 
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sequences as the training data  (Di Francesco et  al., 1997; Karplus most probable DSMs. the secondary structure for each residue is 
et al., 1997). Goldman et  al. (1996) described a simple HMM with predicted using  an optimal smoothing algorithm (Stultz et al., 1993). 
three fully connected states for structure prediction while illustrat- This smoothing algorithm computes the posterior probabilities of 
ing the significance of explicitly using evolutionary trees. residues being in each structural state. given the entire protein 

secondary structure in which it occurs and its degree of exposure 
to the solvent. A DSM for a specific fold represents all possible 
sequences of structural states that are compatible with that fold. An 
example is shown in Figure 5. Protein families with an abundance of both known structures and 

The conditional probabilities of observing different amino acids, sequences provide the best validation of the proposed method, 
given the structural state of the residue position, are obtained from especially if some of the sequence similarities fall below the “twi- 
statistics on a large representative set of known protein structures light zone” (Doolittle, 1981) of IS to 20% identities. The trypsin- 
(unpubl. data).  These conditional probabilities are independent of like serine proteases, which are involved in the hydrolyzation of 
the particular fold being modeled. The transition probabilities of peptide bonds. are  a well-studied and diverse protein family with 
moving from one structural state to another, in contrast, are  se- more than 200 structures in the Brookhaven Protein Data Bank 
lected to model the structural topology of a specific fold. The (PDB) (Bemstein et al., 1977) and more than 400 sequences in 
structural states and transition probabilities are selected so that the Genbank (Benson et al., 1994). The pairwise sequence identities of 
lengths and patterns of exposure and secondary structures conform two serine proteases can be less than 10%. 
to the specific fold being modeled. The detailed description of Besides the wealth of structures and sequences, serine proteases 
how to build DSMs has been published in two papers (White et al.. are also a well-studied protein family from the biochemical point 
1994; Stultz  et al., 1997). of view. A review of the catalytic mechanism and the structure- 

We have built a library (http://bmerc-www.bu.edu/psa/) of function relationship of serine proteases can be found in Stroud 
DSMs for different protein folds in an attempt to cover the space et al. (1975).  The catalytic site consists of a His-Asp-Ser triad. 
of protein three-dimensional structures. An optimal filtering algo- Several homology modeling studies based on sequence analysis of 
rithm (White, 1988) is used to calculate the posterior probability of serine proteases have been presented (Greer, 1990; Alexandre 
each model in our library, given the query sequence. The most et al., 1996). Pearson (1997) reviewed the problem of identifying 
probable folds for the query sequence are the folds that are mod- distantly related proteins by sequence comparison with serine pro- 
eled by the DSMs having the highest probabilities. Given the three tease  as the example. 

The DSM structural state of a residue position is defined by the sequence. 

pDSM for tnpsin-like serine proteases 

Fig. 5. Schematic of the pDSM for cluster 1 serine proteases. Each oval circle represents  a  structural building block. Each p pk.r 
consists of a p strand  (buried or amphipathic) and  the connecting region, which is formed  by loops, turns,  and sometimes, short helices. 
At  the  bottom of the figure. the environmental states of residues in  an  amphipathic  strand  are highlighted; they  alternate between 
exposed strand (ES) and  buried  strand (BS). The paths  are labeled with  the  transition probabilities of moving from one structural 
element to another. The 0.5 probabilities leading to  the  buried  and  amphipathic  strands indicate that  both types of strand  are equally 
probable. 
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Functionally conserved sequence pattern 

The conserved catalytic sequence pattern is X24-6yHX18-8&lX40-10~ 
SX44-141r where X denotes any amino acid, and the subscript de- 
notes the range of residue positions. This minimal pattern covers 
all of the serine proteases in  our positive sets. While there are more 
complex patterns of recognizable sequence similarity among the 
majority of serine proteases, the use of this minimal pattern is 
sufficient to demonstrate the significance of structural context in 
identifying very distant homologs. 

Construction of test data sets 

Positive control sets 
We selected our initial trypsin-like serine proteases from the 

PDB, which provides both three-dimensional structure coordinates 
and a functional description of each protein. The available struc- 
ture information allows us to validate the pDSM performance on 
secondary structure prediction. 

In the PDB release 80, there are 253 entries for trypsin-like 
serine proteases. Among these  are identical sequences, or se- 
quences differing only by a few mutated residues. We chose 32 
sequences as the positive data set (Table 6). All other sequences 
have more than 80% sequence identities with at least one of these 
32.  The 32 positives were grouped, according to sequence simi- 
larities, into two clusters by the algorithm PIMA11 (Adams et al., 
1996). The proteins within each cluster are significantly more sim- 
ilar to each other, both in sequence and structure, than the proteins 
in the other cluster. The equivalent painvise sequence identities 
of any pair, one from each cluster, are fewer than 25%, and the 
structures differ from each other with a wide range of loop sizes, 
lengths, and number of strands. This reflects the fact that proteins 
in different clusters are more remotely related than those within the 
same cluster. The remoteness is confirmed in the functional anno- 
tation and in the organisms in which the proteins are found. 

This positive set is rather small. To find more serine proteases, 
we chose an additional 11 1 sequences (Table 6) from Genbank that 
are annotated as serine proteases, single domain, with fewer than 
80% painvise equivalent sequence identities to each other or the 
original 32. All fragments that are not complete serine protease 
sequences were removed along with subtilisin serine proteases, 
which adopt the different three-dimensional fold from that of trypsin- 
like serine proteases and contain a different active site signature 
(Asp32-His64-Ser221) (Bode  et al., 1987). 

Negative control set 
We selected 206 sequences from the PDB (Table 6) that satisfy 

the following criteria: (1) They are between 154-317 amino acids 
long, which is the length range compatible with the pDSMs for 
serine  proteases  and the serine  proteases in the positive sets. 
(2) The pairwise equivalent amino acid identities of all sequences 
in this dataset are fewer than 25% to eliminate all obvious homo- 
logs. (3) They cover a wide variety of species (the sequences in our 
data set come from 93 organisms ranging from virus to human). 
(4) They have a wide variety of identified nonserine-protease func- 
tions. (The sequences in our  data set have  as many as 55 enzymatic 
functions by assigned EC number (Bairoch, 1994).) (5) Their struc- 
tures distribute widely across the structure space. (We have 30 a 
proteins, 47 /3 proteins, and 129 a@ proteins. The structure class 
of each protein was obtained from CATH (Michie  et al., 1996) 
or  SCOP (Murzin et al., 1995), or in a few cases manually.) 

Table 6. Test data  sets of trypsin-like serine proteasesa 

Positive  control sets 

PDB  Cluster 1: IABIH  IACBE,  IBIT,  IBMAA,  IBRA, IBTP, 
IDST, lELT, lFUJA,  IHCGA,  IHFI,  IHNEE,  IHYLA, 
ILMWB,  IPCU,  lPFA,  IPFXC,  IPYTC,  IPYTD,  IRTFB, 
ISGT, ITON,  lTRY  2CP1,  2KAI(A+B),  3RP2A 
Cluster 2: IARB,  IGBAA,  lHPGA,  ISGC,  ISGPE, 2SFA 

Genbank  AB003670 Dl6687 D30760  D45173  D45417  D63858 
D67078  D67079  D67080D67083  D67084504071J05177 
KO1173  LO4749  LO8428 L10038  L16805  L19694  L24914 
L24915  L33404L76741  M11590M17103  MI7104 
M18608  M18700M19647  M24379  M24664M24665 
M33109  M36902  M54900  M57401  M72150M77814 
M81392  M81395  S44609  U03760UO4962  U05203 
U13770 U15155 U15157 U21917 U25648  U28641 U32937 
U35237  U38463  U39500  U40653  U41476  U43525 U44951 
U49931 U56423  U56956  U57055  U57062  U57063 U58945 
U62801  U65411  U65412  U66472  U66473 U67907 U67908 
U67909 U67910  U67911  U67915  U72330  X15679  X17351 
X56744  X59012  X64362  X64363  X66415  X70074  X71438 
X75016  X75363  X76886  X78490  X78545  X78875  X83221 
X86369  X94691  X94982  X95078  X96387  X97635 YO8133 
Y11878 Y11879 212296  218890  222930  227239  232645 
249813  249815  249833  269978 

Negative  control set 
PDB  102L 12CA lABMA  lABN  lABRA  lABRB  lACMA 

lACYH  lACYL  IAERA  lAHA  IAHHA  lAIN  1AK2 
lAMM  lAMP lAPA  lAPNA  IAPXA  lARL  lAST lATLA 
lATND  lBBTl  lBBT2  IBBT3  lBCFA  lBCRA  lBEC 
lBERA  lBLC  IBMC  IBMFG  lBMTA  lBPB  lBPLA 
lBPLB  lBROA  lBTMA  lCAUA  lCBY  ICDDA  lCFB 
lCGE  lCHD  lCHKA  lCKIA  lCME  lCNE  lCNSA  lCNV 
lCOLA  lCOVl 1COV2 ICPJA lCPM lCRVA lCSEE 
lCSMA  lCTT ICYDA  lDAAA lDBP  lDBQA  IDEAA 
lDHR  IDHY  lDIH  IDKXA  lDLHA  lDPB  lDPRA  lDRl 
lDSBA  lECPA  IEDB  lEDHA  IEDT  lEFUB  lEMA  lENO 
IENY  lEPAA  lERIA  lESFA  IESP  lEXP  lEZM IFATA 
IFCIA  lFINA  lFINB  lFLV  lFNB lFRVA lFUA  lFVPA 
lGCA  lGDOA  IGFF2  IGHR IGLPA lGLV  IGNE lGPC 
lGRIA IGSQ lGTPA lGYM  lHAR lHAVA IHDCA 
lHHGA  lHLPA  lHMPA  1HRI3  lHTLA  lHXN  lHYHA 
lIAF  lIGNA  IILLG  lILLR  IILMB  IIMAA  lIRC  IIRK 
lJUD  lKANA  lKXA  lLAFE  lLAUE  lLBD  lLCA ILGYA 
LIMA  lLTPL  lLXA lLYAB lMASA  IMAT  lMEC2  IMLA 
lMML  lNALl INAR  lNBAA  lNIPA  OCCB  IOCCC 
IOPR  IORB  lPBN  IPCRH  lPCRL  lPCRM  lPCZA  lPDA 
lPEX  IPGS  lPHK  lPLQ  IPMAB lPRTA lPRTB IPYAB 
lPYP  lRGS lRVAA ISBP  lSCHA  lSCUA  1SE2  lSFE 
lSMNA ISMVA lTDE  lTFD  ITFR  lTHJA  lTHTA  lTIA 
lTLK  TML  lTSRA  lTTPA  lUKY  lVCAA  IVHRA  lVIRC 
lVMOA  lXVAA  lYAL  lYPTA  lZYMA 2AT2A 2DLN  2HIE 
2PCDA 2PCDM 2POR 2SCPA 2STV 2TCT  2TMAA 3PGM 

aThe  sequences  from the PDB are listed by their locus names and chain 
numbers. The sequences from the  Genbank are listed by accession number. 

(6) Finally, they contain the trypsin-like sequence pattern. This last 
criterion is essential because every sequence not containing that 
pattern would automatically be identified as a nontrypsin protein 
by our method. 
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Model building tionship has been studied extensively and reported in Lesk and 

All serine proteases fold into  two antiparallel p barrels. Besides the 
variations in the length and exposure pattern of strands and the 
connecting regions between strands, there are two distinct types of Functionally conserved sequence pattern 

Chothia (1980) and Bashford et al. (1987). 

structures, each corresponding to one sequence cluster. The pri- 
mary differences occur in the region between catalytic Asp and 
Ser. The structure of cluster 1 has four strands in that region, 
connected usually by long loops. The structure of cluster 2 has six 
strands connected by relatively short loops or turns. We thus built 
two types of DSMs for these two types of structures. Within each 
DSM, the lengths and other secondary structural parameters were 
probabilistically specified to cover the range of observed and an- 
ticipated variation. As discussed in Stultz et  al. (1993), the under- 
lying state transition probabilities are assigned rather than being 
obtained via a statistical training procedure. 

Next, the conserved sequence pattern was embedded in these 
DSMs as shown schematically in Figure 5 .  Each p plex Markov 
chain state consists of a /3 strand state and a connecting set of states 
modeled as loops, turns, and/or short helices. Each of these states 
is in turn modeled as a sequence of residue position states. The 
embedding of the conserved sequence pattern was done by replac- 
ing particular position states in the DSM by the proper sequence 
pattern element states (see Fig. 6). In serine proteases, where only 
one amino acid is observed in each conserved position of the 
conserved sequence pattern, the probability of observing that one 
amino acid is one, and the probability of observing any other 
amino acid is zero. The shaded circles of Figure 5 show the sec- 
ondary structures containing the embedded sequence pattern ele- 
ments. The plex-H is  a connecting region starting with a  small 
3-10 helix. The state in the middle of the 3-10 helix is replaced by 
a conserved His. The loop-D is  a short loop followed by a con- 
served Asp. The t u r n s  has a conserved Ser. 

The globins are heme-binding proteins with only two universally 
conserved residues: a Phe in helix C packing against the heme 
cofactor, and the proximal His in helix F, which coordinates the 
central heme iron atom. The conserved sequence pattern for glo- 
bins is thus X41.60FX3xHX43-6x. This minimal pattern covers all the 
globins. 

Construction of test data sets 

Positive control set 
Among 234 globin entries in the PDB, we selected 26 sequences 

with painvise sequence identities less than 80% for our positive set 
(Table 7). These 26 globins were grouped into six sequence clus- 
ters by  PIMA11 (Adams et al., 1996). 

Negative control set 
The negative set for globins was constructed using the same 

criteria we used for trypsin-like serine proteases, except that the 
length range was 126-173 residues and the conserved sequence 
pattern was for globins. Since there are only a few sequences in the 
PDB that meet all of these criteria, we used the SWISS-PROT 
database (Bairoch & Boeckmann, 1994). Seventy-seven sequences 
(Table 7) were selected as negatives from the SWISS-PROT re- 
lease 33. They are from 53 different organisms and have 30 en- 
zymatic functions (EC numbers): 18 are all a proteins, 22 are all 
p proteins, and 37 are ap proteins. This structure information was 
inferred by sequence similarity to a given PDB entry. 

pDSM for globins Model building 

Globins  are  a  family of proteins with nearly identical  three- Globins fold into an a box fold with eight a helices, A through H. 
dimensional structures, but greatly differing sequences. Some pair- The globin fold varies in the lengths of the helices and, in some 
wise equivalent sequence identities in this family are only 16%, structures, helix D does not exist.  The globin fold is in general 
well below statistical significance. Their sequence-structure rela- more constrained than the serine protease fold, even in its surface 

L" L L 

Fig. 6. Illustration of embedding sequence pattern elements into DSMs. The loop structural state (L) is replaced by the conserved 
sequence pattern element distribution. As shown in the loop-D case  for the serine proteases, this is a conserved Asp only. 
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Table 7. Test data sets of globinsa 

PDB 

SWISS-PROT 

Positive  control  set 

Cluster 1: IBBBA  lCMYB  IFDHG  lHBHA  lHBHB  lHDSA  IHDSB  lOUTA  IOUTB 
Cluster 2: IECA  IFLP  IITHA 
Cluster 3: lFSLA  lGDI  lHBG 
Cluster 4: lHBIA  lHLB  lHLM  ISCTA  lSCTB 
Cluster 5 :  lBVC  lLHS  IMBA  lMYT  2LHB 
Cluster 6: ASH 

Negative  control  set 

AMPM-CLOPE AMY4-HORVU ARF3-DROME ARG1-YEAST ARGR-ECOLI AZUR-ALCDE 
BCCP-ECOLI BCRF-EBV B F I E C O L I  CALM-CHLRE CC21-PEA COAG-CARRO COXI-GEOSD 
CPC-CUCSA CRBA-RAT CYB5-BOVIN CYPI-ARATH CYPBBACSU CYPB-ECOLI CYS3-OSTOS 
D l  12-ARATH  DYRA-STAAU  DYR-HALVO E13J-TOBAC FLAV-CHOCR FLAV-DESDE FRH1-SCHMA 
HXA9-AMBME IAA-HORVU IDE3-ERYCA IF3-BACST IGFI-ONCKI IIK-SOLTU ILIX-HUMAN 
IL2-FELCA IL4-HUMAN ING-MOUSE IPYR-BARBA KAPA-PIG LIT1-MOUSE LSHBEQUAS LYC3-PIG 
MEMG-METCA MEPI-SOYBN MGF1-MOUSE MLEL-DROME MUPI-MOUSE NEU2-HUMAN 
NIA-LOTTE OBP-BOVIN OGT-MYCTU PA21-HUMAN PER2-HORVU PHEA-ANASP PLAS-ANASP 
PPAL-YEAST PTGA-ECOLI PTPS-DROME QOR-SALTY RB13-RAT RBS1-ORYSA RETI-ONCMY 
RR5-CYAPA RUVC-ECOLI SFA2-STRFR SODl-ORYSA SODM-CORD1 TELO-RABIT TGFA-HUMAN 
TOX5-BORPE TPIS-MYCPI UBC7-ARATH UCRI-BRAJA URE2-STAXY VGG-BPG4 YBP2-DESAM 
YHLB-VIBCH 

aThe sequences  from  the  PDB  are listed by their locus names and chain numbers. The sequences from SWISS-SPROT are listed 
by their Ids. 

loops. Following the method of building models for serine prote- 
ases described above, we built the DSM for the globin fold and the 
pDSM by embedding the two conserved residues in their respec- 
tive positions. 

Model  validation 

Our study is fully cross-validated: the serine proteases and globins 
were excluded from the set of proteins used to establish the con- 
ditional probabilities of amino acids, given the structural state of 
the residue. 

Sensitivity and specificity provide a good measure of how 
reliably the pDSMs recognize homologs and predict the associ- 
ated secondary structures. Sensitivity is the percentage of all pos- 
itives that are correctly recognized as positives. Specificity is the 
percentage of all negatives that are correctly recognized as nega- 
tives. High reliability corresponds to both high sensitivity and high 
specificity. 

These two measures are used to compare the reliability of pDSM 
analysis with direct sequence similarity searches using BLAST 
(Altschul et al., 1990), which is the current standard fast sequence 
comparison method for infemng homology. In addition, these mea- 
sures are also used separately to compare the reliability of homol- 
ogy predictions based on the conserved sequence pattern and the 
DSM structure-fold information. 

The sensitivity and the specificity of direct sequence similarity 
searches vary for each query sequence. Thus, we define average 
sensitivity sen,,, and average specificity speave by the equations 

1 "  
n +, sen,", = - x seni, 

where seni and spei are the sensitivity and specificity for the query 
sequence i ,  and n is the number of queries. 
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