Abstract
The Saccharomyces cerevisiae a1 homeodomain is expressed as a soluble protein in Escherichia coli when cultured in minimal medium. Nuclear magnetic resonance (NMR) spectra of previously prepared a1 homeodomain samples contained a subset of doubled and broadened resonances. Mass spectroscopic and NMR analysis demonstrates that the heterogeneity is largely due to a lysine misincorporation at the arginine (Arg) 115 site. Arg 115 is coded by the 5'-AGA-3' sequence, which is quite rare in E. coli genes. Lower level mistranslation at three other rare arginine codons also occurs. The percentage of lysine for arginine misincorporation in a1 homeodomain production is dependent on media composition. The dnaY gene, which encodes the rare 5'-AGA-3' tRNA(ARG), was co-expressed in E. coli with the a1-encoding plasmid to produce a homogeneous recombinant a1 homeodomain. Co-expression of the dnaY gene completely blocks mistranslation of arginine to lysine during a1 overexpression in minimal media, and homogeneous protein is produced.
Full Text
The Full Text of this article is available as a PDF (384.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baxter S. M., Gontrum D. M., Phillips C. L., Roth A. F., Dahlquist F. W. Heterodimerization of the yeast homeodomain transcriptional regulators alpha 2 and a1: secondary structure determination of the a1 homeodomain and changes produced by alpha 2 interactions. Biochemistry. 1994 Dec 27;33(51):15309–15320. doi: 10.1021/bi00255a012. [DOI] [PubMed] [Google Scholar]
- Brinkmann U., Mattes R. E., Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. 1989 Dec 21;85(1):109–114. doi: 10.1016/0378-1119(89)90470-8. [DOI] [PubMed] [Google Scholar]
- Calderone T. L., Stevens R. D., Oas T. G. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol. 1996 Oct 4;262(4):407–412. doi: 10.1006/jmbi.1996.0524. [DOI] [PubMed] [Google Scholar]
- Chen G. F., Inouye M. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 1990 Mar 25;18(6):1465–1473. doi: 10.1093/nar/18.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen G. T., Inouye M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Dev. 1994 Nov 1;8(21):2641–2652. doi: 10.1101/gad.8.21.2641. [DOI] [PubMed] [Google Scholar]
- Garcia G. M., Mar P. K., Mullin D. A., Walker J. R., Prather N. E. The E. coli dnaY gene encodes an arginine transfer RNA. Cell. 1986 May 9;45(3):453–459. doi: 10.1016/0092-8674(86)90331-4. [DOI] [PubMed] [Google Scholar]
- Horton R. M. In vitro recombination and mutagenesis of DNA. SOEing together tailor-made genes. Methods Mol Biol. 1997;67:141–149. doi: 10.1385/0-89603-483-6:141. [DOI] [PubMed] [Google Scholar]
- Kane J. F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol. 1995 Oct;6(5):494–500. doi: 10.1016/0958-1669(95)80082-4. [DOI] [PubMed] [Google Scholar]
- Rosenberg A. H., Goldman E., Dunn J. J., Studier F. W., Zubay G. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol. 1993 Feb;175(3):716–722. doi: 10.1128/jb.175.3.716-722.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seetharam R., Heeren R. A., Wong E. Y., Braford S. R., Klein B. K., Aykent S., Kotts C. E., Mathis K. J., Bishop B. F., Jennings M. J. Mistranslation in IGF-1 during over-expression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem Biophys Res Commun. 1988 Aug 30;155(1):518–523. doi: 10.1016/s0006-291x(88)81117-3. [DOI] [PubMed] [Google Scholar]
- Sharp P. M., Tuohy T. M., Mosurski K. R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986 Jul 11;14(13):5125–5143. doi: 10.1093/nar/14.13.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. P., Barber K. R., Shaw G. S. Identification and structural influence of a differentially modified N-terminal methionine in human S100b. Protein Sci. 1997 May;6(5):1110–1113. doi: 10.1002/pro.5560060518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Zahn K. Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth. J Bacteriol. 1996 May;178(10):2926–2933. doi: 10.1128/jb.178.10.2926-2933.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]