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Abstract 

We apply a simple method for aligning protein sequences on the basis of a 3D structure, on a large scale, to the proteins 
in the scop classification of fold families. This allows us to assess, understand, and improve our automatic method 
against an objective, manually derived standard, a type of comprehensive evaluation that has not yet been possible for 
other structural alignment algorithms. Our basic approach directly matches the backbones of two structures, using 
repeated cycles of dynamic programming and least-squares fitting to determine an alignment minimizing coordinate 
difference. Because of simplicity, our method can be readily modified to take into account additional features of protein 
structure such as the orientation of side chains or the location-dependent cost of opening a gap. Our basic method, 
augmented by such modifications, can find reasonable alignments for all but 1.5% of the known structural similarities 
in scop, i.e., all but 32 of the 2,107 superfamily pairs. We discuss the specific protein structural features that make these 
32 pairs so difficult to align and show how our procedure effectively partitions the relationships in scop into different 
categories, depending on what aspects of protein structure are involved (e.g., depending on whether or not consideration 
of side-chain orientation is necessary for proper alignment). We also show how our pairwise alignment procedure can 
be extended to generate a multiple alignment for a group of related structures. We have compared these alignments in 
detail with corresponding manual ones culled from the literature. We find good agreement (to within 95% for the core 
regions), and detailed comparison highlights how particular protein structural features (such as certain strands) are 
problematical to align, giving somewhat ambiguous results. With these improvements and systematic tests, our proce- 
dure should be useful for the development of scop and the future classification of protein folds. Supplementary material 
is available at http://bioinfo.mbb.yale.edu/align. 
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Structural alignment consists of establishing equivalences between 
the residues in two different proteins, as  is the case with conven- 
tional sequence alignment. However, this equivalence is deter- 
mined principally on the basis of the three-dimensional coordinates 
corresponding to each residue, not  on the basis of the amino acid 
“type” of the residue. The general idea of structural alignment has 
been around since the first comparisons of the structures of myo- 
globin and hemoglobin (Perutz  et al., 1960). Systematic structural 
alignment began with the analysis of heme binding proteins and 
dehydrogenases by Rossmann and colleagues (Rossmann et al., 
1975; Rossmann & Argos, 1975; Argos & Rossmann, 1979). Cur- 
rently, there are two basic reasons for wanting to perform this 
operation. 

First, the number of known structures is large and growing 
rapidly (>8,000 domains in the Protein Databank, expected to 
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exceed 10,000 soon) (Orengo, 1994; Murzin et al., 1995; Bemstein 
et al., 1977; Holm & Sander, 1997). Both for understanding and 
for applications such as comparative modelling (Sanchez & Sali, 
1997), it is advantageous to organize all the structures into fold 
families. A number of databases currently do this: FSSP and Entrez- 
MMDB cluster structures purely on the basis of automatic com- 
parison programs (Holm & Sander, 1993a, 1994,1996; Gibrat et al., 
1996; Hogue et  al.,  1996;  Schuler  et al., 1996). Scop does the same 
thing manually, based on visual inspection of human experts (Murzin 
et al., 1995). And CATH and HOMALDB adopt an intermediate 
approach, using both automatic and manual methods (Overington 
et al., 1993; Orengo et al., 1994; Sali & Overington, 1994). 

Second, structural alignment can be used as a “gold standard” 
for sequence alignment and threading. How does one know if a 
purely sequence-based alignment is correct? Or which parts of two 
proteins can be aligned?  The current belief is that this is best done 
by consulting a structural alignment, particularly for alignments of 
highly diverged sequences (Vogt et al., 1995; Chothia & Gerstein, 
1997). This second use  of structural alignment tends to focus on 

445 



446 M. Gerstein and M. Levitt 

the accuracy of an alignment given that one already knows that 
two structures are similar. 

Existing methods for structural alignment 

Because of their obvious utility, a large number of different pro- 
cedures for automatic structural alignment and comparison have 
been developed (Remington & Matthews, 1980; Satow et al., 1987; 
Artymiuk et al., 1989; Taylor & Orengo, 1989; Sali & Blundell, 
1990; Vriend et al., 1991; Russell & Barton, 1992; Grindley et al., 
1993; Holm & Sander, 1993a; Godzik & Skolnick, 1994;  Feng & 
Sippl,  1996; Falicov & Cohen, 1996; Gibrat et al., 1996; Cohen, 
1997). 

To understand these procedures, it is useful to compare struc- 
tural alignment with the much more thoroughly studied methods 
for sequence alignment (Doolittle, 1987; Gribskov & Devereux, 
1992). Both sequence and structure alignment methods produce an 
alignment that can be described as an ordered set of equivalent 
pairs ( i j )  associating residue i in protein A with residuej in protein 
B. Both methods allow gaps in these alignments that correspond to 
non-sequential i (or j )  values in consecutive pairs-i.e., one has 
pairs like (10,20) and (1 1,22). And both methods reach an align- 
ment by optimizing a function that scores well for good matches 
and badly for gaps. The major difference between the methods is 
that the optimization used for sequence alignment is globally con- 
vergent, whereas that used for structural alignment is not. This  is 
the case  for sequence alignment because the optimum match for 
one part of a sequence is not affected by the match for any other 
part. Structural alignment fails to converge globally because the 
possible matches for different segments are tightly linked as they 
are part of the same rigid 3D structure. For this reason, the align- 
ment found by a structural alignment algorithm can depend on the 
initial equivalences, whereas in sequence alignment there is no 
such dependence. 

The lack-of-convergence problem has led to a large number of 
different approaches to structural alignment, the methods differing 
in how they attack the problem. However, no current algorithm can 
find the globally optimum solution all the time; the convergence 
problem remains unsolved in the general case. The methods also 
differ in the function they optimize  (the equivalent of the amino 
acid substitution matrix used in sequence alignment) and how they 
treat gaps. 

Some of the methods effectively compare the respective dis- 
tance matrices of each structure, trying to minimize the difference 
in intra-atomic distances for selected aligned substructures (Taylor 
& Orengo, 1989; Sali & Blundell, 1990; Holm & Sander, 1993a). 
In contrast, our method, which is derived from that of Cohen 
(Satow et al., 1987; Cohen, 1997), directly tries to minimize the 
inter-atomic distances between two structures. A similar approach 
is taken in minimizing the “soap-bubble area” between two struc- 
tures (Falicov & Cohen, 1996). Other methods involve further 
techniques, such  as geometric hashing or lattice fitting (Artymiuk 
et al., 1989; Godzik & Skolnick, 1994; Gibrat et al., 1996). 

The importance of manual standards 

How well do the current structural alignment programs perform? 
Although particular programs have uncovered many interesting 
similarities in individual cases (e.g., globin-colicin-A, Holm & 
Sander, 1993b; adenylyl cyclase-polymerase, Artymiuk et al., 1997; 

Bryant et al., 19971, it has not been possible to see how well the 
programs perform overall, in an aggregate, statistical fashion against 
a set of objective standards. This  is because up to now suitable 
standards did not exist. However, the recently created scop clas- 
sification of protein structures provides such a suitable standard 
(Murzin  et al., 1995; Brenner et al., 1996; Hubbard et al., 1997). 
It consists of thousands of documented similarities between known 
protein structures based purely on visual inspection. Here, we en- 
deavor to test our automatic method of structural comparison against 
the known similarities in scop.  This provides, for the first time, a 
comprehensive sense of how a uniformly applied automatic pro- 
cedure does against the manual standard. It also allows us to see 
what type of similarities are especially hard to detect and to opti- 
mize our procedure in a systematic fashion. 

After a program has found a structural similarity, the next ques- 
tion one asks is how correct is the alignment. This is especially 
important if one wants to use results of structural alignment as a 
“gold standard” to evaluate a sequence-alignment or threading 
algorithm. It is surprisingly difficult to answer this question in 
detail because many parts of two similar proteins (e.g., loops) may 
not be alignable at all. Some recent results have highlighted the 
ambiguities in structural alignment and even suggested that unique 
alignments do not exist (Orengo et al., 1995; Feng & Sippl, 1996; 
Godzik, 1996). However, we take the perspective that unique align- 
ments exist for the essential “core” regions of two similar proteins. 
As was the case with the detection of similarities, it is essential to 
compare automatic alignments against manual standards in an ob- 
jective and systematic fashion. Here, we test a selection of the 
alignments derived from scop against corresponding manual align- 
ments from the literature. 

Results 

Systematic elaboration of a simple procedure 
(search then iterate) 

As shown in Figure 1, the basic procedure we use for structural 
alignment is very simple. It is very much like classic Needleman- 
Wunsch sequence alignment (Needleman & Wunsch, 1971). It 
consists of building a similarity matrix S,, based on the interatomic 
distances between each atom i in the first structure and each atom 
j in the second. Then dynamic programming is applied to this 
matrix to find the optimal global alignment. If this were sequence 
alignment, we would be done, as the similarity matrix, which 
depends only on the two sequences, is constant. However, in struc- 
tural alignment, the matrix depends on the relative 3D positioning 
of the two structures, which in turn, depends on how they have 
been previously aligned, so the procedure must be iterated until it 
converges. As we will describe below, this simple procedure is 
usually able to arrive at the correct alignment. However, there are 
exceptions. To handle these, we modified our basic procedure in 
two ways: through an expanded search and through using addi- 
tional methods to build the similarity matrix. Because of the sim- 
plicity of the basic procedure these modifications can be rationalized 
directly in terms of features of protein structure. 

Originally, our search consisted of starting at five reasonably 
chosen points, described in the methods. Here, we expand the 
search by allowing additional starting points and, in certain diffi- 
cult  cases, only aligning a section of the bigger of the two proteins. 
In the basic method, the similarity matrix depended only on the 
distance between alpha carbons (method “Ca”).  Here, we elabo- 
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Fig. 1. How painvise structural alignment works. This schematic of our 
method of structural alignment is to be read from top to bottom. At the top 
are two highly simplified structures (ABCDEFG and abcde) in  an arbitrary, 
initial orientation. An initial equivalence is chosen, based on matching the 
ends of the two structures. Using this equivalence, we can least-squares 
superimpose the  two molecules (giving  an RMS deviation in corresponding 
atoms of 1.96 A, upper-middle). Then, based on relative positioning of the 
molecules determined from the fit, we calculate the distance, d,J, between 
every atom i in the first structure and every atom j in the second structure. 
Each distance is transformed into a similarity value S, to form the simi- 
larity matrix shown at the upper-middle-right, (S,, = M/[I + (d,,/d<,)*], 
where M = 20 and do = 2.24 A). In the initial orientation atom “a” is 
close to atom “A” and  even closer to atom “C,” and this is reflected in the 
S, matrix values. Dynamic programming chooses the pairs indicated by the 
boldface S,J entries. The score for this selection is the sum of the So values 
of the selected pairs less the gap penalty for  each chain break (nbrk). Using 
a default gap penalty of 10 (M/2), the score is 7 + 12 + 12 + 13 + 13 - 
I O  - 10, for the S,J matrix at the upper-middle-right. The pairs chosen by 
dynamic programming give  a new set of equivalences shown in the lower- 
middle. These  are used to  do  a second least-squares fit (giving an RMS of 
0.65 A). A new similarity matrix S,J can now be calculated (shown at the 
lower-middle-right), and dynamic programming again used to find new 
equivalences. Finally, at the bottom we see that these equivalences give a 
perfect match, so a final cycle of dynamic programming does not change 
the alignment. The iteration has converged on an alignment. 

rate on  this by taking into  account residue exposure  and side-chain 
orientation, specifically by using beta carbons (“CP”) or weighting 
according to the relative orientation of side-chain vectors (“Ccu- 
Cp’).  A final elaboration allows  the gap penalties to vary with 
position in the structure, so that it is more difficult to introduce 
breaks in helices and strands than in loops (“var. gap”). 

Using scop to assess  our algorithm: A “meta-method” 

Objective  ways  for assessing the quality and significance of our 
alignments  are the key points that distinguishes what we do here 
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from previous approaches towards automatic structural alignment. 
Our attention to validating our procedure against objective external 
standards is  in a sense a “meta-method”-a method for evaluating 
a method. 

To assess sensitivity, we checked our procedure against the en- 
tire scop database. This consists of hundreds of thousands of re- 
lationships between the -8,000 protein domains of known structure. 
However, many of these relationships are trivial (e.g., same protein 
in different liganded states) or can readily be derived from se- 
quence homology. The non-trivial relationships are evident only 
after clustering all the domains  on the basis sequence. The current 
version of scop (1.32) contains 941 unique domains at a 40% 
identity cutoff (Brenner  et al., 1995, 1997). Of the 441,330 pos- 
sible pairs of these domains  (940 X 939/2), 2,107 (-0.5%) are in 
the same scop superfamily and therefore have a similar 3D stnrc- 
ture. These 2,107 pairs were what we tested our procedure against. 

To check how accurate the alignments produced by our proce- 
dure were, we compared them against manual alignments pub- 
lished in the literature (making sure that these alignments were 
really done by hand and not a product of another computer algo- 
rithm). This was done in a most straightforward fashion, by opti- 
mally “aligning” the automatically generated alignments en bloc 
against the literature alignments and then counting the mismatches 
in the “core regions” (see Methods). This protocol is a much more 
objective test than simply inspecting the automatically produced 
alignments to see whether they “look” reasonable. In that situation 
it is possible to be either wittingly or unwittingly biased in favor of 
the program’s alignments. 

Overall “sensitivity” in finding the scop  pairs 

We ran our structural alignment program against all 2,107 of the 
scop pairs. Each comparison gave a value for the number of res- 
idues matched (N) and the RMS deviation in alpha-carbon posi- 
tions after doing a least-squares fit with these N residues (the 
“RMS”). Our overall results are shown in Figure 2 through plotting 
RMS versus N for each scop pair. There  is a fairly wide spread in 
the values for both RMS (2.66 * 0.77 A) and N (98 * 57), but it 
is possible to approximately separate the successful matches (low 
RMS) from the unsuccessful matches (high RMS) by the demar- 
cation line RMS = 4(N + 135)/225. This sloping line indicates 
that a match with a higher RMS value can be more significant than 
one with a lower RMS if there are more residues in the first match, 
as is to be expected. Based on the demarcation line it is convenient 
to define a normalized RMS: RMS’ = 225  RMS/(N + 135). As 
shown in Figure 2b, plotting this quantity against N now gives a 
flat demarcation line of RMS‘ = 4 8, (nearly the same as the 
distance between alpha carbons). Note that for an approximately 
average match of 90 residues, RMS‘ is the same as RMS (and that 
both quantities agree to within 10% for N between 70 and 110 
residues). 

Figure 3 shows the distributions of RMS and RMS’ values. Both 
distributions have very similar means (2.66 and 2.68 A) and stan- 
dard deviations (0.77 and 0.87 A). The normalized distribution has 
a sharp falloff for RMS’ greater than 4 A, justifying  this as a 
criterion for a significant match. 

About 15% of the scop  pairs (313 of 2,107) have some (mar- 
ginal) sequence similarity (as indicated by a FASTA e-value less 
than 0.01, see legend to Fig. 2). All of these  pairs  are below the 4 A 
RMS’ demarcation line, and collectively, they have a lower aver- 
age RMS (1.9 A) and a higher average N ( 129) than the other pairs, 
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Fig. 2. Overall performance on the scop superfamily pairs. This figure shows the overall performance of our structural alignment 
algorithm on the 2,107 scop superfamily pairs. Part (A) shows a plot of RMS versus the number of residues matched N for  each of 
the pairs. A demarcation line separating good matches from bad ones is drawn as RMS = 4(N + 135)/225. Each pair that has some 
sequence similarity is indicated by  an open circle. Clearly, these pairs tend to have somewhat closer structural matches. Sequence 
similarity was determined by doing an all-versus-all sequence comparison of the 941 scop domains using the FASTA program (with 
a  k-tup value of 1) (Pearson & Lipman, 1988). An e-value for a pair less than 0.01 was taken to indicate significant sequence similarity 
with an expected false positive error rate of 1% (Brenner  et al., 1995; Pearson, 1996). Note that none of the 941 domain structures in 
the 2,107 scop superfamily pairs has sequence identity greater than 40%. so the sequence similarity found by  FASTA is, by definition, 
somewhat marginal. Part (B) is similar to part (A) but now a plot of the normalized RMS’ vs. N is shown for the same pairs (RMS’ = 
225RMS/(N + 135)). The demarcation line is  now RMS’ = 4 P\. 

indicating that sequence similarity is related to structural similarity 
even this close to the “twilight zone.” 

Using a normalized RMS‘ threshold of 4 A, we find that only 32 
of the 2,107 pairs  are outliers, less than 2%. These results were 
obtained using our “optimized” protocol that starts from a number 
of points and uses a variety of different parameter settings (see 
Methods). However, 1,762 of the pairs (-84%) could be found 
with just a single primary search method (CP). Of the remaining 
pairs, 313  (15%) could be found through application of multiple 
search strategies, leaving 32 pairs (1.5%) that we could not find at 
all. 

Protein structure features that fooled the method, and why 

We investigated in detail the 32 outliers that the program missed 
completely, trying to identify the types of protein structures that 
were fooling the program. (In  this analysis we also looked at an 
additional 37 pairs where the match was slightly better than our 
4 A RMS’ threshold but for which the number of aligned residues 
was less than 40% of the length of the smaller protein.) A number 
of these “bad pairs” represent unusual residue selections in the 
scop  database;  for instance, the scop pair with identifiers dlggtal 
and dlcdcb- associates, respectively, a full immunoglobulin vari- 
able domain with a strangely shaped immunoglobulin fragment 
(see Methods  for  scop id syntax). Four of the seven worst failures 

involve the protein with scop identifier dldhx-, which is an all+ 
animal virus-coat protein. 

A number of the difficult to align pairs had circular permutations 
in their similar structural elements. For instance, the scop pair with 
identifiers dlscs- and dlxnb- consists of two proteins that share 
the same all-/?, concanavalin-A fold but differ in connectivity, 
having a circular permutation of strands in the central sheet. As our 
alignment program was not designed to handle circular permuta- 
tions, its difficulty with this pair is understandable. The complex- 
ities of handling topology changes in alignment has been discussed 
previously (Orengo et  al., 1995). 

Finally, we found a number of interesting cases where the struc- 
tures were considered similar in scop because they shared a special 
structural feature rather than an overall similarity in shape. The 
scop pair shown in Figure 6 (dldpga2 and dlgdlo2) represents 
such an instance. Both domains  in the pair are considered to share 
the same superfamily  fold, that of the  C-terminal domain of 
glyceraldehyde-3-phosphate dehydrogenase. However, they only 
have a small amount of common structure, which is only remotely 
alignable-in particular, a four-stranded sheet with two helices 
packed on one face. Thus, in terms of the raw score used by the 
program (i.e., the average closeness of Ca atoms), the  domains 
could not be matched well. However, they are grouped together in 
scop because both share a unique type of connectivity between the 
helices and strands, involving a rare type of loop “cross-over.’’ 
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Fig. 3. Distribution of RMS values on the scop pairs. This figure shows 
the distribution of RMS and RMS’ values resulting from aligning each of 
the 2,107 scop superfamily pairs. 

Moreover, this special cross-over occurs  at the “heart” of these 
proteins, participating in the active site, and occurs in further pro- 
teins grouped in the same superfamily (e.g., dldih-2). 

Detailed accuracy of the alignments 

For the remaining scop pairs that could be aligned with acceptable 
RMS values, we tried to assess the quality of their alignments in 
detail. To this end, we compared a set of nine automatically gen- 
erated multiple alignments, based on portions of the scop super- 
families (involving 40 structures in total), with corresponding manual 
alignments culled from the literature. Our overall results, in terms 
of mismatches for each set, are shown in Table 1 .  Our selection of 
test cases represents a wide variety of protein structures: all-a 
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(globins), all+ (immunoglobulins, plastocyanin-aurin), a//3 (di- 
hydrofolate reductase family), structures with large conformational 
changes in addition to evolutionary changes (adenylate kinases), 
and structures with large inserts (Gal6-papain). As was the case 
with the sensitivity analysis, we found overall that the basic method, 
minimizing C a  distance, works. However, it has some trouble with 
beta-sheet proteins. 

Our results are shown in greater detail in Figure 7, which shows 
the automatically generated alignments of three well-known protein 
families: the all-alpha globins, the all-beta immunoglobulins, and 
the alpha/beta dihydrofolate reductase family. Mismatches in the core 
regions are indicated. The globins and the dihydrofolate reductases 
are “easy” to align (Fig. 4). The basic procedure (Ca), as well as 
any of the variants, was able to generate the correct alignment. 

The immunoglobulins are more problematical, especially with 
regard to aligning the constant and variable domains. As shown 
in Figures 5 and 7, all the variants of our algorithm will generate 
an alignment with an acceptable RMS, but the alignments differ in 
detail. In fact, the alignment that minimizes alpha-carbon distance 
looks deceptively correct and has the best overall RMS. However, 
it is clearly wrong, as it misaligns the conserved disulfide. A vari- 
ant of our procedure that takes into account side-chain orientation 
and also uses variable gap penalties is necessary to get the align- 
ment right. Aligning immunoglobulin constant and variable do- 
mains has proven difficult with other structural alignment methods 
(Taylor & Orengo, 1989). The difficulties we found for the im- 
munoglobulins and other all-/3 proteins suggest that, in general, it 
is easier to misalign strands than helices unless one takes into 
account side-chain orientation. 

Figure 8 shows how our  simple approach toward multiple align- 
ment, align to the “median structure” in the cluster, performs. 
Clearly, as  one moves away from the median structure the align- 
ment degrades. Nevertheless, the overall mismatch error rate is 
very low using this approach (Table I) ,  indicating it is probably 
sufficient for the superfamily size currently in scop. [However, in 
the future this could change (see Methods).] 

Table 1. Comparison of automatically generated multiple alignments vs. manual “gold  standards”a 

Num. Num. 
Protein family struct. comp. Mismatches Scop s. fam. Comment on stluctures Method 

1 Plastocyanin/azurin 
2 Immunoglobulin VL-Fc (V-set + C1-set) 
3 Cysteine proteinases (Gal6-Papain) 
4 C-type lectins 
5 P-loop containing  NTP hydrolases (ADK) 
6 Immunoglobulin V-frame (V-set + I-set) 
7 Dihydrofolate reductases 
8 Globins 
9 Immunoglobulin V-set (just VL domains) 

2 118 
2 72 
2 214 
2 212 
3 534 
4 184 
4 436 
8 805 

13 1,183 

2 
6 
2 
0 
0 
4 
1 

18 
1 1  

2.05.1 
2.01.1 
4.03.1 
4.77.1 
3.21.1 
2.01.1 
3.46.1 
1.01.1 
2.01.1 

All-p 
All-p 
(Y + p with large insertions 
a + p (mostly p) 
c./p with large conf. change 
All-P (includes telokin) 
a lP 
All-a 
All-p 

Cff 
Ca-C p + var. gap 
Cn 
Cff 
Cff 
C p  + var. gap 
Cff 
C a  + var. gap 
CP 

~~ ~ 

aThe table shows summary statistics derived from comparing nine automatically generated alignments to manual, “gold-standard alignments culled from 
the literature. These alignments are meant to correspond to  as varied a selection of scop superfamilies as possible, given the limitations of the data in the 
literature. A detailed explanation of the statistics follows: Column “nurn. struct.” gives the number of structures involved in the alignment. Column “num. 
comp.” gives the number of comparisons done in comparing to the manual alignment. This is just the number of core positions times the number of 
structures. Column “mismatches” gives the number of mismatches compared to the hand alignment (which should be considered relative to the total number 
of comparisons). Column “scop s.fam.” gives the scop superfamily that the alignment was generated from. Column “method” tells whether the basic method 
(Ca) or a variant was used in generating the alignment. Alignment 1 is from Chothia and Lesk (1982); 2, Lesk and Chothia (1982); 3, Joshua-Tor et al. 
(1995); 4, Graves et al. (1994); 5 ,  Gerstein et  al. (1993); 6, Harpaz and Chothia (1994) and Leahy et al. (1992); 7, Gerstein et al. (1994); 8, Lesk and Chothia 
(1980); 9, Chothia and Lesk (1987). All of the “gold-standard” alignments were done truly manually (Le., not by using a different computer algorithm). 
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Fig. 4. An easy to align pair (globins).  This figure shows  a sample stmc- 
tural alignment of a pair of globins (dlmhd- and dlecd-: see Methods 
for a discussion of the scop identifier conventions).  The aligned positions 
are indicated by small. gray CPK spheres. This alignment is “easy“ in the 
sense that i t  is obtainable from either the basic algorithm (Ca) or any 
variant (e.g., Cp), and that there are very few mismatches compared to the 
hand alignment taken from the literature. See Figure 7h for another view of 
this alignment. 

Discussion and conclusion 

Summa? 

We have described how we applied an automatic structural align- 
ment method, on a large scale, to the proteins in the manually 
constructed scop classification of fold families. Comparing our 
automatic alignments against manual standards has allowed us to 
get a relatively unbiased assessment of how a uniformly applied 
computer procedure compares with human experts, both in terms 
of overall sensitivity and detailed accuracy. In a sense, our pro- 
gram has acted as  a foil to expose the subtleties of protein struc- 
tural similarity. 

Testing the program against objective standards has allowed us 
to refine it (taking  into account such things as side-chain orienta- 
tion and exposure, variable gap penalties, and a more comprehen- 
sive  search), measurably increasing our overall sensitivity (so that 
we could eventually find 99% of the scop pairs). We have also 
demonstrated a  simple yet effective scheme for generating multi- 
ple structural alignments based on our pairwise alignments. 

Easv. hard, and impossible pairs 

Proteins in the same scop superfamily are considered to have evolved 
from a  common ancestor (Murzin  et al., 1995). Such an evolu- 
tionary relationship does not necessarily imply conservation of 

sequence or structure. All that is needed is that the proteins are 
considered to have more in common (in terms of sequence, struc- 
ture and/or  function) than would be expected to arise indepen- 
dently or by convergent evolution. Thus, although some of the 
2,107 superfamily pairs have significant sequence similarity (- 16%; 
Brenner et al., 1997),  others do not. 

We find that our method partitions the evolutionary relationships 
in scop roughly into three categories based on alignability: easy to 
align, hard to align, and impossible to align. In the first category 
are proteins, such as the globins  (Fig. 4), which can be aligned 
correctly by our basic method (Ca) or any of the variants. In the 
next category are proteins, such as the immunoglobulins (Fig. 5 ) ,  
that need a modified method (e.g., Cp) for successful alignment. 
This is necessary either because the basic method cannot find an 
alignment with an acceptable RMS or because, even though it 
finds an alignment with a good RMS, i t  does not get this alignment 
completely right. As a rough rule. proteins in this second category 
tend to have more sheet structure than helical structure, probably 
because of the greater structural variability allowed in strands than 
helices and also because (without considering side-chain orienta- 
tion) it is  easier to misalign a strand by one residue. 

Finally, in the last category are the - 1.5% of the scop pairs that 
we could not align at all by the basic methods or any variants 
(Fig.  6). Our difficulty with a number of these pairs can be un- 
derstood because a specific protein-structure “feature,” such as 
crossed loops, is used as the basis for a resemblance, rather than 
simply the similarity in backbone structure. 

Directions: Statistical significance and sequence applications 

The distinction between easy, hard, and impossible to align pairs is 
obviously related to the statistical significance of a given structural 
similarity, Le., how good the match is compared to random expec- 
tation (the  P-value). Statistical significance for structural align- 
ment can be evaluated in a similar fashion as  for normal sequence 
alignment (Altschul et al., 1994; Pearson, 1996). by deriving sta- 
tistical models from the results of all possible pairwise compari- 
sons. Work in this direction is on-going, and we have recently 
derived a formula for the significance of a structural alignment 
(Levitt & Gerstein, 1998). The threshold of RMS‘ = 4 A used here 
corresponds approximately to significance level (or P-value) of 
0.01. 

In any case, as we have been able to find a reasonable match for 
almost all the scop superfamily pairs (98.5%). our alignments are 
expected to be useful in many applications, ranging from testing 
sequence alignment and fold recognition algorithms to the defining 
appropriate structural “modules” for searching the genome (Bren- 
ner et al., 1997; Gerstein, 1997; Gerstein & Levitt, 1997; Sonn- 
hammer et al., 1997). 

Methods 

Datcl 

Structures were taken from the Protein Data Bank (PDB; Bemstein 
et al., 1977). Version  1.32  of the scop fold classification was used 
(May 96)  (Murzin et al., 1995; Brenner et al., 1996; Hubbard et at., 
1997). This includes a number of structural similarities that were 
not  in the PDB (i.e., they were taken from the literature). It also has 
some proteins that have multi-chain “domains.” These and other 
special cases were removed from the database. Each  of the do- 
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Fig. 5. A harder to align pair (immunoglobulins). This figure shows an alignment of immunoglobulin light-chain variable domain 
(d7fab12)  with  an immunoglobulin constant domain (dlreial). One can readily “match” this pair with the basic method (Ca)  or any 
of the variants (in the sense that one can get a good RMS’ value). However, it is deceptively difficult to get the correct alignment in 
detail. The alignment from the basic method, just matching C a  atoms, is shown on the right. It gets a reasonable RMS from matching 
all the atoms and after elimination (see table below). However, it is clearly wrong because i t  misaligns the conserved disulfide (shown 
by the CPK spheres in the figure). In fact, comparison with the hand alignment shown in Figure 7c indicates that every strand is slightly 
misaligned, giving 28 mismatches in total. It  is necessary to use a variant method, which takes into account sidechain orientation and 
variable gap penalties, to get  an alignment that gets the disulfides right. This alignment is shown at the left. 

Method 
Variant 

(Ca-CP + var. gap) 
Basic 

(Ca atoms) 

Mismatches vs. hand 
(36 aligned so/72) 

RMS from all equiv. C a s  (84) 
RMS after elimination (hest 36) 

6 
4.0 A 
1.7 A 

28 
3.1 4 
2.0 A 

mains classified by scop is associated with a unique identifier, and procedure similar to that of Hobohm et al. (1992). At a sequence 
these are used throughout this text. They have the following syn- identity level of 40%, this procedure results in 941 sequences 
tax: dlpdbcN, where “lpdb” is a PDB id, “c” is a chain identifier, corresponding to the scop domains. These sequences contain 176 
and “W’ describes if this is the first, second, or only domain in the different superfamilies, which involve 2107 nontrivial pair rela- 
chain. Thus, dlggtal is the first domain in the A chain of IGGT. tionships between the domains. (Only superfamily pairs were used 

The  creators of scop have clustered the domains in the PDB on here as they have a considerably closer and more certain relation- 
the basis of sequence identity (Brenner  et al., 1995, 1997), using a ship than fold pairs.) 
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Fig. 6. A very  hard to align pair (G3P dehydrogenase C-term. domain). 
This figure shows  a  scop pair that our program was not able to align at all. 
These structures (dl  gdlo?, in the middle and d  Idpga2 at the bottom) are 
considered to share the fold of the C-terminal domain glyceraldehyde-3- 
phosphate dehydrogenase. However. they have in common only a small 
core region of similar topology, consisting of a four-stranded sheet with 
two helices packed on a face. This is highlighted in the structures and 
indicated in the topology diagram at TOP. The structures are grouped 
together in scop principally because they share an unusual type of cross- 
over connection. joining the strands in the sheet. This connection is high- 
lighted by a bold line in the topology diagram and a thick ribbon in the 
middle and bottom sub-figures. In  both structures the crossed loops are 
inserted into the Rossmann-fold NAD(P)-binding domain in the same place, 
so they form an equivalent part of the active site. Furthermore, there is a 
third member of this scop superfamily (dldih-2) that has a pair of cross- 
loops equivalently inserted into a Rossmann-fold-like domain. 

The basic procedure, minimize Ca RMS 

The basic procedure we use for pairwise structural alignment is 
based on iterative application of dynamic programming. As such, 
it is a simple generalization of Needleman-Wunsch sequence align- 
ment (Needleman & Wunsch, 1971). The basic method is origi- 
nally derived from the ALIGN program of G Cohen (Satow et al., 
1987;  Cohen,  1997) and has been applied to specific cases previ- 

ously (Gerstein & Levitt, 1996). As shown in Figure 1, one starts 
with two structures in an arbitrary orientation. Then one computes 
all painvise distances between each atom in the first structure and 
every atom in the second structure. This results in  an inter-protein 
distance matrix where each entry dij corresponds to the distance 
between atom i in the first structure and atom j in the second one. 
This distance matrix can be converted into a similarity matrix S,, 
similar to the one used in sequence alignment, by application of  the 
following formula: 

Here, M is the maximum score of a match, which is arbitrarily 
chosen to be  20. d,, is the distance at which the similarity falls to 
half its maximum value (i.e., d,  = d,, + S, = M/2). It is taken here 
to be 2.24 A-reflecting the intrinsic length scale of protein struc- 
tural similarity. This is about midway between the length of a C-C 
bond (1.54 A) and the usual distance between C a  atoms (3.8 A). 

One applies dynamic programming to the similarity matrix to 
get equivalences. If this were normal sequence alignment, one 
would  be finished at this point since dynamic programming gives 
the optimal equivalences. However, this is not the case for struc- 
tural alignment. So one takes these equivalences and uses them to 
least-squares fit the first structure onto the second one (Kabsch. 
1976). Then one repeats the procedure over and over, finding all 
pairwise distances and doing dynamic programming to get  new 
equivalences, until it converges on the same set of equivalences. 

Basic  search 
In practice, the iteration is tried from a number of different starting 
points, and the one that gives the best score is taken. This score is 
calculated as the sum of the S, values of the selected equivalent 
pairs ( i , j )  from the dynamic programming less the penalty for each 
of the chain breaks or gaps. We use six starting alignments. giving 
different sets of initial equivalences: ( I )  align the beginnings of the 
two sequences, (2) align the midpoints, (3) align the ends, (4) align 
at a random point, ( 5 )  align using sequence identity, and (6) align 
using alpha angles. Most of these starting points were used previ- 
ously (Subbiah et al., 1993; Laurents et al., 1994; Gerstein & 
Levitt. 1996). However, to correctly match all the scop pairs, we 
needed to modify our procedure as discussed below. 

Side-chain  orientation 

An important improvement was taking into account sidechain ori- 
entation. This could simply be done by using CP rather than C a  
atoms for the computation of distances djj. However, we some- 
times used a more elaborate procedure (method CaCP) where we 
multiplied each entry in the similarity matrix S, by a factor rep- 
resenting the relative orientation of the Ca-CP (or C = 0) bonds 
[specifically exp(cosA), where A is the angle between the corre- 
sponding bond  in each structure]. Taking into account side-chain 
orientation makes misalignments by one residue in helices and, 
especially, in strands more difficult. Misalignments by a single 
residue are not serious in terms of matching the overall fold  but 
give nonsensical alignments in detail. For instance, in  the case of 
strands they often lead to mismatching of hydrophobic and hydro- 
philic residues. 
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Fig. 7. Sample multiple alignments. This figure shows sample multiple 
alignments for  three protein families. Part (a) shows one for the dihydro- 
folate reductase (DHFR) family; part (b), for the globin family; and part 
(c), for two immunoglobulins. For each family, in turn, two separate mul- 
tiple alignments are shown: the one marked "hand" is a manually con- 
structed "gold standard" taken directly from the literature and the one 
marked "auto"  is automatically generated by our program. The hand align- 
ments were taken from Lesk and Chothia (1982) for the immunoglobulins, 
Gerstein et al. (1994) for the dihydrofolate reductases, and Lesk and Chothia 
(1980) for the globins. The hand and auto alignments were aligned as 
blocks so that there are the fewest possible mismatches between them. 
Mismatches are scored only in the core alignable regions, marked by a "*" 
character in the "core"  row. They are highlighted in the automatically 
generated alignment (by inverted text, changing case, and substituting "-" 
for "."). The DHFX alignment has one mismatch in total with dldhfa- as 
the central structure to which everything is aligned. The globin alignment 
has 18 mismatches with dlmbd- as the central structure. For the immu- 
noglobulins, a third alignment, beyond the hand and auto ones, marked 
"simp"  is also shown. This is a result of using the basic method (Ca). It 
clearly gets  the alignment wrong and a more complex method is necessary 
to get the correct alignment (Ca-Cp + var. gap).  See Figure 5 and the text 
for more details. 

Exposure  weighting 

Another useful modification was to increase the weight of the 
aligned residues buried inside the protein relative to those on 
the surface. This was achieved through the following procedure: 
the accessible surface area (Lee & Richards, 1971) of each residue 
was determined (considering an all atom model). These  areas (in 
square  Angstroms)  were used to assign weights W ( i )  to each res- 
idue i according to the  following scheme: 0.5 for the exposed 
residues (exposed area greater than 100 A2), 2.0 for the buried 
residues (exposed area less than 50 A*), and of 1 .O for the remain- 
ing residues. These weights were then used to modify the entries of 
the similarity matrix (S,) as follows: SG = W(i)W(j )Si j .  

Secondary structure-dependent gap penalties 

In the basic version of the method, the gap penalty is independent 
of gap size and normally taken to  be half the score contribution of 

C 
CORE 1 
HAND d 7 f a b 1 2  P K A A P S V T I . F P P S S E E L Q ~ K n T L V C L I S D F Y P G - - A ~ ~ - - - - - - - - - - - - - - - -  
HAND dlrela- ~ ~ ~ D I Q ~ S P S S L S A S V G D R ~ I ~ ~ Q D I - - - - I K - Q Q T P G ~ P K L L I Y E A S N L  

AUTO d 7 f a b 1 2  PKRRPSVTLFPPSSEELQa.TLVCLXSDFYPG .. A..D.....GSPV ....... 

AUTO d l re la -  ~ ~ ~ D I Q ~ S P S S L S A S V G D R V I ~ Q A S Q - - D I - - I K - Q Q T P G ~ P K ~ L I Y E A S N L  

S I M P   d 7 f a b 1 2  PKnaPsVTLFPPSSEELQANKATLVCLISDFYP G.. A..SP.. ........... 

S I M P  d l re la -  ~ D I Q ~ S S L S A : " - - S V G ~ A S Q D I I K ~ ~ P G K n - - - - P X L L I Y E A S  

-1. **.... e**.* 

AUTO 
AUTO 

d 7 f a b 1 2  
d l re la -  

a perfectly matched pair (i.e., M/2 = IO). Because of the similarity 
between our structural alignment procedure and normal sequence 
alignment, it is possible to incorporate more complicated variable, 
position-dependent gap penalties into the alignment in a very 
straightforward fashion. Because we know the secondary structure 
of the two proteins we are aligning (e.g., from DSSP, Kabsch & 
Sander, 1983; or stride, Frishman & Argos, 1995) we can make it 
more difficult to introduce a gap at a position in a secondary 
structure (i.e., strand or helix). This is similar to sequence align- 
ment methods that make the penalty for opening a gap depend on 
where it starts (Lesk et al., 1986; Smith & Smith,  1992; Vingron & 
Waterman, 1994). Other methods for structural alignment have 
also employed this approach (Zhu  et al., 1992). 

We derived specific values for the gap penalties by empirically 
testing them on a number of protein families. We found that as the 
gap opening penalty is decreased in secondary structure relative to 
that in loops and coils, one obviously increases the number of 
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Fig. 8. Median structure and multiple-alignment quality. This table shows the how the quality of a multiple structural alignment 
decreases as one moves away from using the median structure as a basis for the alignment. Two families of structures are shown: 
immunoglobulin VL domains (all$)  and globins (allha). For each family all possible pairwise alignments were done and then used to 
calculate the average distance (i.e., average RMS) between each structure and all the other structures. Because this distance will be 
smallest for structures near the cluster center, it can be  used to rank each structure in terms of its proximity to the cluster center. Next, 
a multiple alignment was automatically generated based on a aligning all the structures in the family to  a particular target structure. 
Every structure, in turn, was considered as the target. As described in the text, our automatically generated alignments were compared 
with manually generated “gold-standard’’ alignments, and the total number of comparisons and mismatches at  core positions were 
tabulated. As we consider target structures farther away from the “center of the structure cluster” (in the RMS sense discussed above) 
the number of mismatches increases. This is true for both the highly diverged globin alignment and the less-diverged immunoglobulin 
alignment. 

spurious gaps in strands and helices. This suggests that very high 
gap penalties in strands and helices might work well. However, we 
also found that such high gap penalties make it more difficult to 
align secondary structural elements (which often vary slightly in 
size); in fact, a penalty that is too high leads to completely mis- 
matching secondary structures. (For instance, instead of aligning 
two helices of slightly different size through introducing a gap into 
the longer helix, the program might introduce many gaps into a 
loop preceding one helix and align this helix against a loop and 
the second against the introduced gaps.) The specific values we 
chose  are a compromise between these two competing effects. We 
always set the gap extension penalty to be a small constant value 
(0.025 M). We arranged the gap opening penalties for each struc- 
ture into a vector a(k) ,  indexed by the sequence position i or j .  
Initially, the a(k)  values were set to 2 in sheets and helices, and 1, 
otherwise. a(k )  is then smoothed (by convolution with a Gaussian 
having weights 1,3,8,3,1) and re-scaled so that the overall average 
gap penalty (a@)) is half the maximum match score M. 

Refinements to the search 

When comparing structures of different size it was sometimes 
advantageous to split the larger structure into pieces. Here we used 
three pieces: the first half, the middle half, and the second half. 
Because each of the structures in the set of 941 scop  domains was 
only a single domain, this trimming was only used for 82 pairs out 

of the total of 2,107 (3.9%). Of these 82 comparisons, 50 lead to 
a successful match. For protein structures that have not been sep- 
arated into  domains, this splitting is most useful for structures with 
internal symmetry and duplication, such as calmodulin, and for 
structures that had a small strong similarity in the midst of larger 
overall similarity that was not as well defined. 

The best search strategy consisted of the following five steps: 
(1) use Cp atoms; (2) use Ca atoms; (3) use Cp atoms with 
exposure weights; (4) use Ca atoms with exposure weights; and 
( 5 )  try three-way splitting of the longer chain with Cp atoms and 
exposure weights. The search is stopped after any step that does 
not fail, where failure is defined as not being able to get an RMS’ 
score (defined in the results) less than 4 8. This strategy is some- 
what arbitrary, and other protocols give similar results (e.g., Ca 
atoms followed by Ca atoms with variable gap penalties, followed 
by Cp atoms). The important point is that starting from multiple 
starting points and using a variety of different definitions for the 
similarity matrix helped. Furthermore, although it  is true that the 
search strategy can be adjusted, once the parameters are chosen, 
the alignments are all generated automatically, and the results re- 
ported here are of a completely automated run. 

Elimination to determine a core structure 

After determining an alignment, we “refined’ the RMS by elimi- 
nating the worst fitting pairs of equivalenced atoms and then re- 
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fitting to get a new RMS, in a similar fashion to the core-finding 
procedure in Gerstein and Altman (1995a, 1995b). This refinement 
is necessary as the dynamic programming tries to match as many 
residues as possible (i.e., it is a global as opposed to a local 
method). In doing the elimination, we do not change the equiva- 
lences but merely eliminate those pairs with the worst individual 
deviation in atom position. 

The threshold for stopping the elimination is somewhat  arbi- 
trary. We tried a variety of approaches (absolute threshold, “throwing- 
out” a given fraction of the atoms, etc.). The scheme we settled on 
involves eliminating the pair of equivalenced atoms with the largest 
interatomic distances so long as the following criteria are satisfied: 
(i)  The chosen pair must be adjacent to a chain break (or chain ends), 
which ensures that the elimination procedure does not increase the 
number of gaps. (ii) The  pair to be eliminated has to have a sepa- 
ration d,, greater than 3.8 A, which is the distance between adjacent 
C a  atoms along the polypeptide chain. (iii)  Fewer than half the ini- 
tial pairs have been eliminated. (iv) There are more than 20 remain- 
ing pairs. (v) If there are  fewer than 50 matches, the RMS’ must 
exceed 4 A, which prevents the elimination procedure from gener- 
ating very short segments that match well. 

This elimination scheme performed well in that the lengths of 
matched regions ( N )  were not excessively shortened, while at the 
same time the RMS deviations were reduced considerably. That  is, 
the average RMS drops from 4.64 A to 2.66 A, while the average 
N drops only from 123 to 98. It is also interesting to note that for 
the 2,107 scop pairs, elimination was stopped 82% of the time for 
criteria (ii) (see above), 5% of the time for criteria (iii), 1% for (iv), 
and 12% for (v). 

Multiple structural alignment 

We formed multiple structural alignments by combining all pos- 
sible pairwise alignments for a given collection of structures. From 
all the pairwise alignments, we picked the structure that is on 
average closest to all other structures. This  is in a sense the “me- 
dian” structure within the “cluster” of all the structures. We then 
form a multiple alignment by aligning all the other structures to 
this median structure and consistently combining their alignments. 
Tests given show that aligning all the structures to non-median 
structures does not work as well (Fig. 8). 

This procedure is somewhat simpler than the usual approach to 
multiple alignment, for both sequences and structures (Thompson 
et al., 1994; Taylor et al., 1994; Gotoh, 1996; Gusfield, 1997), 
which proceeds by agglomerative clustering. Often this involves 
forming a consensus between the closest pairs and then using this 
in subsequent steps. We felt  our  simple approach was adequate for 
the task at hand, as none of our multiple alignments involved a 
large number of structures (i.e., not more than 15 and usually only 
around 4). However, it would probably not give optimum results 
on a much larger number of objects (>IO0 as  is often common in 
multiple sequence alignment). 

Comparison of multiple alignments 
(manual  versus automatic) 

We compared our automatically generated multiple alignments 
against manual ones by “aligning” them en bloc by dynamic pro- 
gramming so as to minimize the total mismatches. We only count 
mismatches in structurally conserved core regions, as other regions 
of the protein structure, particularly some surface loops, are im- 

possible to align correctly. Core regions are often explicitly indi- 
cated in the literature alignment. When this is the case, we used the 
literature definition. Otherwise, we used the elimination procedure 
described above and the somewhat more general strategies in Ger- 
stein and Altman (1995a) to automatically determine a core. 

Availability of results over the Internet 

We will make available over the Internet at the following URL 
alignments of the scop superfamilies plus a table of scores (e.g., 
RMS and N )  for each alignment: http://bioinfo.mbb.yale.edu/ 
Align. There are also plans to provide an alignment server to align 
two arbitrary input structures. 
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