Abstract
A comparison of the three-dimensional structures of the closely related mesophilic Clostridium beijerinckii alcohol dehydrogenase (CBADH) and the hyperthermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) suggested that extra proline residues in TBADH located in strategically important positions might contribute to the extreme thermal stability of TBADH. We used site-directed mutagenesis to replace eight complementary residue positions in CBADH, one residue at a time, with proline. All eight single-proline mutants and a double-proline mutant of CBADH were enzymatically active. The critical sites for increasing thermostability parameters in CBADH were Leu-316 and Ser-24, and to a lesser degree, Ala-347. Substituting proline for His-222, Leu-275, and Thr-149, however, reduced thermal stability parameters. Our results show that the thermal stability of the mesophilic CBADH can be moderately enhanced by substituting proline at strategic positions analogous to nonconserved prolines in the homologous thermophilic TBADH. The proline residues that appear to be crucial for the increased thermal stability of CBADH are located at a beta-turn and a terminating external loop in the polypeptide chain. Positioning proline at the N-caps of alpha-helices in CBADH led to adverse effects on thermostability, whereas single-proline mutations in other positions in the polypeptide had varying effects on thermal parameters. The finding presented here support the idea that at least two of the eight extra prolines in TBADH contribute to its thermal stability.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bogin O., Peretz M., Burstein Y. Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids. Protein Sci. 1997 Feb;6(2):450–458. doi: 10.1002/pro.5560060223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogin O., Peretz M., Burstein Y. Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids. Protein Sci. 1997 Feb;6(2):450–458. doi: 10.1002/pro.5560060223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. J., Gamblin S. J., Littlechild J. A., Watson H. C. The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. Proteins. 1993 Mar;15(3):283–289. doi: 10.1002/prot.340150306. [DOI] [PubMed] [Google Scholar]
- Delboni L. F., Mande S. C., Rentier-Delrue F., Mainfroid V., Turley S., Vellieux F. M., Martial J. A., Hol W. G. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions. Protein Sci. 1995 Dec;4(12):2594–2604. doi: 10.1002/pro.5560041217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy F., Vriend G., Veltman O. R., van der Vinne B., Venema G., Eijsink V. G. Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett. 1993 Feb 8;317(1-2):89–92. doi: 10.1016/0014-5793(93)81497-n. [DOI] [PubMed] [Google Scholar]
- Hennig M., Darimont B., Sterner R., Kirschner K., Jansonius J. N. 2.0 A structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability. Structure. 1995 Dec 15;3(12):1295–1306. doi: 10.1016/s0969-2126(01)00267-2. [DOI] [PubMed] [Google Scholar]
- Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
- Horovitz A., Serrano L., Avron B., Bycroft M., Fersht A. R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol. 1990 Dec 20;216(4):1031–1044. doi: 10.1016/S0022-2836(99)80018-7. [DOI] [PubMed] [Google Scholar]
- Ismaiel A. A., Zhu C. X., Colby G. D., Chen J. S. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol. 1993 Aug;175(16):5097–5105. doi: 10.1128/jb.175.16.5097-5105.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirino H., Aoki M., Aoshima M., Hayashi Y., Ohba M., Yamagishi A., Wakagi T., Oshima T. Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus. Eur J Biochem. 1994 Feb 15;220(1):275–281. doi: 10.1111/j.1432-1033.1994.tb18623.x. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lamed R. J., Zeikus J. G. Novel NADP-linked alcohol--aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem J. 1981 Apr 1;195(1):183–190. doi: 10.1042/bj1950183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
- Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
- Moriyama H., Onodera K., Sakurai M., Tanaka N., Kirino-Kagawa H., Oshima T., Katsube Y. The crystal structures of mutated 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8 and their relationship to the thermostability of the enzyme. J Biochem. 1995 Feb;117(2):408–413. doi: 10.1093/jb/117.2.408. [DOI] [PubMed] [Google Scholar]
- Nicholson H., Tronrud D. E., Becktel W. J., Matthews B. W. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme. Biopolymers. 1992 Nov;32(11):1431–1441. doi: 10.1002/bip.360321103. [DOI] [PubMed] [Google Scholar]
- Peretz M., Bogin O., Keinan E., Burstein Y. Stereospecificity of hydrogen transfer by the NADP-linked alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Int J Pept Protein Res. 1993 Nov;42(5):490–495. doi: 10.1111/j.1399-3011.1993.tb00159.x. [DOI] [PubMed] [Google Scholar]
- Peretz M., Bogin O., Tel-Or S., Cohen A., Li G., Chen J. S., Burstein Y. Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenases from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe. 1997 Aug;3(4):259–270. doi: 10.1006/anae.1997.0083. [DOI] [PubMed] [Google Scholar]
- Peretz M., Burstein Y. Amino acid sequence of alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Biochemistry. 1989 Aug 8;28(16):6549–6555. doi: 10.1021/bi00442a004. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Raidt H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature. 1975 May 15;255(5505):256–259. doi: 10.1038/255256a0. [DOI] [PubMed] [Google Scholar]
- Querol E., Perez-Pons J. A., Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Protein Eng. 1996 Mar;9(3):265–271. doi: 10.1093/protein/9.3.265. [DOI] [PubMed] [Google Scholar]
- Russell R. J., Taylor G. L. Engineering thermostability: lessons from thermophilic proteins. Curr Opin Biotechnol. 1995 Aug;6(4):370–374. doi: 10.1016/0958-1669(95)80064-6. [DOI] [PubMed] [Google Scholar]
- Tanner J. J., Hecht R. M., Krause K. L. Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution. Biochemistry. 1996 Feb 27;35(8):2597–2609. doi: 10.1021/bi951988q. [DOI] [PubMed] [Google Scholar]
- Tomschy A., Böhm G., Jaenicke R. The effect of ion pairs on the thermal stability of D-glyceraldehyde 3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Protein Eng. 1994 Dec;7(12):1471–1478. doi: 10.1093/protein/7.12.1471. [DOI] [PubMed] [Google Scholar]
- Vogt G., Woell S., Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol. 1997 Jun 20;269(4):631–643. doi: 10.1006/jmbi.1997.1042. [DOI] [PubMed] [Google Scholar]
- Walker J. E., Wonacott A. J., Harris J. I. Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1980 Jul;108(2):581–586. doi: 10.1111/j.1432-1033.1980.tb04753.x. [DOI] [PubMed] [Google Scholar]
- Warren G. L., Petsko G. A. Composition analysis of alpha-helices in thermophilic organisms. Protein Eng. 1995 Sep;8(9):905–913. doi: 10.1093/protein/8.9.905. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Chishiro K., Kitamura K., Suzuki Y. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006. J Biol Chem. 1991 Dec 25;266(36):24287–24294. [PubMed] [Google Scholar]
- Watanabe K., Hata Y., Kizaki H., Katsube Y., Suzuki Y. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol. 1997 May 30;269(1):142–153. doi: 10.1006/jmbi.1997.1018. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Kitamura K., Suzuki Y. Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues. Appl Environ Microbiol. 1996 Jun;62(6):2066–2073. doi: 10.1128/aem.62.6.2066-2073.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe K., Masuda T., Ohashi H., Mihara H., Suzuki Y. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. Eur J Biochem. 1994 Dec 1;226(2):277–283. doi: 10.1111/j.1432-1033.1994.tb20051.x. [DOI] [PubMed] [Google Scholar]
- Yip K. S., Stillman T. J., Britton K. L., Artymiuk P. J., Baker P. J., Sedelnikova S. E., Engel P. C., Pasquo A., Chiaraluce R., Consalvi V. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure. 1995 Nov 15;3(11):1147–1158. doi: 10.1016/s0969-2126(01)00251-9. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Djebli A., Shoham M., Frolow F., Peretz M., Burstein Y. Crystal parameters of an alcohol dehydrogenase from the extreme thermophile Thermoanaerobium brockii. J Mol Biol. 1993 Mar 5;230(1):353–355. doi: 10.1006/jmbi.1993.1149. [DOI] [PubMed] [Google Scholar]