Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jun;7(6):1415–1422. doi: 10.1002/pro.5560070618

Design, total synthesis, and functional overexpression of the Candida rugosa lip1 gene coding for a major industrial lipase.

S Brocca 1, C Schmidt-Dannert 1, M Lotti 1, L Alberghina 1, R D Schmid 1
PMCID: PMC2144025  PMID: 9655346

Abstract

The dimorphic yeast Candida rugosa has an unusual codon usage that hampers the functional expression of genes derived from this yeast in a conventional heterologous host. Commercial samples of C. rugosa lipase (CRL) are widely used in industry, but contain several different isoforms encoded by the lip gene family, among which the isoform encoded by the gene lip1 is the most prominent. In a first laborious attempt, the lip1 gene was systematically modified by site-directed mutagenesis to gain functional expression in Saccharomyces cerevisiae. As alternative approach, the gene (1647 bp) was completely synthesized with an optimized nucleotide sequence in terms of heterologous expression in yeast and simplified genetic manipulation. The synthetic gene was functionally expressed in both hosts S. cerevisiae and Pichia pastoris, and the effect of heterologous leader sequences on expression and secretion was investigated. In particular, using P. pastoris cells, the synthetic gene was functionally overexpressed, allowing for the first time to produce recombinant Lipl of high purity at a level of 150 U/mL culture medium. The physicochemical and catalytic properties of the recombinant lipase were compared with those of a commercial, nonrecombinant C. rugosa lipase preparation containing lipase isoforms.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belev T. N., Singh M., McCarthy J. E. A fully modular vector system for the optimization of gene expression in Escherichia coli. Plasmid. 1991 Sep;26(2):147–150. doi: 10.1016/0147-619x(91)90056-3. [DOI] [PubMed] [Google Scholar]
  2. Brake A. J., Merryweather J. P., Coit D. G., Heberlein U. A., Masiarz F. R., Mullenbach G. T., Urdea M. S., Valenzuela P., Barr P. J. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4642–4646. doi: 10.1073/pnas.81.15.4642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buckholz R. G., Gleeson M. A. Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y) 1991 Nov;9(11):1067–1072. doi: 10.1038/nbt1191-1067. [DOI] [PubMed] [Google Scholar]
  4. Clare J. J., Rayment F. B., Ballantine S. P., Sreekrishna K., Romanos M. A. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (N Y) 1991 May;9(5):455–460. doi: 10.1038/nbt0591-455. [DOI] [PubMed] [Google Scholar]
  5. Clare J. J., Romanos M. A., Rayment F. B., Rowedder J. E., Smith M. A., Payne M. M., Sreekrishna K., Henwood C. A. Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene. 1991 Sep 15;105(2):205–212. doi: 10.1016/0378-1119(91)90152-2. [DOI] [PubMed] [Google Scholar]
  6. Cygler M., Schrag J. D., Sussman J. L., Harel M., Silman I., Gentry M. K., Doctor B. P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993 Mar;2(3):366–382. doi: 10.1002/pro.5560020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B., Cygler M. Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem. 1993 Jun 15;268(17):12843–12847. [PubMed] [Google Scholar]
  8. Hernáiz M. J., Rua M., Celda B., Medina P., Sinisterra J. V., Sánchez-Montero J. M. Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers. Appl Biochem Biotechnol. 1994 Mar;44(3):213–229. doi: 10.1007/BF02779658. [DOI] [PubMed] [Google Scholar]
  9. Kawaguchi Y., Honda H., Taniguchi-Morimura J., Iwasaki S. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature. 1989 Sep 14;341(6238):164–166. doi: 10.1038/341164a0. [DOI] [PubMed] [Google Scholar]
  10. Longhi S., Fusetti F., Grandori R., Lotti M., Vanoni M., Alberghina L. Cloning and nucleotide sequences of two lipase genes from Candida cylindracea. Biochim Biophys Acta. 1992 Jun 15;1131(2):227–232. doi: 10.1016/0167-4781(92)90085-e. [DOI] [PubMed] [Google Scholar]
  11. Paifer E., Margolles E., Cremata J., Montesino R., Herrera L., Delgado J. M. Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast. 1994 Nov;10(11):1415–1419. doi: 10.1002/yea.320101104. [DOI] [PubMed] [Google Scholar]
  12. Schmidt-Dannert C., Rúa M. L., Atomi H., Schmid R. D. Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta. 1996 May 31;1301(1-2):105–114. doi: 10.1016/0005-2760(96)00027-6. [DOI] [PubMed] [Google Scholar]
  13. Sharp P. M., Cowe E., Higgins D. G., Shields D. C., Wolfe K. H., Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 1988 Sep 12;16(17):8207–8211. doi: 10.1093/nar/16.17.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES