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Abstract 

Several fold recognition algorithms are compared to each other in terms of prediction accuracy and significance. It is 
shown that on standard benchmarks, hybrid methods, which combine scoring based on sequence-sequence and sequence- 
structure matching, surpass both sequence and threading methods in the number of accurate predictions. However, the 
sequence similarity contributes most to the prediction accuracy. This strongly argues that most examples of apparently 
nonhomologous proteins with similar folds  are actually related by evolution. While disappointing from the perspective 
of the fundamental understanding of protein folding, this adds a new significance to fold recognition methods as a 
possible first step  in function prediction. 

Despite hybrid methods  being more accurate at fold prediction than either the sequence or threading methods, each 
of the methods is correct in some  cases where others have failed. This partly reflects a different perspective on 
sequence/structure relationship embedded in various methods. To combine predictions from different methods, esti- 
mates of significance of predictions are made for all methods. With the help of such estimates, it  is possible to develop 
a “jury” method, which has accuracy higher than any of the single methods. Finally, building full three-dimensional 
models for all top predictions helps to eliminate possible false positives where alignments, which are optimal in the 
one-dimensional sequences, lead to unsolvable sterical conflicts for the full three-dimensional models. 
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The protein-folding problem, Le., the question of predicting the 
structure of a protein from its amino acid sequence, is  one of 
the most important unsolved problems of molecular biology. Over 
the last 40 years,  the efforts of X-ray crystallographers and,  more 
recently, NMR spectroscopists,  yielded  thousands of atomic- 
resolution protein structures. These structures, for the most part 
available in public databases, form a rich source of knowledge that 
can be analyzed in search of empirical rules of protein folding. The 
most powerful rule discovered so far  is that proteins with similar 
sequences  have similar structures and often their functions are 
related. Another interesting observation was made with the increas- 
ing number of experimentally known protein structures. Numerous 
examples of protein pairs or groups without any recognizable se- 
quence similarity but with remarkable structural similarity have 
been found. The  existence of such groups was, at first, treated as 
mere curiosity, but as their number grew quickly (Pascarella & 
Argos, 1992;  Orengo  et al., 1993), it was soon accepted as a new 
paradigm in protein structure analysis. Is this really a new obser- 
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vation or merely an extension of the “similar sequence-similar 
structure” rule, but with a new definition of sequence similarity, 
which goes beyond a traditional letter-by-letter comparison of 
sequences? 

This question touches on an important problem: are proteins 
such as these related by evolution (i.e., homologous) or not? Are 
our sequence-based similarity searches simply not sensitive enough 
to detect very distant homologies? For many such protein groups, 
there  are hints of distant evolutionary relationships, such as some 
analogy between their functions or limited sequence similarity in 
the important regions of the protein (Babbitt  et al., 1995). For other 
groups of proteins with the same  fold, there are  no  obvious rela- 
tions between their function or any other observations that could 
be used to argue for their homology. The  example of a globin-like 
fold of bacterial toxin colicin comes to mind (Holm & Sander, 
1993). The  existence of such protein groups can be used to ad- 
vance a theory that the universe of protein structures, in fact, may 
be limited (Finkelstein & Ptitsyn, 1987; Chothia, 1992) and pro- 
teins end  up having similar folds simply by having to choose from 
a limited set of possibilities. 

The difference between these two possibilities is very important 
for practical reason, as  it  determines the optimal choices for im- 
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proving fold prediction strategies. Different tools might be needed 
to recognize proteins from extended homologous families or from 
nonhomologous but structurally converging protein groups. The 
first choice would call for the enhancement of tools of standard 
sequence analysis. For instance, multiple alignments could be used 
to create “profiles” where invariant positions are weighted more 
strongly than the positions with a large variation within the family 
of related proteins (Gribskov et al., 1987). 

On the other side, methods where a compatibility between a 
sequence and a structure is calculated using energy potentials 
(Finkelstein & Reva, 1990; Godzik et al., 1992; Jones et al., 1992; 
Maiorov & Crippen, 1992; Sippl & Weitckus, 1992; Bryant & 
Lawrence, 1993; Ouzounis et al., 1993) disregard the question of 
the evolutionary relation between proteins, focusing instead on the 
fact that two different sequences might have the global energy 
minimum in the same area of the conformational space. The main 
idea behind such methods can be compared to a grid search, where 
a free energy surface for a new protein sequence is tested at a 
number of points in anticipation that one of these points would fall 
close to the actual minimum. The goal is to predict a structure that 
is likely to be adopted by the sequence being studied, avoiding 
pitfalls of ab initio folding simulations such as long simulation 
times or the necessity to explore conformations that are unlikely to 
be seen in folded proteins. To allow for scanning of large structural 
databases within a reasonable length of time, algorithms are  opti- 
mized for speed, paying the price by using an extremely simplified 
description of a protein structure. Various groups developed sev- 
eral different fitness functions and algorithms. 

The important point here is that one group of methods seeks to 
enhance the underlying sequence similarity and, thus, it directly 
strives to search for very distant homologues. The second group of 
methods searches for compatibility between the structure and the 
sequence and, thus, disregards a possible evolutionary relationship 
between the proteins. Of course, the algorithms from two groups 
often converge and  end up being formally equivalent, despite using 
vastly different nomenclature and ideology. For instance, three- 
dimensional profiles of Bowie et al. (Bowie et al., 1991) are for- 
mally equivalent to the “frozen approximation” of the topology 
fingerprint method of Godzik et  al. (Godzik et al., 1992). In each 
case, a position dependent mutation matrix is created and used in 
the dynamic programming alignment. For three-dimensional pro- 
files, it is  done based on the classification of environments of each 
position into several classes (Bowie et al., 1991). In the latter 
method, it is  done by calculating the energy of each possible mu- 
tation by summing up interactions at each position (Godzik et al., 
1992). In addition, some potential energy parameters used in 
sequence-structure recognition methods contain a strong sequence- 
sequence similarity component by being based on the same amino 
acid features that dominate mutation matrices. For instance, hy- 
drophobicity is a main component in both mutation matrices (Tomii 
& Kanehisa, 1996) and some interaction parameter sets (Godzik 
et al., 1995). Finally, some similarities between methods from the 
two groups might happen despite the authors’ intentions, for in- 
stance, when potential energy parameters contain a strong “se- 
quence memory” by including  contributions  from  amino acid 
composition or size (Godzik et al., 1998). There are also methods 
that explicitly combine elements of both approaches, such as  en- 
hancing sequence similarity by residue burial status (Bowie  et al., 
1990), secondary structure (Luethy et al., 1991), or a generalized 
“interaction environment” (Bowie et al., 1991). The new genera- 
tion of algorithms that follow these ideas are still being developed 

(Yi & Lander, 1994; Fischer & Eisenberg, 1996; Rice & Eisen- 
berg, 1997). 

It is very likely that examples of both types of structural simi- 
larity are present in nature. Therefore, both types of methods might 
be useful, each for a different type of target/template relationship. 
In the present contribution, we will compare structure prediction 
methods based solely on sequence similarity, structure/sequence 
compatibility and hybrid methods, mixing these two types of con- 
tributions. At the same time, we address the question of the pre- 
diction significance. This problem was extensively studied in the 
context of the sequence similarity between two proteins (Karlin & 
Altschul, 1990; Waterman, 1995), but it is still not completely 
understood, and the calculations of significance of threading pre- 
dictions are still in their infancy (Bryant & Altschul, 1995). The 
problem of prediction reliability has a very practical aspect, be- 
cause, as discussed above, we can expect  at least two types of 
structural similarity and it is very likely that different algorithms 
have to be used in different cases. The reliable significance esti- 
mate would allow  combining  predictions  done with different 
algorithms. 

The question of homology between proteins with similar struc- 
tures is also very important from the viewpoint of the possible 
applications of fold recognition algorithms. In the “distant homol- 
ogy” paradigm, establishing structural similarity opens the way to 
functional predictions, since even the most distant homologues 
share some level of functional similarity. On the other hand, in the 
“random structural similarity” paradigm, such predictions could be 
much more difficult. 

This paper is organized as follows. In the first part of the Results 
section, prediction accuracy for different fold recognition algo- 
rithms is compared for several extensive benchmarks, including 
the set of Critical Assignment of Structural Predictions Meeting, 
Asilomar 1996, targets. Different methods are compared not only 
on the overall prediction accuracy, but also on a case-by-case 
basis. Prediction reliability estimates are used to create a “jury” 
method, which achieves an accuracy higher than any of the indi- 
vidual methods. Modeling of the best scoring templates is used as 
a final validation tool in the last part of this section. Possible 
applications as well as insights into the homology vs. random 
similarity question are discussed later in the paper. All methods, 
databases, and benchmarks are described in Methods at the end of 
the paper. 

Results 

The ultimate test of fold recognition methods is the prediction of 
the folds of new proteins when only their sequences are known and 
before any structural information is available. There are hundreds 
of thousands of proteins with known sequences, but without any 
information about structures that are potential targets of fold rec- 
ognition. Unfortunately, at any given time, only some are of in- 
terest to a wider group of researchers. For this reason, it  is difficult 
to test fold prediction methods in a unbiased fashion. Two recent 
CASP (Critical Assessment of Techniques for Proteins Structure 
Predictions) meetings addressed this  issue by soliciting informa- 
tion about structures, which are already solved but still not publicly 
known, and then inviting groups developing prediction algorithms 
to test them on these examples. However, such meetings happen 
too infrequently to be used as the only means of testing and val- 
idation of new algorithms. Therefore, the fold recognition methods 
presented in this paper are tested on four benchmarks: two created 
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at the UCLA-DOE Laboratory of Structural Biology, a set of CASE 
targets, and our own “in-house” benchmark. Predictions using the 
topology fingerprint threading algorithm (Godzik et al., 1992) were 
presented at both CASP meetings and also will be discussed here. 
Other methods presented here were developed after the CASP2 
meeting and, therefore, the results presented in Table 1 do not 
represent a genuine prediction. 

Each benchmark consists of a set of proteins whose structure is 
to be predicted. We call them prediction targets. For each predic- 
tion target, its  sequence  is matched against a large number of 
proteins with known structures, representing all currently known 
protein folds. These proteins are potential modeling templates, the 
structures of which could be used to make a detailed prediction of 
the target structure. The goal of the fold recognition algorithm is to 
identify the most appropriate template protein. For each of the 
methods presented here, the identification is made on the basis of 
the alignment score  as compared to the distribution of scores  for 
the entire template database. In a benchmark, the real structure of 
prediction targets is known. Therefore, the quality of a given pre- 
diction method can be measured by a number of targets for which 
the template chosen by the algorithm was indeed similar to its real 
structure. For a comparison, a set of newly developed methods is 
compared to the  topology  fingerprint-based  threading method 
(Godzik et al., 1992). The fold prediction WEB  site maintained at 
UCLA-DOE (UCLA, 1996) provides information about the pre- 
diction accuracy of several algorithms developed at UCLA, and a 
number of current and forthcoming publications discusses the per- 
formance of several methods on the set of CASP2 prediction targets. 
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The four benchmarks discussed above  are used to compare the 
performance of several fold recognition algorithms. The algo- 
rithms can be divided into three broad groups, depending on the 
type of information used to assign a score to matches between 
positions in the template and the target protein: 

sequence information for both the target and the template, 
sequence information for the target and structural information 
for the template, and 
structural information for both the target and the template. 
Such information is  either known from the experiment (for the 
template) or predicted (for the target). 

Specific energy terms are discussed in Methods as well as in 
footnote a to Table 1 and in the following discussion. 

The results presented in Table 1 were calculated with parameters 
of various methods optimized for the number of correct predictions 
on  the UCLA#I benchmark or for the Scripps benchmark (thread- 
ing). Results for the benchmarks used to optimize parameters are 
identified in bold to stress the fact that these numbers could not be 
treated as an indication of the given method’s accuracy. As dis- 
cussed later, this type of memorization effect is quite strong and if 
the parameters are optimized and tested on  the same benchmark, it 
can give misleading indications about the prediction accuracy of 
the fold prediction algorithms. 

The first observation that can be made from the data presented 
in Table 1 is that even though the benchmarks were constructed 
specifically to include only proteins without obvious sequence 

Table 1. The comparison of several types of fold prediction  methods on four different  benchmarks a 

Benchmark  UCLA#I  UCLA#2 CASP2 scripps 
number  of targets 68 28 1 25 

Methods  using  only sequence BLAST 21/30/33 8/10/10 1/2/2 - 5/6/7 
Sequence 40/50/52 9/13/16 2/5/7 12/16/18 

Burial 
r14 

11/23/29 5/14/15 0/0/2  5/15/18 
16/26/30 4/6/ 1 0 0/2/2 9/11/11 

Methods  using  only  target structure 2b interactions 4/91 1 7 I/l /S O/O/Q 1 /3/5 
Burial+rl4+2h 33/41/52 8/19/19 0/3/3 9/11/21 
Secondary str. 2 1/34/42 9/16/20 . ~. - O / W  13/20/20 
ss+burid+rl4+2b 36/47/51 12/19/21 1 /3/4 11/21/24 

s+r14 43/50/57 12/16/18 3/4/4 9/19/19 

Hybrid  methods,  using  both sequence s+burial 46/50/57 11/14/18 3/4/6 13/19/20 
and structure contributions s+int 43/50/53 9/12/16 1/2/4 14/19/20 

s+burial+rl4 48/53/56 15/19/21 4/4/4 12/11/20 
s+burial+rl4+2b 50/54/55 13/19/19 4/4/5 14/20/20 

s+ss+burid+rl4 54/58/60 14/20/21 4/6/6 1 6/21 /22 
s+ss 49/55/56 16/19/20 3/4/4  15/22/22 

Topology fingerprint threading 22/30/34  8/12/11  2/3/3 10/14/15 

“Methods are identified by the  type  of scoring function  used  to evaluate the similarity between a target  sequence  and a template 
sequence/profile, see text  and  Methods for details. Prediction  accuracy  is  described by three  numbers:  the  number  of correct templates 
at  the first position, within  top 5 or  within  top IO, respectively.  The abbreviations: s, sequence; ss. secondary structure; 2b.  two-body 
interaction  preferences:  r14, local structure preferences. See Methods for more detailed discussion of  all  energy  terms.  Threading  was 
done with  the  topology fingerprint method (Godzik et  al..  1992).  The  results for methods  used  later in Figures 1 and 4 are highlighted. 
The predictions  were  made  based  on  the p-value as compared to the distribution of scores in the entire structural database (in the 
database of  known structures). Numbers in bold identify results  that  were  obtained  with parameters optimized on this particular set. 
Note  that  for  the sequence based  scoring.  independently optimized parameters were  used. Threading predictions for CASP2  targets 
were submitted to  the  CASP2 conference All other results were  obtained  when  the correct answer was  known;  therefore,  they do not 
represent genuine predictions. 
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similarities, methods using only sequence information perform very 
well. Even the BLAST (Altschul et al., 1990) search correctly 
recognizes 27 targets from the  UCLA#l benchmark. The “se- 
quence only” alignment using the  dynamic programming algo- 
rithm correctly recognizes 40 prediction targets in  this benchmark. 
This is more than the best recognition method that does not use the 
sequence information (ss+burial+rl4+2b in Table 1). There is 
only one benchmark (UCLA#2) where the no-sequence scoring 
method is better than the sequence-only one. It is also interesting 
to note that many of these predictions, while being correct, would 
be judged  as statistically insignificant by most of the standard 
sequence comparison algorithms that use distribution of random- 
ized scores to assess score significance (Waterman & Vingron, 
1 994). 

Methods using structural information about the template, but not 
its sequence, are not very powerful fold predictors on their own, 
but the information carried by these contributions is  often inde- 
pendent from that of sequence comparison. As shown in Figure 1, 
out of the 40 and 36 targets correctly predicted by the sequence- 
based or structure-only-based scoring method, respectively, only 23 
are recognized simultaneously by both methods. This observation 
explains why hybrid methods,  combining both types of informa- 
tion, tend to perform better than either sequence only or no-sequence 
methods alone. 

From the local structure-based scoring contributions, following 
energy terms contribute to the fold recognition in the descending 
order of importance: 

Predicted secondary structure (ss in Table 1). 
Preference for the template local backbone conformation as 
described by distances between Ca atoms separated by three 
bonds  (r14 in Table 1). 
Burial preferences (burial in Table 1) .  
Two-body side-chain interaction preferences (2b in Table 1). 

The last contribution is by far the weakest, and in a hybrid 
scoring system that adds together all possible contributions, two- 
body interaction preferences do not add any new information. This 
might be explained by the  use of “frozen approximation” where, in 
order to use  dynamic  programming  alignment  algorithm,  this 
nonlocal contribution was made local by “freezing” interaction 
partners to that in the template protein (Godzik et al., 1992). It was 
shown recently that the average energy contribution from two- 
body interactions calculated this way is essentially random (Zhang 
et al., 1997). Consistent with these observations, threading predic- 
tions based solely on template structural information are much 
worse than the sequence-based predictions, and even worse than 
the newly optimized scoring systems based on local structural 
information (burial+rl4+2body and ss+burial+rl4+2body in 
Table 1).  This last result is probably due to the poor optimization 
of the parameters of the threading algorithm, which was done 
using a very small number of examples known at that time. 
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Combining sequential and structural information significantly 
improves the prediction accuracy. Tbo types of additional scoring 
terms, namely sequence-structure one based on energy potentials 
and structure-structure one based on predicted structural informa- 
tion about the target, add a comparable number of correctly pre- 
dicted targets. However, detailed analysis of the significance of 
various contributions must be done with some caution. As dis- 
cussed earlier, all parameters were optimized on one of the bench- 
marks (UCLA#l) and subsequently used for  other benchmarks. 
Since correct answers are known during optimization, this offers 
an indirect way of memorization of the results. This memorization 
allows some types of scoring to be “overoptimized’ for a given 
benchmark, thus giving a misleadingly high prediction accuracy 
and obscuring general trends. Although the number of parameters 
is relatively small as compared to the number of proteins in each 
benchmark, the memorization effect is quite significant, as illus- 
trated in Table 2. 

The memorization effect is smaller for simpler methods with a 
smaller number of parameters, but it is still surprisingly large. 
Even for methods with only three parameters (gap opening, gap 
extension, and the zero of the scoring function), the number of 
correct predictions can change substantially from  one parameter 
set to another. 

Figure 1 illustrates another interesting observation in that de- 
spite the “hybrid method’ being much better than others, each 
method has some targets for which only that particular method 
recognized the right template, while other methods fail. For in- 
stance, there are three protein pairs that can be identified at the first 
position by a method that does not use sequence information, but 
are not seen in the first ten scores when this information is added. 

Subsequently, the number of targets predicted correctly by at 
least one method is larger than such a number for the best method. 
For instance, for the UCLA#l benchmark, the best method recog- 
nizes 54 targets on the first position, 57 in the first 5 and 59 in the 
first 10. Taking the best results from all methods, this could be 
improved to 58/61/64. The same observation applies to other bench- 
marks, where for UCLA#2, CASP2, and SCRIPPS benchmarks, 
respectively 20, 5, and 21 targets were predicted at the first posi- 
tion by at least one method. The interesting question that arises at 
this point is how to create a “super” method, which would combine 
the best prediction from different algorithms. 

We will explore two possible solutions to this problem. The first 
involves calculating the significance measure of a prediction and 
combining predictions with higher Significance. The second ap- 
proach studies alignments in the context of a template structure, 
trying to determine if alignments could lead to realistic models. 

Prediction significance 

Table 1 summarizes the information about the number of correct 
predictions, but does not tell us about the reliability of the predic- 

s+ss+burial+rll 54 1111111111111111111111111111111111*11311191114*11*11113*11181*1**16* 

sequence 40 11111111111111111111121111111*1111~1156*141**4*1**11*17*12********** 

ss+burial+rll 36 11151131111*521*1151111***2111**11*31*1*1~111**41~1****~211~1*3*~1~* 

Fig. 1. Comparison between case-by-case prediction accuracy of different fold prediction algorithms for the UCLA#I benchmark. The 
first number gives the overall accuracy of a given method, equal  to the first number in Table 1. Next, the line of single digit numbers 
from 1-9 gives the position of the correct answer, * means that the correct answer was not in the top 9 scores. 
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Table 2. The comparison of several types of fold prediction 
methods with difSerent gap penalties a 

Benchmark UCLA#I UCLA#2 scripps 
~ ~ ~ ~ ~ ~ 

Number of targets 
~~~ 

68 28 25 
40/50/52 9/13/16 12/16/18 

Sequence 

Local 

42/50/50 9/13/16 12/15/16 
38/47/50 7/14/15 14/18/20 
40/49/50 11/14/15 11/19/19 
36/47/51 12/19/21 11/21/24 

35/45/48 13/16/18 15/23/24 
34/46/48 15/19/20 13/20/22 
54/58/60 14/20/21 16/21/22 

s+ss+burial+rl4+int 45/55/57  15/21/22 21/23/23 
50/53/56 18/21/23 15/22/22 

aAs before, results obtained with parameters optimized on  a given bench- 
mark are identified in bold. Prediction accuracy is described by three 
numbers, the number of correct templates at the first position, within top 5 
or within top 10, respectively. 

tion. Following tradition in sequence homology searches (and com- 
mon sense), prediction reliability could be defined as related to the 
probability that a given sequence/template score would be ob- 
tained by chance by comparing unrelated sequences. In particular, 
in subsequent figures and tables we define a significance for a 
given target-template match as the inverse of the probability that 
the score for that template is a part of the distribution of scores 
between unrelated proteins. 

The distribution of sequence similarity scores between random 
sequences follows the extreme value distribution (Waterman, 1995) 
described by Equation 1 in  Methods.  As illustrated in Figure 2, for 
an example from the UCLA#l benchmark, the score distributions 
for the sequence, local, and combined scores could be well de- 
scribed by the  extreme value distribution, with the possible excep- 
tion of the unexpectedly long tail of unfavorable scores. To avoid 
the bias from these high scoring proteins, only central 80% of 
scores are used to fit the parameters of the distribution. There are 
some anecdotal observations that for scorings based solely on local 
structure information the score distribution might have two max- 
ima,  describing scores of different structural classes (see Fig. 2). 
Unfortunately, because of the random fluctuations caused by the 
small number of templates in the protein structure database (ca. 
400). it  is not easy to determine exactly what distribution is fol- 
lowed by scores obtained in the calculations described here. For 
instance, it is possible to fit both the Gaussian and the extreme 
value distributions to the actual  score distributions. With such a 
small number of samples, the difference between these  two distri- 
butions is  not statistically significant. However, the significance 
calculated with the extreme value distribution is much more reli- 
able  and, in particular, the significance calculated from the Gauss- 
ian distribution tends to create a lot of false positives-apparently 
high reliability scores that turn out to  be false (results not shown). 
An example of this can be seen in  Figure 2A, where the score for 
the best scoring (flase) template  has a Z-score of 3.5, but a p-value 
of only 0.25. 

For each of the targets, Equation 1 was used to calculate the 
distribution of scores in the entire database and the corresponding 
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Fig. 2. The  example of the distribution of scores  for the local (i.e., 
ss+burial+rl4+2b) sequence and the hybrid scoring methods. The distri- 
bution of scores for the 2fbjL target is shown for sequence (A), local (B), 
and the hybrid scoring (C), respectively. 

significance of the best score. Figure 3 shows the significance 
(calculated as the inverse of the probability that the best score 
could be obtained by chance) against the relative position of the 
correct template. As seen in this figure, the significance of the best 
score could be used as a very good indicator of the prediction 
accuracy. For all three scoring systems, there are no false positives 
with probabilities below 0.05. Thus, 33 (out of 54), 22 (out of 40), 
and 16 (out of 36) targets can be predicted with high confidence. 
Using the same reliability criteria, there are no false positives in all 
other benchmarks. However, the number of reliable predictions is 
much smaller than the number of correct predictions and, in this 
sense, the high prediction accuracy reported in Table 1 and Fig- 
ure 1 is rather misleading. At the  same time, reliability calculations 
explain the results shown in Table 2, because the differences in 
results obtained with different parameters happens exclusively for 
marginally significant predictions, where the correct answer closely 
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Fig. 3. For  each of the 68 prediction targets in the UCLA#l benchmark, the relative position of the correct template is shown as the 
function of the inverse of the probability that the score of the best template could be obtained by chance. 

competes with wrong answers. The  more accurate picture of ac- 
curacy of different prediction methods is shown in Figure 4. 

In comparing Figures 1 and 4,  it  is interesting to note that in a 
number of cases, although none of the methods produces a reliable 
prediction, different methods give consistently correct answers. 
This enables us to build a "jury" prediction method where the 
prediction is made when two methods agree or if one of the three 
different predictions has high reliability. Such a jury method is 
correct in 55 cases, wrong in 3, and unable to make a prediction in 
10 cases. It is encouraging to note that in all three cases where the 
jury method is wrong, there  are quite significant similarities be- 
tween target structures and a wrong template chosen by the pre- 
diction algorithm. For instance, 2rhe is chosen as a template for 
lten-both structures share  the same P-barrel Greek key topology. 
In this case, the 2rhe template should probably be included as a 
correct prediction in the benchmark. Two other errors are more 
severe when spectrin is  chosen  as a prediction for a five-helical 
bundle structure of apo-lipophorin (laep) and actinoxantin is cho- 
sen as a prediction for a viral protease 2snv. In both cases despite 
a different overall topology, there is a high similarity in the num- 
ber, type, and location of secondary structure elements. 

Alignment analysis 

Sequences or property profiles are treated as a one-dimensional 
object by the alignment algorithms when, in fact, they represent 
three-dimensional protein structures. Therefore, it is possible for 

the alignment procedure to introduce gaps or deletions resulting in 
structure fragments that cannot form a continuous model in three- 
dimensional space. For instance, a gap in the alignment might 
result in  two consecutive (in the target sequence) residues being 
separated by a long distance in the template structure. On the other 
hand, an insertion in the target sequence that happens in the core 
of the template will be difficult to accommodate, leading to severe 
steric overlaps. Unfortunately, such constraints could not be di- 
rectly incorporated into the dynamic programming, but there were 
many attempts to introduce them indirectly into the alignment 
procedure. A variable gap penalty, large in the middle of secondary 
structure elements and smaller in the loops, is often introduced to 
mimic insertions/deletions patterns in real structures. When com- 
pared for prediction accuracy, such as presented in Table 1,  vari- 
able gap alignments did not improve the fold prediction; on average, 
they were actually less accurate (results not shown). 

For the UCLA#I benchmark, alignments between the best scor- 
ing pairs for each of the three alignment methods shown in Fig- 
ure 1 were prepared for  the ten cases where the jury method could 
not make a prediction (see Fig. 4). At first, alignments were ana- 
lyzed for breaks and overlaps in the model, as discussed above 
(columns "b" and "0" in Table 3, see Methods for details). In a 
second step, the alignments were used to produce three-dimensional 
models of the target by an automated modeling procedure (Sali, 
1994; Pawlowski et al., 1997). As implemented, the modeling step 
mostly addressed the question of whether the models were possible 
to build at all. In each of the ten cases, the goal was to distinguish 

s+ss+local 33 11111111111?11111771111??1?1117117771?111717??7?77?117?7?777???7???? 

sequence 2 2  11111?11111~??71177711?~?7?117????~?17??171?????7??????7?7????????7? 

ss+local 16 111?1??11117??7?7?7?11?????1117???7??7??171???7?7??7???7??77??7?~??? 

jury 55 1111111111111111111111111111111111111w111?1117w1171111?7111?1w?711?7 

Fig. 4. Comparison between case-by-case prediction accuracy of different fold prediction algorithms for the UCLA#l benchmark with 
predictions weighted by their significance. The first number gives the overall accuracy of a given method. A jury prediction is a 
prediction where two methods agree or one of the predictions has high (p-value less than 0.05) significance. A question mark means 
that no prediction could be made-highest score had low significance or all methods disagreed. w means a wrong prediction. 
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Table 3. Modeling of the  ten cases where  the jury method was not able to make  the predictiona 

Sequence scoring Local scoring Hybrid  scoring 

b o  en b 0 en B 0 en 

IbgeB IgplA 8  20 -17.7 lhuw I 2 -28.8 lmbc 2 24 -48.0 
lcewl 2wrpR 2 22 -1.5 ZsarA - 44 -13.8 lmolA 4 - - 1.8 
lcid 2ms2A 1 40 0.9 ltie 2  40 1.4 luhq - 2 -0.1 
IdsbA 2mtaC 5 40 -2.4 IgplA 1 5 -40.1 Sp21 4  4 -16.9 
IgplA lltzl 4 22 0.2 2gcr I 5 -9.6 3chy 2 40 -0.8 
1 ltsD 3b5c 2  4 -0.4 lboVA - 25 -6.0 lubq 2 -  - 10.7 
IsacA 2mtaC 3 40 1.2 Zayh I -  -44.3 8fabA 7 40 -92.5 
1 tie 2PCY 3 23 - ltnfA - 40 -6.3 2bb2 4 20 -38.8 
2azaA 3b5c 2 24 0.7 lhfh - - - 15.5 3hlaB - 12 -20.3 
3chy 1 ifc 3  5 -4.1 2rslA 12 40 0.2 IbsgE 2  4 -18.6 

’Column “b” gives the number  of breaks in the chain. column “0” the  number  of steric overlaps in the  model,  and  en  the  threading 
energy.  Note  that  number of breaks is calculated directly from the alignment before  the  modeling step. Number of overlaps is  calculated 
before  the  minimization step in the  modeling procedure. Correct templates (if present) are highlighted. Templates  chosen  based  on 
small  number  of  breaks in the chain are denoted by bold. 

between three different template choices. In three cases, the correct 
template (according to the benchmark) was  among the three pos- 
sibilities, while in seven others, it was not. Table 3 summarizes the 
results of the analysis of the alignments  and the resulting models. 

Results presented in Table 3 illustrate both the insights that 
could be gained from  this additional step in the prediction hierar- 
chy  as well as the problems associated with it. In general, at  this 
level of similarity (or lack thereof) between proteins, most align- 
ments lead to serious problems in the model. There  are disconti- 
nuities or breaks (column “b” in Table 3) where two  consecutive 
side  chains in the target sequence  are aligned with residues, which 
are separated by over 5 8, in the template structure. The  existence 
of such discontinuities could be detected before building the model. 
There  are  also the steric  overlaps (column “0” in Table 3) where 
two  side  chains pack against each other with a hard core repulsion 
larger than 1 kcal/mol. Such overlaps  can be detected early in the 
modeling process. before the most time-consuming minimization 
step. In most cases,  this  latter problem could be solved by more 
careful repacking of the protein interior; however, large numbers 
of overlaps clustered in one place in the model could not be re- 
solved easily and might signify deeper problems with the model. 

Simply  choosing  alignments with the  smallest number of dis- 
continuities, which could be done without the time-consuming 
modeling step, allows two correct templates to be recognized (1 bovA 
as a template for lltsD and 2ayh as a template for  IsacA). In two 
additional cases  (Ihuw  as a template for lbgeB and  3hlaB as  one 
of the possible templates  for 2azaA). this method identifies tem- 
plates with topologies very close to the correct target topology, 
which were not included in the UCLA#I benchmark by its authors. 
At the  same time, there  is only one case where, correctly, none of 
the templates could be accepted as a correct prediction. Unfortu- 
nately, it is difficult to formulate precise criteria for significance of 
the prediction, as in two other  cases  where  similar  criteria led to 
wrong predictions (lubq as a template for lcid and 1 tnfA as a 
template for Itie).  The wrong template choice  for IcewI illustrates 
the problems with model building as a final  step in the prediction 
hierarchy. Chain A of 2sar is incorrectly chosen  over the correct 
template of lmolA (see Table 3) because the latter  leads to  four 
discontinuities in the model, while the former can be used to 

prepare a well packed and continuous model. It is interesting to 
note that these two topologies have a lot in common, both having 
an a-helix packed against an updown-updown anti-parallel P-sheet. 
At the same time, the results presented in Table 3 clearly illustrate 
the inadequacy of threading energy to evaluate extremely distorted 
models. Threading energy (see Methods) often favors physically 
impossible models (such as a model for lsac built on the 8fabA 
template with 7 discontinuities of the chain and 40 overlaps). It is 
in clear contrast to the situation for models close to the correct 
fold,  where threading can detect even subtle structural differences 
to the experimental structure (Jaroszewski et al., 1998). 

Discussion 

On several extensive benchmarks, it is shown that fold recognition 
methods, based on hybrid scoring systems using all available se- 
quence  and structure information, achieve a high level of structure 
prediction accuracy. Benchmarks used in this paper represent most 
of the  known examples of  structurally  similar  proteins with 
nonobvious homology. For this large group, over  80% of targets 
could be correctly assigned to the right fold family. Most cases, 
which are classified as prediction errors, still recognize substantial 
elements of the global fold and in all cases represent correct struc- 
tural class. 

The results presented here  show that the accuracy of fold rec- 
ognition methods increases with the increasing amount of infor- 
mation about the template used by the program to calculate the 
comparison score. Amino acid preferences to align with positions 
buried in the protein interior or exposed to solvent, together with 
preferences for a particular local backbone conformation, as  de- 
scribed by a chiral R14 distance, contribute almost equally to the 
fold recognition accuracy. Including the predicted structural infor- 
mation about the target protein also adds to the prediction accuracy 
and this contribution is the single most important nonsequence 
contribution to the fold prediction. These results mostly parallel 
the results of the UCLA group, as presented on their fold recog- 
nition benchmark site  (UCLA, 1996). All three local, nonsequence 
contributions  are almost additive, allowing them to be combined to 
yield a local-structure based fold prediction method. 
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In contrast, the contribution from nonlocal two-body interaction 
preferences is the least successful scoring contribution on its own, 
and when combined with the sequence and local scoring functions, 
it  does not contribute to the prediction success. For instance, in the 
most successful prediction method (s+ss+burial+rl4) its weight 
is zero. It is important to note that in the two-body interaction 
parameters used here, the contribution of one-body effects, such as 
hydrophobicity, was essentially reduced to zero (Godzik et al., 
1992). Most other interaction parameters include substantial con- 
tributions from various one-body effects (Godzik et al.,  1995); 
therefore, their contribution might seem important for that reason 
alone. These results suggest that an ongoing debate about the best 
way to include nonlocal effects in fold recognition might be mostly 
irrelevant. Also, a recent analysis of structural alignments between 
pairs of proteins with similar folds  (Zhang  et al., 1997) suggests 
that two-body contributions are very sensitive to alignment details 
and become attractive only when the alignment is very close to the 
correct one. 

The general trends discussed so far can be observed for all 
examples studied here; however, specific details of the relative 
importance of various contributions are blurred by a limited num- 
ber of examples, as well as by strong memorization effects, such as 
illustrated in Table 2. The memorization effect is surprisingly strong, 
despite a relatively small number of parameters, as compared to 
the number of examples. It allows one to achieve misleadingly 
good results with some combination of parameters. This is part of 
the bigger problem of testing algorithms and prediction strategies 
on examples where the correct answer is known during the devel- 
opment and testing. Despite the relatively large size of available 
benchmarks, the ultimate test of all fold prediction methods must 
involve genuine predictions of targets whose structures are un- 
known when predictions are made. 

For most of the pairs of structurally similar proteins with ap- 
parently weak sequence similarity, it is still the sequence that car- 
ries the most information. This can be measured both by the number 
of correctly recognized folds in all benchmarks and by the strong 
significance of the correct predictions. The strong contribution 
from sequence-based scoring suggests that most of the pairs in all 
the benchmarks tested here  are actually homologous. This marks a 
significant shift of focus  from  the first fold recognition algorithms 
that stressed the structural similarity rather than the evolutionary 
relationships between structurally similar proteins. The question of 
whether fold recognition methods should focus  on discovering 
distant homologues or unrelated proteins determines optimal strat- 
egies  for improving algorithms and projects different applications 
of such methods. Focusing on distant homologies may seem dis- 
appointing from the point of view of understanding the balance of 
forces responsible for protein folding, but it allows extending fold 
recognition to function prediction. This dichotomy also provides a 
rationale for the development of a multi-prong approach where 
different methods might be more appropriate for different types of 
targets. 

Methods 

Scoring systems 

The  score between a position in  the target protein and a position in 
the template protein can be based on different types of information 
about the target and template proteins. 

A sequence-sequence  scoring 

No structural information is used. This type of comparison can 
be done even when no template structure is known. The Gonnet 
mutation matrix was used with optimized gap penalties, as iden- 
tified by  Vogt and Argos (Vogt et al., 1995). 

A sequence-structure scoring 

Scoring is based on the pseudo-energy of an single amino acid 
“mounted” in the structural environment of a single position in the 
template structure. The energy terms depend on the type of struc- 
tural information used. The possibilities tested in this manuscript 
include burial status, local secondary structure, and interaction 
environment 

Burial status definition and parameters were adopted from the 
topology fingerprint threading force field (Godzik et  al., 1992). 

Local backbone conformation is described by the distance be- 
tween Ccy atoms separated by three positions (Rj4) and modified 
by the handedness of the torsional angle. The definition of r14 and 
corresponding energy parameters were adopted from the lattice 
protein folding  force field (Kolinski & Skolnick, 1996). 

Interaction preferences. Definitions of all terms, as well as all 
parameters, were adopted from the topology fingerprint threading 
method (Godzik et al., 1992). Only the “frozen” approximation 
was used (Godzik et al., 1992), i.e., no update of the environment 
was performed and the environment from the template protein was 
used to define a profile. This approximation is formally equivalent 
to the three-dimensional profiles (Bowie  et al., 1991), albeit with 
different parameters and environment definitions. 

A structure-structure scoring 

Scoring is based on  the comparison between the predicted struc- 
ture of the target and the experimentally determined structure of 
the template. However, similar algorithms can be used to perform 
a structural alignment (two experimental structures) or enhanced 
sequence alignment (two predicted structures). An important dif- 
ference between the sequence/structure and structure/structure scor- 
ing is that in the former case, the total score can be factorized into 
contributions from different target amino acids. For the latter, it is 
not possible, because the local structure prediction algorithm uses 
the entire sequence. In all cases, a nearest neighbor algorithm 
(Rychlewski & Godzik, 1997; Rychlewski & Godzik, 1998) was 
used. The latest version of this algorithm achieves an average 
prediction accuracy of 74% in a three-state secondary structure 
prediction and 73% in a two-state burial prediction. For the results 
presented here, only the secondary structure prediction was used. 

Alignments 

Since  all tested scoring systems are local, i.e., the score between 
position i and j does not depend on any other position, standard 
dynamic programming can be used to find the optimal score for the 
alignment of two sequences or property profiles. The local-global 
alignment was used, i.e., end  gaps were penalized for the template, 
but not for the target (Waterman, 1995; Fischer & Eisenberg, 1996). 
This  choice  was prompted by the fact that solved structures usually 
represent entire domains, while sequences might contain extra lead- 
ing or trailing sequences. This choice assumes that the target se- 
quence is longer than the template and, subsequently, it affects 
scores of sequences shorter than their desired targets. Effects of 
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these additional constraints are analyzed in a separate publication 
(Rychlewski et al., 1998). 

In all  cases,  gap introduction and extension penalties as well as 
a constant subtracted from the complete, position-by-position scor- 
ing matrix, was optimized independently for different combina- 
tions of energy terms. For  one of the benchmarks, chosen as a 
“learning set,” a search in the parameter space was performed to 
maximize the number of correct predictions. Results for the “leam- 
ing benchmark’ are identified in bold in Tables 1 and 2. Monte 
Carlo-based simulated annealing was used as a minimization method. 
In most cases, multiple solutions, giving the same prediction ac- 
curacy, were found in the parameter space. In such cases, param- 
eters were tested for “robustness,” i.e., a small perturbation was 
added to all parameters and the prediction results were tested again. 
The parameter set that was most stable to perturbations was used 
on “testing benchmarks.” 

Benchmarks 

Four benchmarks were used in this paper. Two were created at the 
UCLA-DOE Laboratory of Structural Biology, the first (UCLA#l) 
consists of 68 targets to be recognized among 301 possible tem- 
plates; the second (UCLA#2) consist of 29 targets to be recognized 
among  320 possible targets (UCLA, 1996). In both cases,  the 
benchmarks used in this paper were adopted from the UCLA WEB 
site. In addition, various methods are compared on a set of CASP2 
targets (most targets from CASP meeting in  1994  are incorporated 
into the UCLA#2 benchmark) and on our own “in-house” bench- 
mark, consisting of 25 targets to  be recognized among  380 possible 
templates. For CASP2 prediction targets, only 7 (targets 2, 4,  14, 
20, 22, 31,  and  38) were used in a benchmark because no correct 
templates exists  for other targets. A full listing of all benchmarks 
is available from the original WEB sites, as well as from the 
authors’ group  home page. All benchmarks are independent, i.e., 
there are no identical target-template pair; however, examples from 
the same families are present in most benchmarks. This situation is 
difficult to avoid, because the number of protein families display- 
ing significant structural similarity with very weak sequence sim- 
ilarity is limited. 

In each benchmark, a number of targets are scanned against a 
database of templates. The only exception is the BLAST search 
that used a SWISSPROT  34  (Bairoch, 1994) sequence database. In 
this  case, only relative positions of sequences corresponding to 
proteins from the template database were compared. Because the 
structures of targets are known, it is possible to check in advance 
which of the templates have  the largest structure similarity. Rec- 
ognizing such proteins is registered as a success, failing to recog- 
nize them as a failure, and recognition of a protein that, in fact, has 
a different structure as a false prediction. Various prediction meth- 
ods  can be compared by listing the number of successful predic- 
tions vs. the number of failures  and  false predictions. 

Significance analysis 

The result of a comparison between a target sequence and a tem- 
plate protein is a single number-a score. To answer  the question 
of whether or not target and structure are similar, we have to know 
the statistical significance of obtaining such a score by chance 
while comparing two unrelated proteins. This problem was ana- 
lyzed extensively in the context of sequence alignments (Water- 
man, 1995). It can be solved exactly for comparing  continuous 

strings, i.e., in alignment without gaps (Karlin & Altschul, 1990). 
For alignments with gaps, the distribution cannot be calculated 
analytically, but numerical experiments have shown that the dis- 
tribution of scores for alignments with gaps is the same as  for the 
alignments without gaps-it follows the so-called extreme value 
distribution (Pearson, 1996). The parameters of the distribution 
must be calculated from a numerical experiment. The distribution 
depends on two parameters and lengths and compositions of both 
sequences. 

In general, the probability that the alignment score S is larger 
than X is proportional to 

where rn and n denote the lengths of two sequences being com- 
pared and the parameters y and 6 describe the shape of the distri- 
bution curve. Note the difference between Equation 1 and most 
formulations in the literature, caused by the fact that our score 
resembles energy in being negative for similar proteins. 

The parameters of the Equation 1 were calculated from the 
empirical distribution function of scores for the database of folds. 
For every target sequence take number of scores larger than a 
given value was calculated in 10 score unit intervals. The double 
logarithm (-log  (-log empirical distribution)) of the empirical 
distribution function was fitted to a liner function of score. The 
parameters of a linear fit will be log(yrnn) - X log(6) were used 
to calculate the probability of the lowest (the best) score. At the 
same time, the quality of the fit can be used as a measure that the 
scores really follow Equation 1. 
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