
Protein  Science (1998). 71829-1835. Cambridge University Press. Printed in the USA. 
Copyright 0 1998  The Protein Society 

FOR THE RECORD 

A superfamily of metalloenzymes unifies 
phosphopentomutase  and cofactor-independent 
phosphoglycerate  mutase with alkaline 
phosphatases  and sulfatases 

MICHAEL Y. GALPERIN,' AMOS BAIROCH,2 AND EUGENE V. KOONIN' 
'National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 

'Departement de Biochimie Medicale, Universitt  de Geneve, I ,  rue Michel Servet CH-121 I ,  Geneve 4, Switzerland 

(RECEIVED December 22, 1997; ACCEPTED May 4, 1998) 

Bethesda, Maryland 20894 

Abstract: Sequence analysis of the probable archaeal phospho- 
glycerate mutase resulted in the identification of a superfamily of 
metalloenzymes with similar metal-binding sites and predicted 
conserved structural fold. This superfamily unites alkaline phos- 
phatase, N-acetylgalactosamine-4-sulfatase, and cerebroside sul- 
fatase, enzymes with known three-dimensional structures, with 
phosphopentomutase, 2,3-bisphosphoglycerate-independent phos- 
phoglycerate mutase, phosphoglycerol transferase, phosphonate 
monoesterase,  streptomycin-6-phosphate  phosphatase,  alkaline 
phosphodiesterase/nucleotide pyrophosphatase PC- 1, and several 
closely related sulfatases. In addition to the metal-binding motifs, 
all these enzymes contain a set of conserved amino acid residues 
that are likely to be required for the enzymatic activity. Mutational 
changes in the vicinity of these residues in several sulfatases cause 
mucopolysaccharidosis (Hunter, Maroteaux-Lamy, Morquio, and 
Sanfilippo syndromes) and metachromatic leucodystrophy. 

Keywords: alkaline phosphatase; autotaxin; inherited disease; mu- 
copolysaccharidosis; nucleotide pyrophosphatase PC- 1 ; phospho- 
glycerate mutase; phosphopentomutase; sulfatase deficiency 

Phosphoglycerate mutase (EC 5.4.2. I ) ,  a key glycolytic enzyme, is 
found in two forms, which differ in their requirement for 2,3- 
bisphosphoglycerate and show no detectable sequence similarity 
to one  another  (Grana  et al., 1992, 1995). Although the 2,3- 
bisphosphoglycerate-dependent enzyme, found in bacterial, yeast, 
and animal cells, is relatively well studied (reviewed in Fothergill- 
Gilmore & Watson, 1989), the information about the structure or 
catalytic mechanism of the 2,3-bisphosphoglycerate-independent 
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form (iPGM) is limited (Singh & Setlow, 1979a; Blattler & Knowles, 
1980; Huang & Dennis, 1995). iPGM has been found in bacteria 
(Singh & Setlow, 1978; Watabe & Freese, 1979), archaea (Yu 
et al., 1994), plants (Leadlay et al., 1977; Botha & Dennis, 1986), 
and in some invertebrates (Carreras et al., 1982). Several bacterial 
and plant iPCM genes have been sequenced (Grana et ai., 1992, 
1995; Leyva-Vazquez & Setlow, 1994; Morris et al., 1995). Se- 
quence analysis of the maize iPGM showed significant similarity 
to alkaline phosphatase (AP), including conservation of several 
metal-binding residues of the AP active center, and a similar cat- 
alytic mechanism for the two enzymes, namely the formation of a 
phosphoserine intermediate stabilized by divalent cations, has been 
suggested (Grana et al., 1992). This conclusion. however, has been 
disputed (Huang et al., 1993) because ( I )  activity of iPGM from 
castor bean appeared to be metal independent (Botha & Dennis, 
1986), and (2) sequence alignment of several plant iPGMs did not 
reveal the conserved Asp-Ser-Ala triad, like the one in the AP 
active center. 

When the first complete genome of an archaeon, Methanococcus 
junnaschii, was sequenced, genes for all the enzymes of the lower 
(tri-carbon) portion of the glycolytic pathway, except PGM, were 
easily identified (Bult et al., 1996). The PGM-coding gene has 
been reported missing (Selkov et al., 1997), even though iPGM 
activity had been experimentally demonstrated in closely related 
Methanococcus maripaludis (Yu et al., 1994). Likewise, no PGM- 
encoding gene was recognized in the recently sequenced genomes 
of two other archaea, Methanobacterium thermoautotrophicum 
(Smith et ai., 1997) and Archaeoglobus fulgidus (Klenk et al., 
1997). On the other hand, when the set of Methanococcus jan- 
naschii proteins was searched for the closest homolog of known 
bacterial and eukaryotic iPGMs, a candidate protein, MJ  16  12 (orig- 
inally annotated as phosphonopyruvate decarboxylase), has been 
identified and predicted to possess iPGM activity (Koonin et al., 
1997). However, MJ1612 appeared to be related also to phospho- 
pentomutases (phosphodeoxyribomutases) and several other en- 
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zymes. This prompted us to investigate  the  possible  relationships 
between  iPGMs  and  phosphopentomutases. 

Here,  we  show a  pattern  of  sequence  conservation  between 
phosphopentomutases,  iPGMs,  and APs, which  suggests  conser- 
vation  of the  structural fold and  similar  reaction  mechanisms. In 
accordance  with  the  recent  structural  studies  (Bond et al., 1997; 
Lukatela et al., 1998),  similar  conserved  motifs  were  found  in 
N-acetylgalactosamine-4-sulfatase, cerebroside  sulfatase,  and  sev- 
eral  related  sulfatases.  These  findings  define  a  new  superfamily of 
proteins,  which we refer to  as the  alkaline  phosphatase  superfamily. 

The  nonredundant  protein  sequence  database  at  the  National 
Center for Biotechnology  Information  (Bethesda,  Maryland)  was 
searched  using  the  PSI-BLAST  (Position-Specific  Iterative  BLAST) 
program,  which  converts  local  gapped  alignment  produced by 
BLASTP  into  position-specific  weight  matrices  that are then  used 
for iterative  database  scanning  (Altschul et al.,  1997).  The  multiple 

alignment  was  constructed  using  the  alignment  (-m4)  option of 
PSI-BLAST  with  subsequent  manual  refinement  on the basis  of 
the  structural  alignment of AP and  sulfatases,  which  was  generated 
using  Dali  (Holm & Sander,  1998). 

Sequence  analysis of MJ1612  showed  high  similarity  to  another 
M. jannaschii protein,  MJ0010.  Corresponding  pairs of  paralogs 
were  found in genomes  of  two other  archaea, M. thennoautotroph- 
icum (Smith et al.,  1997)  and A. jidgidus (Klenk et al., 1997). 
Sequence  database  searches confinned similarity of  each  of these 
proteins  to  a  putative  phosphonopyruvate  decarboxylase  from Strep- 
tomyces hygroscopicus (Lee et al., 1995);  they  also  revealed  a 
highly  statistically  significant (P < lo-’) similarity  between all 
these  proteins  and  iPGMs  (Fig.  1).  Iterative  searches  using  the 
PSI-BLAST  program  resulted in identification of similar  con- 
served regions in phosphopentomutases,  APs,  and  related en- 
zymes,  and in several  previously  uncharacterized  proteins  (Fig. 1). 
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Fig. 1. Multiple alignment of  the alkaline phosphatase  superfamily. The proteins are. listed under  their  unique  SWISS-PROT (left 
column)  and GenBank (right  column)  identifiers;  1160616,  human  autotaxin  (Clair et al., 1997); 927036, Ca2+-ATPase from Flavo- 
bacterium odorutum (Desrosiers et al.,  1996;  Peiffer et al.,  1996);  1196755,  phosphonoacetate  hydrolase from Pseudommsfluores- 
cens (Kulakova et al., 1997);  1177864,  phosphonate  monoesterase from Burkholderia caryophylli (Dotson et al., 1996).  The  numbers 
indicate distances to the ends of each protein  and the sizes of the gaps  between  aligned  segments. Red  and blue shading indicate 
conserved amino acid  residues  that are involved in  metal  binding  in alkaline phosphatase (1ALK) and  sulfatases  (1FSU  and  IAUK); 
their positions in mature enzymes are indicated above such  residues.  Conserved  residues  identified  in this work are colored  red  and 
magenta.  Black shading indicates the residues  that  where  found  mutated in patients  with  genetic  disorders  (intermediate or severe forms 
of  hypophosphatasia,  mucopolysaccharidosis, or metachromatic  leucodystrophy). The references for particular  mutations can be found 
in SWISS-PROT  database  (Bairoch & Apweiler,  1997). Yellow shading indicates  uncharged  amino acid residues  (A, I, L, V, M, F, Y, 
or W) with  a  propensity  to form a p-strand. Conserved small residues (G, A, or S) are shown  in  green,  the  residues  conserved  among 
several  protein families are in  bold.  The  consensus  includes  amino  acid  residues  conserved in all sequences  (upper  case) and those 
conserved in the  majority of the  sequences  (lower  case). U stands for a  bulky  hydrophobic  residue (I, L, V, M, F, Y, W), 0 stands for 
a small residue (G, A, S), - stands for D or E, $ indicates  any  charged residue (D, E, K, R, N, Q), and dot stands for any  residue. In 
the structure line, a indicates a-helix and  indicates p-strand. 
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In each case, PSI-BLAST searches using iPGMs or phosphopen- 
tomutases as the query produced highly significant sequence align- 
ments ( P  < with each other in the second or third iteration, 
and with APs and  sulfatases in the fifth or sixth iteration. Inspec- 
tion of the multiple alignment of all these proteins showed con- 
servation of the  core structural elements of APs and sulfatases 
(Fig. I ) ,  suggesting that they belong to a distinct superfamily with 
a common structural fold. 

This superfamily includes enzymes with substantially different 
activities (isomerases, hydrolases, and  a putative lyase), which, 
however, all act on similar phosphocarbohydrate (or sulfocarbo- 
hydrate) substrates (Table I ) .  Remarkably, AP is known to have 
phosphotransferase activity (Coleman, 1992, and references therein), 
while iPGM can also function as  a phosphatase (Breathnach & 
Knowles, 1977). Indeed, the conserved region in all these proteins 
(Fig. 1) contains the amino acid residues that are known to be in- 
volved in phosphate binding in AP (Kim & Wyckoff, 1991) and sul- 
fate binding in sulfatases (Bond et  al., 1997; Lukatela et al., 1998). 
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The alignment on Figure 1 demonstrates that all the amino acid 
residues that interact with  Zn 1 (Asp-327, His-33 1, and His-4 12) 
and  Zn2  (Asp-SI, Asp-369, and His-370) in AP (Kim & Wyckoff, 
1991) are absolutely conserved in phosphocarbohydrate-binding 
proteins of the AP superfamily (Fig. 2). On the other hand, Mg 
binding residues of AP are much less conserved, as Glu-322 is 
substituted by Asn in phosphopentomutases and iPGMs, while 
Asp-IS3 and Thr-155 (Fig. 2) do not seem to be conserved at all. 
As noted earlier (Bond  et al., 1997; Lukatela et al., 1998), the 
residues that coordinate Zn2 in AP are also conserved in sulfatases 
(Fig. 1 ) .  

The strong conservation of metal-binding residues in  both phos- 
phopentomutase and iPGM indicates that both these enzymes are 
metal dependent. Indeed, phosphopentomutase from Escherichia 
coli requires Mn2+,  Ni2+, or Co2+ for activity, binding two metal 
atoms per enzyme molecule (Hammer-Jespersen & Munch-Petersen, 
1970; Hammer-Jespersen, 1983). Similar data were reported for 
the rat liver enzyme (Barsky & Hoffee, 1983). 

Table 1. Properties of the enzymes of the alkaline phosphatase  supelfamily 

Enzyme (EC No.) 

Phosphoglycerate mutase (EC 5.4.2.1) 
Phosphopentomutase (EC 5.4.2.7) 
Alkaline phosphatase (EC 3.1.3.1) 

Streptomycin-6-phosphatase 

Alkaline phosphodiesterase/ 
(EC  3.1.3.39) 

nucleotide pyrophosphatase 
(EC 3.1.4.1/3.6.1.9) 

(EC 2.7.8.20) 
Phosphoglycerol transferase 

Ca2+-ATPase 
Phosphonopyruvate decarboxylased 
Phosphonoacetate hydrolase 

Phosphonate monoesterase 
Arylsulfatase (EC  3.1.6.1) 

Steroid sulfatase (EC 3.1.6.2) 
N-acetylgalactosamine 6-sulfatase 

Cerebroside sulfatase (EC 3.1.6.8) 
N-acetylgalactosamine 4-sulfatase 

Iduronate 2-sulfatase (EC 3.1.6.1 3) 
N-acetylglucosamine 6-sulfatase 

N-sulfoglucosamine sulfatase 

(EC 3.11.1.1) 

(EC 3.1.6.4) 

(EC 3.1.6.12) 

(EC  3.1.6.14) 

(EC 3.10.1.1) 

SWISS-PROT 
symbol 

PMGI-ECOLI 
DEOB-ECOLI 
PPB-ECOLI 
PPBT-HUMAN 
STRK-STRGR 

MDOB-ECOLI 

- 

BCPC-STRHY 
- 

- 

ASLA-ECOLI 
ARSE-HUMAN 
STS-HUMAN 
GA6S-HUMAN 

ARSA-HUMAN 
ARSB-HUMAN 

IDS-HUMAN 
GL6S-HUMAN 

SPHM-HUMAN 

pH optimum 

7.7-9.5 
8.0-8.5 
8.0-10.5 

n.d.' 

8.0-9.0 

8.9 

8.0 
n.d. 

7.7-9.0 

8.5-9.0 
n.d. 

6.0-7.5 
3.5-4.0 

4.8-6.2 
n.d. 

4.0-5.7 
3.9-5.7 

3.9-4.1 

Metal 
requirements 

Mn 
Mn or  Co 
Zn + Mg 

n.d. 

Mn, Mg, or Ca 

Mn 

Ca 
Mg 
Zn, Mn, or Co 

Mn 
n.d. 

n.d. 
n.d. 

Mg 
Ca? 

n.d. 
n.d. 

n.d. 

Human disease caused 
by a mutation 

a - 

Not known 
Hypophosphatasia 

- 

Not known; increased activity 
in type I1 diabetes 

- 

- 
- 

- 

- 

Chondrodysplasia punctata 

X-linked ichthyosis 
MPS" type IVA 

Metachromatic leucodystrophy 
MPS type VI 

(Maroteaux-Lamy syndrome) 
MPS type I1 (Hunter syndrome) 
MPS type IIID 

MPS type IlIA 

(Morquio A syndrome) 

(Sanfilippo D syndrome) 

(Sanfilippo A syndrome) 

Refs. 
- 

I ,  2b 
3 

4, 5 

6 

7 

8 

20 
9 

I O  

1 1  
12 

13 
14 

14 
16 

17 
18 

19 

'Absence of 2,3-bisphosphoglycerate-dependent PGM in humans causes myopathies. 
hReferences: 1, Singh and Setlow (1979a); 2, Cameras et al. (1982); 3, Hammer-Jespersen and Munch-Petersen (1970); 4, Henthorn et al. (1992); 5 ,  

Murphy et al. (1995); 6,  Mansoun  and Piepersberg (1991); 7, Oda et al. (1993); 8, Jackson and Kennedy (1983); 9, Nakashita et al. (1997); 10, McGrath 
et ai. (1995); 11, Dotson et ai. (1996); 12, Parenti et al. (1997);  13,Alperin and Shapiro (1997); 14, Bielicki and Hopwood (1991); 15, Lukatela et  al. (1998); 
16, Bond et al. (1997); 17, Bielicki et al. (1990); 18, Freeman and Hopwood (1987); 19, Freeman and Hopwood (1992);  20, Desrosiers et al. (1996). 

'Not determined. 
dPhosphonopyruvate  decarboxylase activity of BCPC-STRHY has not been demonstrated experimentally and could have been encoded by a different 

eMPS, Mucopolysaccharidosis. 
gene; actual function of this protein remains unidentified. 
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Fig. 2. Conserved  residues in the  enzymes  of  the  alkaline  phosphatase 
superfamily.  The  scheme  of  the  active  center of the E. coli alkaline  phos- 
phatase  (modified  from Kim & Wyckoff, 1991); amino  acid  residues that 
are conserved in phosphopentomutases  and  phosphoglyceromutases 
(Fig. I )  are  labeled in bold;  nonconserved  amino  acid  residues  are  labeled 
in italic, W indicates water  molecules. 

Bacterial iPGMs also require Mn2+ for activity (Singh & Set- 
low, 1978, 1979b; Watabe & Freese, 1979; Kuhn et al., 1993). 
Recently, a detailed study of Mn2+ binding by iPGM from Bacil- 
lus rnegateriurn demonstrated a cooperativity in Mn-dependent ac- 
tivation of iPGM with a Hill coefficient of 2.1 f 0.1, indicating 
that two Mn atoms bind per iPGM molecule (Kuhn et al., 1995). 
Thus, phosphopentomutase and bacterial iPGM each require two 
Mn atoms for activity. 

The metal requirements of the plant iPGM have been a subject 
of some controversy. It was first reported that iPGM from wheat 
germ was inhibited by  EDTA (Leadlay et al., 1977; Smith & Hass, 
1985) and required Mn2+ or Co2+ for reactivation after denatur- 
ation (Smith et al., 1986). In contrast to these data, the activity of 
castor bean iPGM was reported unaffected by passing the enzyme 
solution through Chelex resin (Botha & Dennis, 1986). No data 
were presented, however, and the experimental protocol used has 
not been shown to completely remove trace metals from the reac- 
tion mixture. Based on the high level of sequence similarity be- 
tween the plant and bacterial iPGMs (Grana et  al., 1995; Fig. l), it 
would be reasonable to suggest that plant enzymes are also metal 
dependent. 

Sequence  analysis shows that  alkaline  phosphodiesterase/ 
nucleotide pyrophosphatase PC-I, a cell surface enzyme, impli- 
cated in pathogenesis of cancer and diabetes (Maddux et al., 1995), 
is also a member of the AP superfamily. Comparison of PC- 1 with 
AP (not shown) shows that Thr-204 of PCl-MOUSE aligns with 
the active site Ser-IO2 of AP (Fig. 2); it is similarly phosphorylated 
during the catalytic cycle of PC-1 (Belli et al., 1995). Autotaxin, a 
human tumor motility-stimulating protein, very similar to PC-I 
(Clair et al., 1997; Fig. 1) has the same conserved region around 
Thr-208, indicating that it could also be phosphorylated. Divalent 
cations (Ca", Mg2+, or Mn2+) are required for the activity of 
PC-I  (Oda et al., 1993); they also improve its thermal stability 
(Belli et al., 1994). Nucleotide pyrophosphatase activity has also 
been found in Haemophilus influenzae (Kahn & Anderson, 1986); 
it could belong to one of the previously uncharactenzed H.  influ- 
enzae proteins shown in Figure 1 .  MnZ+ was also shown to stim- 

ulate the activity of three additional members of the AP superfamily 
(Fig. I ;  Table I ) ,  phosphoglycerol transferase (Jackson & Ken- 
nedy, 1983), phosphonoacetate hydrolase (McGrath et al., 1995), 
and phosphonate monoesterase from a glyphosate-degrading bac- 
terium (Dotson  et  al., 1996). Another unusual member of the AP 
superfamily is the Ca'+-dependent ATPase that requires two Ca 
atoms for activity (Desrosiers et al., 1996; Peiffer et al., 1996). 
Finally, an outer membrane protein YHBX-ECOLI, associated with 
the adherence of enteropathogenic E. coli 0157:H7 to human epi- 
thelial cells (Zhao et al., 1996), is also a member of this super- 
family. The conservation of the predicted catalytic residues (Fig. 1) 
suggests that this protein possesses phosphatase activity that may 
be important for pathogenicity. 

Several amino acid residues that form the active center of AP 
(Kim & Wyckoff, 1991) or sulfatases (Bond et al., 1997; Lukatela 
et al., 1998) are not conserved in phosphopentomutase and iPGM. 
The structure of the AP active center (Fig. 2) shows that one of 
these missing amino acid residues, Arg-166, binds the two remain- 
ing 0 atoms of the phosphate group (Kim & Wyckoff, 1991; 
Coleman, 1992) and thus assists in loosening the bond between the 
P atom and Zn 1 -bound 0 atom of the leaving RO- group. Neither 
could we identify a counterpart of the phosphorylated Ser- I02 of 
AP in phosphopentomutase or iPGM, even though iPGM has been 
suggested to form a phosphoenzyme  intermediate  (Blattler & 
Knowles, 1980). 

The balance between phosphotransferase and phosphatase reac- 
tion may be affected by the difference in the metal specificity 
between AP, on one hand, and phosphopentomutase and iPGM, on 
the other hand. Even though AP is maximally active with Zn2+ 
ions, substitution of Mn2+ or Co2+ for Zn2+ still produced an 
enzyme with detectable activity. The decreased activity of such 
enzymes was largely due to the lower rate of the enzyme dephos- 
phorylation, caused by a tighter binding of phosphate (Applebury 
et al., 1970; Coleman, 1992). Such an arrangement favors phos- 
photransferase reaction, which could be a reason for the Mn2+ 
dependence of phosphopentomutase and iPGM. 

The alignment in Figure 1 also shows several highly conserved 
amino acid residues that have no known role in enzyme activity. 
These include Asp-346, Thr-367, Thr-413, Asp-437, and Thr-441 
of AP and additional Thr residues in phosphopento- and phospho- 
glyceromutases, which have no counterparts in other enzymes. 
Examination of the three-dimensional structures of AP and sulfa- 
tases shows that in phosphopentomutases and iPGMs, only the 
equivalents of Thr-367, Thr-413, and Gln-410 of AP are likely to 
be positioned close enough to the phosphate-binding site to par- 
ticipate in binding of the carbohydrate moiety of the phosphocar- 
bohydrate substrate (Fig. I ) .  

Asp-346 and Asp-437 of  AP, located at ca. 20 8, from the metal- 
binding site in both AP and sulfatases, could be involved in the 
maintenance of the structural integrity of these enzymes. It is also 
possible that they participate in a relay that directs substrates to the 
active sites of these enzymes. In any case, the absence of activity 
in D255H and D335V mutants of human cerebroside sulfatase 
(Hess  et al., 1996; Lissens et al., 1996) demonstrates that these 
conserved Asp residues are required for sulfatase activity, and 
suggests that they might be important in other enzymes as well. 
Analysis of genetic disorders that result from mutations in human 
genes coding for known enzymes may offer additional insight into 
the organization of their molecules. Several inherited disorders, 
such as hypophosphatasia, chondrodysplasia, metachromatic leu- 
kodystrophy, and various mucopolysaccharidoses are caused by 
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missense mutations in the genes for sulfatases that belong to the 
AP superfamily. Some of these mutations result in single amino 
acid substitutions in the conserved motifs shown on Figure 1 and 
abolish the enzymatic activity (reviewed in Henthorn et al., 1992; 
Parenti et al., 1997). 

The phyfogenetic distribution of the AP superfamily enzymes is 
unusual. While some bacteria, such as E. coli or Bacillus subtilis, 
encode both iPGMs and APs, archaea and eukaryotes usually have 
only one of these enzymes (Table 2). Thus, iPGM activity has not 
been found in vertebrates (Carreras et al., 1982); the respective 
gene is also absent from the yeast genome. Instead, fungi and 
vertebrates have a different, 2,3-bisphosphoglycerate-dependent 
form of phosphoglycerate mutase (Fothergill-Gilmore & Watson, 
1989). In algae, iPGM is encoded in the chloroplast, while in 
higher plants it is nuclear encoded and absent from the chloroplast 
genome. Plant iPGMs thus appear to have chloroplast origin. On 
the other hand, AP, found in yeast and animal cells, so far has not 
been described in plants. Conceivably, AP and iPGM could have 
evolved from a common ancestral enzyme, with selective loss of 
one of these enzymes in various eukaryotic branches. The pairs of 
paralogous archaeal proteins (e.g., MJOOlO and MJ1612) have 
shown significant sequence similarity to all the enzymes of the AP 
superfamily and may resemble the ancestral phosphomutases. 

The distribution of the two classes of PGMs in bacteria is also 
remarkable. While organisms with larger genomes, such as E. coli, 
B. subtilis, and Synechocystis sp. have genes coding for both classes 
of this enzyme (Table 2), the organisms with smaller genomes 
code for only one of them. Thus, iPGM is the only form of this 
enzyme that is encoded in the genomes of such human pathogens 
as Mycoplasma genitalium, Mycoplasma pneumoniae, and Heli- 
cobacter pylori, the causative agents of nongonococcal male ure- 
thritis, atypical pneumonia, and gastric ulcer, respectively. The 
importance of iPGM for the metabolism of these bacteria and its 
apparent absence in vertebrates (Carreras et al., 1982) suggest that 
iPGM may be a plausible target for new, specialized antibacterial 
drugs. The 3D structure of iPGM, once determined, will facilitate 
the development of such drugs  and will help resolve the remaining 
questions about its catalytic mechanism. 
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