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Abstract: Sequence analysis of the probable archaeal phospho-
glycerate mutase resulted in the identification of a superfamily of
metalloenzymes with similar metal-binding sites and predicted
conserved structural fold. This superfamily unites alkaline phos-
phatase, N-acetylgalactosamine-4-sulfatase, and cerebroside sul-
fatase, enzymes with known three-dimensional structures, with
phosphopentomutase, 2,3-bisphosphoglycerate-independent phos-
phoglycerate mutase, phosphoglycerol transferase, phosphonate
monoesterase, streptomycin-6-phosphate phosphatase, alkaline
phosphodiesterase /nucleotide pyrophosphatase PC-1, and several
closely related sulfatases. In addition to the metal-binding motifs,
all these enzymes contain a set of conserved amino acid residues
that are likely to be required for the enzymatic activity. Mutational
changes in the vicinity of these residues in several sulfatases cause
mucopolysaccharidosis (Hunter, Maroteaux-Lamy, Morquio, and
Sanfilippo syndromes) and metachromatic leucodystrophy.

Keywords: alkaline phosphatase; autotaxin; inherited disease; mu-
copolysaccharidosis; nucleotide pyrophosphatase PC-1; phospho-
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Phosphoglycerate mutase (EC 5.4.2.1), a key glycolytic enzyme, is
found in two forms, which differ in their requirement for 2,3-
bisphosphoglycerate and show no detectable sequence similarity
to one another (Grana et al., 1992, 1995). Although the 2,3-
bisphosphoglycerate—dependent enzyme, found in bacterial, yeast,
and animal cells, is relatively well studied (reviewed in Fothergill-
Gilmore & Watson, 1989), the information about the structure or
catalytic mechanism of the 2.3-bisphosphoglycerate—independent
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form (iPGM) is limited (Singh & Setlow, 1979a; Blattler & Knowles,
1980; Huang & Dennis, 1995). iPGM has been found in bacteria
(Singh & Setlow, 1978; Watabe & Freese, 1979), archaea (Yu
et al., 1994), plants (Leadlay et al., 1977; Botha & Dennis, 1986),
and in some invertebrates (Carreras et al., 1982). Several bacterial
and plant iPGM genes have been sequenced (Grana et al., 1992,
1995; Leyva-Vazquez & Setlow, 1994; Morris et al., 1995). Se-
quence analysis of the maize iPGM showed significant similarity
to alkaline phosphatase (AP), including conservation of several
metal-binding residues of the AP active center, and a similar cat-
alytic mechanism for the two enzymes, namely the formation of a
phosphoserine intermediate stabilized by divalent cations, has been
suggested (Grana et al., 1992). This conclusion, however, has been
disputed (Huang et al., 1993) because (1) activity of iPGM from
castor bean appeared to be metal independent (Botha & Dennis,
1986), and (2) sequence alignment of several plant iPGMs did not
reveal the conserved Asp-Ser-Ala triad, like the one in the AP
active center.

When the first complete genome of an archacon, Methanococcus
Jannaschii, was sequenced, genes for all the enzymes of the lower
(tri-carbon) portion of the glycolytic pathway, except PGM, were
easily identified (Bult et al., 1996). The PGM-coding gene has
been reported missing (Selkov et al., 1997), even though iPGM
activity had been experimentally demonstrated in closely related
Methanococcus maripaludis (Yu et al., 1994). Likewise, no PGM-
encoding gene was recognized in the recently sequenced genomes
of two other archaea, Methanobacterium thermoautotrophicum
(Smith et al., 1997) and Archaeoglobus fulgidus (Klenk et al.,
1997). On the other hand, when the set of Methanococcus jan-
naschii proteins was searched for the closest homolog of known
bacterial and eukaryotic iPGMs, a candidate protein, MJ1612 (orig-
inally annotated as phosphonopyruvate decarboxylase), has been
identified and predicted to possess iPGM activity (Koonin et al.,
1997). However, MJ1612 appeared to be related also to phospho-
pentomutases (phosphodeoxyribomutases) and several other en-
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zymes. This prompted us to investigate the possible relationships
between iPGMs and phosphopentomutases.

Here, we show a pattern of sequence conservation between
phosphopentomutases, iPGMs, and APs, which suggests conser-
vation of the structural fold and similar reaction mechanisms. In
accordance with the recent structural studies (Bond et al., 1997;
Lukatela et al., 1998), similar conserved motifs were found in
N-acetylgalactosamine-4-sulfatase, cerebroside sulfatase, and sev-
eral related sulfatases. These findings define a new superfamily of
proteins, which we refer to as the alkaline phosphatase superfamily.

The nonredundant protein sequence database at the National
Center for Biotechnology Information (Bethesda, Maryland) was
searched using the PSI-BLAST (Position-Specific Iterative BLAST)
program, which converts local gapped alignment produced by
BLASTP into position-specific weight matrices that are then used
for iterative database scanning (Altschul et al., 1997). The multiple
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alignment was constructed using the alignment (-m4) option of
PSI-BLAST with subsequent manual refinement on the basis of
the structural alignment of AP and sulfatases, which was generated
using Dali (Holm & Sander, 1998).

Sequence analysis of MJ1612 showed high similarity to another
M. jannaschii protein, MJOO10. Corresponding pairs of paralogs
were found in genomes of two other archaea, M. thermoautotroph-
icum (Smith et al., 1997) and A. fulgidus (Klenk et al., 1997).
Sequence database searches confirmed similarity of each of these
proteins to a putative phosphonopyruvate decarboxylase from Strep-
tomyces hygroscopicus (Lee et al., 1995); they also revealed a
highly statistically significant (P < 10~%) similarity between all
these proteins and iPGMs (Fig. 1). Iterative searches using the
PSI-BLAST program resulted in identification of similar con-
served regions in phosphopentomutases, APs, and related en-
zymes, and in several previously uncharacterized proteins (Fig. 1).
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Fig. 1. Multiple alignment of the alkaline phosphatase superfamily. The proteins are listed under their unique SWISS-PROT (left
column) and GenBank (right column) identifiers; 1160616, human autotaxin (Clair et al., 1997); 927036, Ca2*-ATPase from Flavo-
bacterium odoratum (Desrosiers et al., 1996; Peiffer et al., 1996); 1196755, phosphonoacetate hydrolase from Pseudomonas fluores-
cens (Kulakova et al., 1997); 1177864, phosphonate monoesterase from Burkholderia caryophylli (Dotson et al., 1996). The numbers
indicate distances to the ends of each protein and the sizes of the gaps between aligned segments. Red and blue shading indicate
conserved amino acid residues that are involved in metal binding in alkaline phosphatase (1ALK) and sulfatases (IFSU and 1AUK);
their positions in mature enzymes are indicated above such residues. Conserved residues identified in this work are colored red and
magenta. Black shading indicates the residues that where found mutated in patients with genetic disorders (intermediate or severe forms
of hypophosphatasia, mucopolysaccharidosis, or metachromatic leucodystrophy). The references for particular mutations can be found
in SWISS-PROT database (Bairoch & Apweiler, 1997). Yellow shading indicates uncharged amino acid residues (A, I, L, V, M, E Y,
or W) with a propensity to form a B-strand. Conserved small residues (G, A, or S) are shown in green, the residues conserved among
several protein families are in bold. The consensus includes amino acid residues conserved in all sequences (upper case) and those
conserved in the majority of the sequences (lower case). U stands for a bulky hydrophobic residue (I, L, V, M, F, Y, W), O stands for
a small residue (G, A, S), - stands for D or E, $ indicates any charged residue (D, E, K, R, N, Q), and dot stands for any residue. In

the structure line, « indicates a-helix and S indicates B-strand.
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In each case, PSI-BLAST searches using iPGMs or phosphopen-
tomutases as the query produced highly significant sequence align-
ments (P < 107%) with each other in the second or third iteration,
and with APs and sulfatases in the fifth or sixth iteration. Inspec-
tion of the multiple alignment of all these proteins showed con-
servation of the core structural elements of APs and sulfatases
(Fig. 1), suggesting that they belong to a distinct superfamily with
a common structural fold.

This superfamily includes enzymes with substantially different
activities (isomerases, hydrolases, and a putative lyase), which,
however, all act on similar phosphocarbohydrate (or sulfocarbo-
hydrate) substrates (Table 1). Remarkably, AP is known to have
phosphotransferase activity (Coleman, 1992, and references therein),
while iPGM can also function as a phosphatase (Breathnach &
Knowles, 1977). Indeed, the conserved region in all these proteins
(Fig. 1) contains the amino acid residues that are known to be in-
volved in phosphate binding in AP (Kim & Wyckoff, 1991) and sul-
fate binding in sulfatases (Bond et al., 1997; Lukatela et al., 1998).
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The alignment on Figure 1 demonstrates that all the amino acid
residues that interact with Znl (Asp-327, His-331, and His-412)
and Zn2 (Asp-51, Asp-369, and His-370) in AP (Kim & Wyckoff,
1991) are absolutely conserved in phosphocarbohydrate-binding
proteins of the AP superfamily (Fig. 2). On the other hand, Mg
binding residues of AP are much less conserved, as Glu-322 is
substituted by Asn in phosphopentomutases and iPGMs, while
Asp-153 and Thr-155 (Fig. 2) do not seem to be conserved at all.
As noted earlier (Bond et al., 1997; Lukatela et al., 1998), the
residues that coordinate Zn2 in AP are also conserved in sulfatases
(Fig. 1).

The strong conservation of metal-binding residues in both phos-
phopentomutase and iPGM indicates that both these enzymes are
metal dependent. Indeed, phosphopentomutase from Escherichia
coli requires Mn?*, Ni%*, or Co?" for activity, binding two metal
atoms per enzyme molecule (Hammer-Jespersen & Munch-Petersen,
1970; Hammer-Jespersen, 1983). Similar data were reported for
the rat liver enzyme (Barsky & Hoffee, 1983).

Table 1. Properties of the enzymes of the alkaline phosphatase superfamily

SWISS-PROT Metal Human disease caused
Enzyme (EC No.) symbol pH optimum requirements by a mutation Refs.
Phosphoglycerate mutase (EC 5.4.2.1) PMGI_ECOLI 7.7-9.5 Mn —=2 1,2°
Phosphopentomutase (EC 5.4.2.7) DEOB_ECOLI 8.0-8.5 Mn or Co Not known 3
Alkaline phosphatase (EC 3.1.3.1) PPB_ECOLI 8.0-10.5 Zn + Mg Hypophosphatasia 4,5
PPBT_HUMAN
Streptomycin-6-phosphatase STRK_STRGR n.d. n.d. — 6
(EC 3.1.3.39)
Alkaline phosphodiesterase/ PCI_HUMAN 8.0-9.0 Mn, Mg, or Ca Not known; increased activity 7
nucleotide pyrophosphatase in type II diabetes
(EC 3.1.4.1/3.6.1.9}
Phosphoglycerol transferase MDOB_ECOLI 8.9 Mn — 8
(EC 2.7.8.20)
Ca®*-ATPase — 8.0 Ca — 20
Phosphonopyruvate decarboxylase® BCPC_STRHY n.d. Mg — 9
Phosphonoacetate hydrolase — 7.7-9.0 Zn, Mn, or Co — 10
(EC 3.11.1.1)
Phosphonate monoesterase — 8.5-9.0 Mn — 11
Arylsulfatase (EC 3.1.6.1) ASLA_ECOLI n.d. n.d. Chondrodysplasia punctata 12
ARSE_HUMAN
Steroid sulfatase (EC 3.1.6.2) STS_HUMAN 6.0-7.5 n.d. X-linked ichthyosis 13
N-acetylgalactosamine 6-sulfatase GA6S_HUMAN 3.5-40 n.d. MPS® type IVA 14
(EC 3.1.6.4) (Morquio A syndrome)
Cerebroside sulfatase (EC 3.1.6.8) ARSA_HUMAN 4.8-6.2 Mg Metachromatic leucodystrophy 14
N-acetylgalactosamine 4-sulfatase ARSB_HUMAN n.d. Ca? MPS type VI 16
(EC 3.1.6.12) (Maroteaux-Lamy syndrome})
Iduronate 2-sulfatase (EC 3.1.6.13) IDS_HUMAN 4.0-5.7 nd. MPS type I1 (Hunter syndrome) 17
N-acetylglucosamine 6-sulfatase GL6S_HUMAN 3.9-5.7 n.d. MPS type IIID 18
(EC 3.1.6.14) (Sanfilippo D syndrome)
N-sulfoglucosamine sulfatase SPHM_HUMAN 3.9-4.1 n.d. MPS type IIIA 19

(EC 3.10.1.1)

(Sanfilippo A syndrome)

*Absence of 2,3-bisphosphoglycerate-dependent PGM in humans causes myopathies.

PReferences: 1, Singh and Setlow (1979a); 2, Carreras et al. (1982); 3, Hammer-Jespersen and Munch-Petersen (1970); 4, Henthorn et al. (1992); 5,
Murphy et al. (1995); 6, Mansouri and Piepersberg (1991); 7, Oda et al. (1993); 8, Jackson and Kennedy (1983); 9, Nakashita et al. (1997); 10, McGrath
et al. (1995); 11, Dotson et al. (1996); 12, Parenti et al. (1997}); 13, Alperin and Shapiro (1997); 14, Bielicki and Hopwood {1991); 15, Lukatela et al. {1998);
16, Bond et al. (1997); 17, Bielicki et al. (1990); 18, Freeman and Hopwood (1987); 19, Freeman and Hopwood (1992); 20, Desrosiers et al. (1996).

°Not determined.

4Phosphonopyruvate decarboxylase activity of BCPC_STRHY has not been demonstrated experimentally and could have been encoded by a different
gene; actual function of this protein remains unidentified.

°MPS, Mucopolysaccharidosis.
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His-331

His-412

His-370

Fig. 2. Conserved residues in the enzymes of the alkaline phosphatase
superfamily. The scheme of the active center of the E. coli alkaline phos-
phatase (modified from Kim & Wyckoff, 1991); amino acid residues that
are conserved in phosphopentomutases and phosphoglyceromutases
(Fig. 1) are labeled in bold; nonconserved amino acid residues are labeled
in italic, W indicates water molecules.

Bacterial iPGMs also require Mn?* for activity (Singh & Set-
low, 1978, 1979b; Watabe & Freese, 1979; Kuhn et al., 1993).
Recently, a detailed study of Mn2* binding by iPGM from Bacil-
lus megaterium demonstrated a cooperativity in Mn-dependent ac-
tivation of iPGM with a Hill coefficient of 2.1 & 0.1, indicating
that two Mn atoms bind per iPGM molecule (Kuhn et al., 1995).
Thus, phosphopentomutase and bacterial iPGM each require two
Mn atoms for activity.

The metal requirements of the plant iPGM have been a subject
of some controversy. It was first reported that iPGM from wheat
germ was inhibited by EDTA (Leadlay et al., 1977; Smith & Hass,
1985) and required Mn2* or Co?* for reactivation after denatur-
ation (Smith et al., 1986). In contrast to these data, the activity of
castor bean iPGM was reported unaffected by passing the enzyme
solution through Chelex resin (Botha & Dennis, 1986). No data
were presented, however, and the experimental protocol used has
not been shown to completely remove trace metals from the reac-
tion mixture. Based on the high level of sequence similarity be-
tween the plant and bacterial iPGMs (Grana et al., 1995; Fig. 1), it
would be reasonable to suggest that plant enzymes are also metal
dependent.

Sequence analysis shows that alkaline phosphodiesterase/
nucleotide pyrophosphatase PC-1, a cell surface enzyme, impli-
cated in pathogenesis of cancer and diabetes (Maddux et al., 1995),
is also a member of the AP superfamily. Comparison of PC-1 with
AP (not shown) shows that Thr-204 of PC1_MOUSE aligns with
the active site Ser-102 of AP (Fig. 2); it is similarly phosphorylated
during the catalytic cycle of PC-1 (Belli et al., 1995). Autotaxin, a
human tumor motility-stimulating protein, very similar to PC-1
(Clair et al., 1997; Fig. 1) has the same conserved region around
Thr-208, indicating that it could also be phosphorylated. Divalent
cations (Ca®*, Mg?", or Mn?") are required for the activity of
PC-1 (Oda et al., 1993); they also improve its thermal stability
(Belli et al., 1994). Nucleotide pyrophosphatase activity has also
been found in Haemophilus influenzae (Kahn & Anderson, 1986);
it could belong to one of the previously uncharacterized H. influ-
enzae proteins shown in Figure 1. Mn2" was also shown to stim-
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ulate the activity of three additional members of the AP superfamily
(Fig. 1; Table 1), phosphoglycerol transferase (Jackson & Ken-
nedy, 1983), phosphonoacetate hydrolase (McGrath et al., 1995),
and phosphonate monoesterase from a glyphosate-degrading bac-
terium (Dotson et al., 1996). Another unusual member of the AP
superfamily is the Ca?"-dependent ATPase that requires two Ca
atoms for activity (Desrosiers et al., 1996; Peiffer et al., 1996).
Finally, an outer membrane protein YHBX ECOLI, associated with
the adherence of enteropathogenic E. coli O157:H7 to human epi-
thelial cells (Zhao et al., 1996), is also a member of this super-
family. The conservation of the predicted catalytic residues (Fig. 1)
suggests that this protein possesses phosphatase activity that may
be important for pathogenicity.

Several amino acid residues that form the active center of AP
(Kim & Wyckoff, 1991) or sulfatases (Bond et al., 1997; Lukatela
et al., 1998) are not conserved in phosphopentomutase and iPGM.
The structure of the AP active center (Fig. 2) shows that one of
these missing amino acid residues, Arg-166, binds the two remain-
ing O atoms of the phosphate group (Kim & Wyckoff, 1991;
Coleman, 1992) and thus assists in loosening the bond between the
P atom and Znl-bound O atom of the leaving RO~ group. Neither
could we identify a counterpart of the phosphorylated Ser-102 of
AP in phosphopentomutase or iPGM, even though iPGM has been
suggested to form a phosphoenzyme intermediate (Blattler &
Knowles, 1980).

The balance between phosphotransferase and phosphatase reac-
tion may be affected by the difference in the metal specificity
between AP, on one hand, and phosphopentomutase and iPGM, on
the other hand. Even though AP is maximally active with Zn>*
ions, substitution of Mn2* or Co?* for Zn%* still produced an
enzyme with detectable activity. The decreased activity of such
enzymes was largely due to the lower rate of the enzyme dephos-
phorylation, caused by a tighter binding of phosphate (Applebury
et al., 1970; Coleman, 1992). Such an arrangement favors phos-
photransferase reaction, which could be a reason for the Mn>*
dependence of phosphopentomutase and iPGM.

The alignment in Figure 1 also shows several highly conserved
amino acid residues that have no known role in enzyme activity.
These include Asp-346, Thr-367, Thr-413, Asp-437, and Thr-441
of AP and additional Thr residues in phosphopento- and phospho-
glyceromutases, which have no counterparts in other enzymes.
Examination of the three-dimensional structures of AP and sulfa-
tases shows that in phosphopentomutases and iPGMs, only the
equivalents of Thr-367, Thr-413, and GIn-410 of AP are likely to
be positioned close enough to the phosphate-binding site to par-
ticipate in binding of the carbohydrate moiety of the phosphocar-
bohydrate substrate (Fig. 1).

Asp-346 and Asp-437 of AP, located at ca. 20 A from the metal-
binding site in both AP and sulfatases, could be involved in the
maintenance of the structural integrity of these enzymes. It is also
possible that they participate in a relay that directs substrates to the
active sites of these enzymes. In any case, the absence of activity
in D255H and D335V mutants of human cerebroside sulfatase
(Hess et al., 1996; Lissens et al., 1996) demonstrates that these
conserved Asp residues are required for sulfatase activity, and
suggests that they might be important in other enzymes as well.
Analysis of genetic disorders that result from mutations in human
genes coding for known enzymes may offer additional insight into
the organization of their molecules. Several inherited disorders,
such as hypophosphatasia, chondrodysplasia, metachromatic leu-
kodystrophy, and various mucopolysaccharidoses are caused by
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missense mutations in the genes for sulfatases that belong to the
AP superfamily. Some of these mutations result in single amino
acid substitutions in the conserved motifs shown on Figure 1 and
abolish the enzymatic activity (reviewed in Henthorn et al., 1992,
Parenti et al., 1997).

The phylogenetic distribution of the AP superfamily enzymes is
unusual. While some bacteria, such as E. coli or Bacillus subtilis,
encode both iPGMs and APs, archaea and eukaryotes usually have
only one of these enzymes (Table 2). Thus, iPGM activity has not
been found in vertebrates (Carreras et al., 1982); the respective
gene is also absent from the yeast genome. Instead, fungi and
vertebrates have a different, 2,3-bisphosphoglycerate—dependent
form of phosphoglycerate mutase (Fothergill-Gilmore & Watson,
1989). In algae, iPGM is encoded in the chloroplast, while in
higher plants it is nuclear encoded and absent from the chloroplast
genome. Plant iPGMs thus appear to have chloroplast origin. On
the other hand, AP, found in yeast and animal cells, so far has not
been described in plants. Conceivably, AP and iPGM could have
evolved from a common ancestral enzyme, with selective loss of
one of these enzymes in various eukaryotic branches. The pairs of
paralogous archaeal proteins (e.g., MJ0O010 and MJ1612) have
shown significant sequence similarity to all the enzymes of the AP
superfamily and may resemble the ancestral phosphomutases.

The distribution of the two classes of PGMs in bacteria is also
remarkable. While organisms with larger genomes, such as E. coli,
B. subtilis, and Synechocystis sp. have genes coding for both classes
of this enzyme (Table 2), the organisms with smaller genomes
code for only one of them. Thus, iPGM is the only form of this
enzyme that is encoded in the genomes of such human pathogens
as Mycoplasma genitalium, Mycoplasma pneumoniae, and Heli-
cobacter pylori, the causative agents of nongonococcal male ure-
thritis, atypical pneumonia, and gastric ulcer, respectively. The
importance of iPGM for the metabolism of these bacteria and its
apparent absence in vertebrates (Carreras et al., 1982) suggest that
iPGM may be a plausible target for new, specialized antibacterial
drugs. The 3D structure of iPGM, once determined, will facilitate
the development of such drugs and will help resolve the remaining
questions about its catalytic mechanism.
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