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Abstract 

A free energy function, combining molecular mechanics energy with empirical solvation and entropic terms, is used for 
ranking near-native conformations that occur in the conformational search steps of homology modeling, i.e., side-chain 
search and loop closure calculations. Correlations between the free energy and RMS deviation from the X-ray structure 
are established. It is shown that generally both molecular mechanics and solvation/entropic terms should be included 
in the potential. The identification of near-native backbone conformations is accomplished primarily by the molecular 
mechanics term that becomes the dominant contribution to the free energy if the backbone is even slightly strained, as 
frequently occurs in loop closure calculations. Both terms become equally important if a sufficiently accurate backbone 
conformation is found. Finally, the selection of the best side-chain positions for a fixed backbone is almost completely 
governed by the solvation term. The discriminatory power of the combined potential is demonstrated by evaluating the 
free energies of protein models submitted to the first meeting on Critical Assessment of techniques for protein Structure 
Prediction (CASPI), and comparing them to the free energies of the native conformations. 
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Identifying native and near-native folds among a set of conforma- 
tions is an important step in a variety of applications involving 
conformational search. Here we focus on homology modeling that 
aims to build the structure of a target protein beginning with the 
coordinates of a homologue serving as the template. Homology 
modeling employs search algorithms to determine the structure of 
certain loop regions and to place nonconserved side chains. Ac- 
cordingly, this paper deals with the problems of ranking near- 
native conformations that are generated by side-chain search and 
loop closure algorithms, or have been obtained from a template by 
various homology modeling procedures. 

As shown by Novotny and co-workers (Novotny et al., 1988), 
molecular mechanics energy functions may be unable to distin- 
guish between correct and misfolded conformations. While mo- 
lecular mechanics is a useful tool for studying the effects of covalent 
bonding, excluded volumes, and coulombic electrostatics, it is in- 
adequate for a thermodynamical description of stable, compact 
protein folds that may be heavily influenced by the nature of their 
solvent exposed surfaces (Vajda et al., 1997). A further disadvan- 
tage of molecular mechanics is its tendency to yield a rugged 
energy surface with countless local minima, resulting in an ex- 
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treme sensitivity to small perturbations in the atomic coordinates. 
Due to these difficulties, molecular mechanics has been increas- 
ingly replaced by simplified, structure-based potentials (Vajda 
et  al., 1997; Sippl, 1995). The main applications have been fold 
recognition (Godzik et al., 1992; Maiorov & Crippen, 1992; Bry- 
ant & Lawrence, 1993; Sippl, 1993), and ab initio folding of poly- 
peptides or small proteins (Wilson & Doniach, 1989; Srinivasan & 
Rose, 1995; Jernigan & Bahar, 1996; Yue & Dill, 1996). However, 
there is no guarantee that any of these empirical potentials will be 
able to distinguish reasonably well between native and near-native 
protein folds (Huang et al., 1996; Park & Levitt, 1996). 

The goal of this paper is twofold. First, we describe a free 
energy potential that expands a molecular mechanics energy func- 
tion by empirical solvation and entropic terms, and is computa- 
tionally efficient to be used in a variety of applications involving 
conformational search. The same potential has been extensively 
used for docking and binding free energy calculation (Vajda et al., 
1994; Gulukota et  al., 1996; King et al., 1996; Weng et al., 1996). 
Although the various terms of the free energy function are based 
on  very different models, we have shown that they are consistent 
with each other and with thermodynamic data (Vajda et al., 1995; 
Weng et al., 1997). However, in docking and binding free energy 
calculation, it is frequently assumed that either both molecules are 
rigid, or the energy change due to flexible deformations is small 
relative to other contributions to the binding free energy (Novotny 
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et al., 1989; Vajda et al., 1994; Jackson & Sternberg, 1995; Nau- 
chitel et al., 1995; Verkhivker et al., 1995; Wallqvist et al., 1995). 
These assumptions clearly do not apply to homology modeling 
where the search is performed over  a set of different conformations 
that may be heavily strained. In fact, as we will show, the internal 
energy terms that occur due to the deformations of the polypeptide 
geometry are generally very important, and can even dominate the 
free energy expression. 

Our second goal is to demonstrate the usefulness of the empir- 
ical free energy potential in distinguishing native or near-native 
protein conformations from others that are less native-like. Tests 
involve ensembles of decoys generated by search algorithms that 
are part of homology modeling, i.e., side-chain search and loop 
closure. The discriminatory power of the potential is further dem- 
onstrated by evaluating the free energies of protein models sub- 
mitted to the first meeting on Critical Assessment of techniques for 
protein Structure Prediction (CASPl), and comparing them to the 
free energies of the native conformations. 

Empirical free energy functions 

Here we describe the basic principles of free energy evaluation by 
empirical approaches, with more details given in Methods. The 
free energy difference, AG = G - Go, where Go is the free energy 
in a reference conformation, is calculated by the expression 

where E, Gdr and S, denote the molecular mechanics energy, the 
desolvation free energy, and the conformational entropy, respec- 
tively. The energy E is calculated by a molecular mechanics po- 
tential for the conditions of a reference medium, which can be 
either vacuum or an organic liquid. In the most general case, E 
includes van der Waals, electrostatic, and internal energy terms, 
E = Evdw + Eelec + Einr, where the internal (bonded) energy E,,, is 
the sum of bond stretching, angle bending, torsional, and improper 
terms, E,,, = Ebond + EunRIp + Edihedml + Eimproper. The desolvation 
free energy Gd is defined as the free energy of transferring the 
protein from water into the reference medium, and is based on the 
classical atomic solvation parameter (ASP) model (Eisenberg & 
McLachlan, 1986; Wesson & Eisenberg, 1992). The reference state 
is a folded conformation, and hence the difference in entropy, ASc 
is restricted to side chains (Pickett & Sternberg, 1993). 

Notice that using Equation 1 we calculate the free energy dif- 
ference between two states rather than just the energy difference. 
Indeed, both E and Gd represent an entire ensemble of equiener- 
getic structures, such as side-chain rotamers, rather than a single 
conformation. Each ensemble has some conformational entropy, 
resulting in the entropy change term TAS,. Furthermore, both E 
and Gd are implicitly averaged over an ensemble of water config- 
urations. In particular, Gd includes both the energy and the entropy 
of desolvation. 

Since the solvent is not modeled explicitly, the calculation of 
solvent-solute van der Waals (vdW) interactions requires approx- 
imations. The most straightforward strategy is to account for these 
interactions in the desolvation term AGd, which can be accom- 
plished by using vacuum as the reference medium (Wesson & 
Eisenberg, 1992; Abagyan & Totrov, 1994; Smith & Honig, 1994; 
Pellequer & Chen, 1997). The solute-solute van der Waals inter- 
actions are obtained by the usual 6-12 formula. However, as we 

will further discuss, this approach has substantial shortcomings in 
free energy calculations. In fact, since the solute-solvent and solute- 
solute vdW terms are based on very different models, the free 
energy function is very sensitive to small perturbations in the 
atomic coordinates, leading to a rugged free energy surface as in 
the case of molecular mechanics. 

An alternative approach, frequently used  in binding free energy 
calculations, is based on the approximation that the solute-solute 
and solute-solvent interfaces are equally well packed, and hence 
the van der Waals contacts lost between solvent and solute are 
balanced by new solute-solute contacts formed upon protein fold- 
ing (Adamson, 1982; Novotny et al., 1989; Nicholls et al., 1991). 
Due to this cancellation both solute-solvent and solute-solute van 
der Waals terms can be excluded from the model. Within the 
framework of an atomic solvation parameter model, this can be 
easily accomplished by considering an organic liquid as the refer- 
ence medium, because the free energy of transfer between two 
liquids includes only relatively small, differential van der Waals 
effects (Weng et al., 1997). The removal of the solute-solute van 
der Waals term reduces the molecular mechanics energy to 

resulting in a relatively “smooth” free energy function. 
The disadvantage of the above approach is its insensitivity to 

steric clashes or cavities. To some degree, this problem can be 
overcome by van der Waals normalization prior to the free energy 
calculations. Van der Waals normalization means that all confor- 
mations are minimized for some number of steps, the structure 
with the lowest van der Waals energy is selected, and all the other 
structures are further minimized to attain the same van der Waals 
energy. The additional minimization removes steric clashes or cav- 
ities, and thereby assures that the conditions for assuming van der 
Waals cancellation are better satisfied. Notice that the removal of 
major packing errors generally increases the internal energy and 
hence the free energy. 

Results 

Analysis of decoys obtained by side-chain search 

Side chains were removed from different surface regions of HPR, 
a phosphocmier protein which was one of the homology modeling 
targets of the CASPl meeting (Mosimann et  al., 1995). Using a 
fixed backbone, a variety of new conformations were generated by 
a side-chain search algorithm (Bruccoleri et  al., 1988; Bruccoleri 
& Novotny, 1992). The resulting structures were subjected to van 
der Waals normalization, and the free energies were calculated by 
Equation 1. Since the side-chain conformational entropy depends 
only on the backbone conformation which is held invariant, we set 
TAS, = 0. The X-ray structure of the protein was used as the 
reference state. For the generated decoys. Figures 1-3 show the 
free energy difference AG, the conformational or molecular me- 
chanics energy change AE,  and the desolvation free energy differ- 
ence AGd, respectively, all as functions of the RMSD from the 
X-ray structure of the HPR protein. 

The decoys used in this test have been generated in three dif- 
ferent runs involving residues 1-12, 33-45, and 55-66, respec- 
tively, of the HPR protein.  The  side-chain  search  has been 
accomplished by using the ALL option of the CONGEN program. 
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Fig. 3. Desolvation free energies (AGJ of decoys generated by side-chain 
search. 
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Fig. 1. Free energies (AG) of decoys generated by side-chain search. 

Each CONGEN search yields a long list of conformations, ranked 
according to their CONGEN energies, accounting for the internal 
energy of the side chains and their interactions with the rest of the 
protein (Bruccoleri et  al., 1988; Bruccoleri & Novotny, 1992). 
From each list the 100 lowest energy structures were selected for 
van der Waals normalization. Free energies are shown for fewer 
decoys, however, because the van der Waals energies of some 
structures could not be reduced to the common value in the van der 
Waals normalization. Figure 1 also shows the free energy of the 
X-ray structure of the HPR protein after 200 steps of minimization 
(circle with a dot). Notice that the RMSD of this conformation 
slightly differs from zero due to the minimization. 

1994). Results are shown for loop 132-136 from the serine pro- 
teinase 2sga and loop 120-124 from the dihydrofolate reductase 
3dfr. Prior to free energy evaluation, all conformations taken from 
the decoy library were subjected to 200 steps of minimization. As 
will be described in Discussion, in evaluating loop decoys the van 
der Waals normalization can be replaced by simple minimization 
with little effect on the results. Figures 4-6 show the free energy 
difference AG, the molecular mechanics energy change A E ,  and 
the desolvation free energy difference AGd, respectively, for loop 
132-136 from 2sga. The same quantities for  loop 120-124 from 
3dfr are shown in Figures 7-9. 

Evaluation of predicted  structures from CASPl 

Prior to the CASPl meeting, a number of research groups pre- 
dicted structures for seven proteins provided as homology model- 
ing targets (Mosimann et al., 1995). Here we calculate the free 
energy of each prediction for the four proteins with the highest 

Analysis of decoys obtained  by loop closure 

The analysis exploits the library of decoys that has been generated 
by J. Moult and co-workers for  a number of short loops by exten- 
sive conformational searches (Moult & James, 1986; Fidelis et al., 
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Fig. 4. Free energies (AG) of decoys generated for loop 132A'd-136AsP of 
2sga. 

Fig. 2. Molecular mechanics energies ( A E )  of decoys generated by side- 
chain search. 
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Fig. 5. Molecular  mechanics  energies (AE) of decoys  generated  for loop 
132A'a-136A'p of 2sga. 

number of predictions submitted, and compare it to the free energy 
of the native conformation. Table 1 shows the four targets and the 
best templates available in the Protein Data Bank at the time of the 
prediction contest, along with relevant data illustrating the degree 
of difficulty associated with the modeling of each protein. The first 
and second columns  give the target name and template pdb  code, 
respectively, with the resolution of the crystal structure in paren- 
thesis. The third and fourth columns show the sequence identity 
and number of gaps, respectively, between the target and template 
proteins. The remaining columns show the spread of RMSD values 
attained by the predictors, and the mean RMSD, calculated for 
both backbone and all heavy atoms. 

Tables 2-5 show the results of free energy calculations per- 
formed on the predictions submitted. Some predictions have been 
left out due to errors in sequence or missing coordinates. For each 
protein we van der Waals normalized the submissions, allowing us 
to remove the van der Waals terms from the potential. In all tables 
we list the electrostatic energy AEelec, the desolvation free energy 
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Fig. 6. Desolvation  free  energies (AGd) of  decoys  generated for loop 132A'"- 
1 36AsP of 2sga. 
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Fig. 7. Free  energies (AG) of decoys  generated for loop 120G'y-124G'y of 
3dfr. 

AGd, the internal energy A&, defined as the sum of bond length, 
bond angle, dihedral, and improper energy terms, and the molec- 
ular mechanics energy A E  = AE,,, + AEelec. The next column, he,  
is defined as the sum of nonbonded terms only, Ae = AEelec + 
AGd, and is included to demonstrate the failure of a free energy 
function that lacks the internal energy term. The last columns in 
each table, AG, is the free energy function that includes both 
bonded and nonbonded energy terms, AG = A Einr + A Eelec + AGd. 
The reasons for omitting the side-chain conformational entropy 
change term, TAS, will be discussed in Methods. 

Discussion 

Analysis of decoys obtained by side-chain search 

The three distinguishable clusters of points in Figure 1 correspond 
to three separate runs involving the side chains of residues 1-12, 
33-45, and 55-66. The separate circle with a  dot represents the 
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Fig. 8. Molecular  mechanics  energies ( A E )  of decoys  generated for loop 
120G'y-124G'y of 3dfr. 
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Fig. 9. Desolvation free energies (AGd) of decoys generated for loop 120"y- 
124''y of 3dfr. 

minimized X-ray structure of the HPR protein. In each run, all 
conformations generated are in a narrow RMSD range, suggesting 
that CONGEN  is not an ideal device for side-chain search. Notice, 
however, that only the 100 lowest energy structures have been 
retained from each CONGEN calculation, and there exist many 
further structures that have higher RMSD. Although retaining only 
100 structures gives a relatively poor sampling within each run, the 
three runs together show that selecting lower free energy structures 
generally yields lower RMSD. Furthermore, the minimized X-ray 
structure has the lowest free energy. 

It is well known that solvation effects are important to guide 
side-chain placement (Schiffer et al., 1993; Johnson et al., 1994). 
According to the relationship between the molecular mechanics 
energy and RMSD, shown in Figure 2, we can even conclude that 
molecular mechanics on its own  is practically useless in this prob- 
lem. Although the variation in  RMSD is limited among the 100 
lowest energy structures selected from each run, the value of the 
molecular mechanics energy varies by as much as  10  kcal/mol. 
What is even worse, energies substantially lower than that of the 
native structure can be attained. By contrast, the solvation term 
(ACd) shown in Figure 3 ranks the generated conformations almost 
ideally, both among and even within the clusters. 

As shown in Figure 1, the well-known shortcoming of purely 
molecular mechanics potentials (Novotny et al., 1988) can be al- 

Table l. Comparative modeling cases analyzed a,b 

Target Template Sequence identity 
(resolution) (resolution) (%I 

leviated by adding solvation. However, it appears that with a fixed 
backbone, after major clashes have been eliminated by energy 
minimization, the best criterion for selecting native and near-native 
side-chain conformations is the solvation free energy, because the 
molecular mechanics energy does not provide any structural infor- 
mation (see Figure 2). 

Analysis of decoys obtained by loop closure 

In loop calculations both backbone and side chains vary within a 
short fragment. As shown in Figure 4  for loop 132-136  of 2sga, 
there exists a correlation between free energy and RMSD, and 
hence selecting low free energy structures one can identify near- 
native conformations among such decoys. As shown in Figure 5, 
the contribution of the molecular mechanics term is much more 
important than in the case of side-chain search. In fact, the overall 
free energy function closely follows the molecular mechanics en- 
ergy. Compared to the variation of almost 40 kcal/mol in the 
molecular mechanics energy, the variation in the solvation energy, 
shown in Figure 6  is negligible (2.5 kcal/mol). The entropic con- 
tribution, TAS,, is even smaller (not shown separately).  Thus, the 
discriminant is the molecular mechanics energy. The two compo- 
nents of this term, Le., internal and electrostatic energies, behave 
very similarly to each other, with larger variation in the internal 
energy term (30 kcal/mol vs. 10 kcal/mol). 

Region 120-124 of 3dfr includes a loop that is exposed to 
solvent to a greater extent than loop 132-136  of 2sga, which is 
largely buried. Therefore we expect the solvation effect, shown in 
Figure 9, to contribute more to the variation in the free energy than 
in the previous case. Indeed, for this loop the molecular mechanics 
and solvation energies are on about the same scale, although the 
molecular mechanics term shown in Figure 8 remains the more 
important of the two contributions. The free energy function is a 
relatively good predictor of the RMSD, with the exception of  a low 
energy cluster centered at 0.7 A. The same low energy cluster seen 
in both Figures 8 and 9, and thus both components of the free 
energy function identify this cluster as energetically more favor- 
able than the native. The conformations in this cluster primarily 
differ from the native in the orientation of the Glu- 123 side chain, 
which, with an average B-factor of 94.2, is essentially undefined in 
the X-ray structure. As in the case of the 2sga loop, the internal 
energy alone would be a good predictor of the RMSD, although it 
has somewhat smaller variation (9 kcal/mol) than the total molec- 
ular mechanics term. 

We have previously used a free energy potential that included all 
terms of Equation 1 but the internal energy. In particular, we cal- 

Backbone RMSD 
No. of 

All atom RMSD 

gaps' Range Mean Range Mean 

EDN (2.2) 6rsa (2.0) 39.7 
CRABP I (2.7) 2hmb (2.1) 43.1 
HPR (2.0) 1 pch  (1 3 )  41.4 
NM23  (2.0) lndl (2.4) 77.5 

4 3.7-5.3 4.6 4.9-6.4 5.8 
3 2.0-3.7 2.7 2.6-4.4 3.4 
0 1 .O-4.1 1 .S 1.7-4.3 2.1 
0 0.4-2.0 1.2 1.3-3.1 2.3 

"From the CASPl meeting. 
bResolution and  RMSD values are given in A. 
'Based on results of sequence alignment using GCG software. 
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Table 2. Predictions for CRABP I " 

Group AE,,,,b AGdc AE!,;   AEe A G f  AGg 

Abagyan 
Moult 1 
Moult 2 
Sali 
Vinals 1 
Vinals 2 
Vinals 3 
Vriend 
Weber 1 
Weber 2 

26.8 3.3 32.3 59.1 30.0 62.4 
39.4 -0.2 32.3 71.7 39.3 71.6 
27.5 2.1 22.8 50.4 29.6 52.5 
45.1 -3.2 10.5 55.5 41.9 52.4 

-12.4 10.9 53.4 41.0 -1.4 52.0 
66.9 -3.8 78.5 145.4 63.1 141.6 
64.5 -0.3 89.1 153.6 64.2 153.3 
52.7 -9.1 12.8 65.5 43.6 56.3 
-8.6 11.0 74.7 66.1 2.4 77.0 
-3.8 8.8 74.7 70.9 5.0 79.7 

"Energy values relative to that of the native structure. 
'Electrostatic energy. 
'Desolvation free energy. 
*AEinr = AEbond + AEang/r + AEdlhedm/ f AEmproper. 
e A E  = AE,,, + AEelvL. 
'Ac = AErlrc + AGd. 
gAG = AE,/,, + AE,,, + AGd. 

culated the free energies of protein unfolding and showed that the 
results are in good agreement with the experimentally determined 
values (Weng  et al., 1997), suggesting that both unfolded and 
native folded protein conformations are  free of significant strains 
that would affect the folding free energy. By contrast, most loop 
conformations in the decoy library are heavily strained even after 
minimization. This should not come as a surprise since the local 
minimization methods applied to each loop conformation from the 
decoy library are expected to find only local energy minima, and 
thus are generally unable to proceed to a fully relaxed conforma- 
tion of the molecule. The fact that we find very interesting and 
useful is that the molecular mechanics energy values at these local 
minima correlate with the RMSD from the native structure as 
shown in Figures 5 and 8, and hence can be  used to select the least 
distorted states. 

Table 3. Predictions for EDN" 

Group AEeipc' AGdc AEln; A E e  A(?' AGg 

Biosym 
Koehl 
Moult 
Sali 1 
Sali 2 
Saqi 1 
Vinals 1 
Vinals 2 
Vinals 3 
Weber 

48.8 13.7 50.4 99.2 62.4 112.9 
54.5 16.1 24.1 78.7 70.6 94.7 
45.3 2.1 46.2 91.5 47.4 93.6 
45.6 8.2 27.5 73.1 53.8 81.3 
51.6 2.5 29.4 81.0 54.1 83.5 
31.9 8.2 52.3 84.2 40.1 92.4 
35.8 2.4 102.3 138.2 38.2 140.5 
14.6 6.4 131.1 145.7 20.9 152.0 
6.2 6.6 61.1 67.3 12.9 73.9 

32.7 0.4 112.8 145.5 33.0 145.9 

"Energy values relative to that of the native structure. 
'Electrostatic energy. 
'Desolvation free energy. 
*AEmr = + AEang/e  + AEdthedra/ + AEimproper. 
' A E  = AE;", + AEefeC. 
'AG = AE,L,, + AGd. 
'AG = AEelpc + AEi,, + AGd. 

Table 4. Predictions for HPR" 

Group AE,/,,' AGdC AEln?  AEe Ac' AGg 

Abagyan 
Biosym 
Koehl 1 
Koehl 2 
Mosenkis 
Moult 
Vriend 
Weber 

23.8 
8.0 

33.1 
27.8 
35.1 
20.1 
35.3 
24.2 

-3.1  -2.0 21.8 20.7  18.7 
-2.9 4.7 12.7 5.1 9.8 
-3. I 1.8 34.9 30.0 31.8 

2.6 3.1 30.9 30.4 33.5 
-5.7 1.8 36.9 29.4 31.2 
-3.3 1.8  21.9 16.8 18.6 

3.2 4.0 39.3 38.5 42.4 
4.5 13.0 37.2 28.8 41.7 

The above observation may also explain why the van der Waals 
normalization can be replaced by simple minimization in loop 
closure problems. Recall that we introduced van der Waals  nor- 
malization because the free energy function does not include vdW 
terms, and hence packing errors (e.g., atomic overlaps) could go 
unnoticed. However, if there is an overlap of backbone atoms or 
any distortion in the backbone geometry, the minimization will 
substantially increase the molecular mechanics energy term and 
thereby the free energy. 

Evaluation of predicted structures from CASPI 

CRABP, EDN, and HPR constitute moderately difficult homology 
modeling problems, with sequence identities around 40% between 
template and target, while the task of modeling NM23 is trivial, 
with 77.5% sequence identity. Notice, however, that the average 
backbone RMS deviation is nearly identical for HPR (with 4 1.4% 
identity) and NM23 (with 77.5% identity), while CRABP I and 
EDN predictions have deviations that are nearly twice as large. 
The reason for this is that there are no gaps present in the align- 
ments of HPR and NM23 with their templates, while those of 

Table 5. Predictions for NM23" 

Group AE,ipC' AGdc  AE,,,d A E c  AG' A G g  

Koehl -16.7 -2.4 26.9 10.2 -19.1 7.8 
Sali -0.9 3.1 0.9 0.0 2.2 3.1 
Vihinen 40.6 -1.5 11.5 52.1 39.0 50.6 
Vriend 11.2 -6.4 39.4 50.6 4.8 44.3 
Weber 1 -1 .2  7.3 18.7 17.5 6.1 24.8 
Weber 2 0.1 6.9 27.5 27.6 7.0 34.5 

aEnergy values relative to that of the native structure. 
'Electrostatic energy. 
'Desolvation free energy. 

e A E  = AE,,, + AE,,,. 
*AEt"t = + AEang/e + AEdihihpdm/ + AEtmproprr. 

'AG = AEelec + AGd 
'AG = AE,,, + AE,,, + AGd. 
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CRABP and EDN contain several. Thus, the backbones of  HPR 
and NM23 are fully defined by their templates. Furthermore, the 
all atom RMSD between HPR and  its template is noticeably smaller 
than those of CRABP and EDN, even though all three share similar 
sequence identity with their respective templates (around 40%). 
Clearly then, the most important step in homology modeling is 
backbone coordinate determination, as the accuracy of the back- 
bone coordinates limits the accuracy of side-chain placement. 

Results in Tables 2-5 show that the empirical free energy func- 
tion A G  defined by Equation 1 discriminates the X-ray structure 
from the conformations predicted by homology modeling in all 
four problems, often by a considerable margin. As in the case of 
loop closure, the molecular mechanics energy is generally much 
larger than the desolvation term and, apart from a single case, 
discriminates the native structures on its own. The exception is the 
structure by Sali in Table 5,  which has the same molecular me- 
chanics energy as the X-ray structure of the target. However, we 
can accept that this prediction with the a-carbon RMSD of 0.43 8, 
is indistinguishable from the native structure, since such RMSD 
can be seen between two X-ray structures of the same protein. 

Notice that there is a strong correlation between the backbone 
RMSD and the internal energy component of the molecular me- 
chanics energy. As we pointed out, the alignments of CRABP and 
EDN (Tables 2 and 3, respectively) contained gaps, resulting in 
high deviations between predicted and actual backbone coordi- 
nates. For these two proteins the internal energy, AEint ,  ranks the 
native fold as the lowest energy structure by far. On the other hand, 
the alignments of HPR and NM23 were gap free, and thus the 
backbone coordinates of the target are nearly identical to those of 
the template, leading to relatively small backbone RMSD. Tables 4 
and 5, of  HPR and NM23, respectively, reveal that for these pro- 
teins, the internal energy of the predicted structures is about the 
same and sometimes even lower than that of the native. Since the 
internal energy depends mainly on the backbone, the necessary 
similarity of the backbone structures in target and template pro- 
teins suggests a simple test. If the internal energy of a predicted 
target conformation is much higher than the internal energy of the 
template, then the prediction is likely to have a distorted backbone. 
Since such distortions may occur due to erroneous alignment, the 
simple test can be very useful. 

According to our results, the molecular mechanics energy dis- 
criminates the native structure among the predictions, and gener- 
ally dominates the free energy expression unless the backbone 
conformation is very close to the native, such as in the prediction 
by Sali in Table 5 .  It is interesting that the desolvation term at- 
tempts to compensate for large changes in the molecular mechan- 
ics term. For example, three predictions in Table 2 (Vinals 1 ,  
Weber I ,  and Weber 2) have lower electrostatic energies than the 
native. It  is very likely that these models have been heavily min- 
imized using a molecular mechanics energy function, and such 
minimizations frequently yield very low electrostatic and van der 
Waals energies. However, as seen in Table 2, the same three mod- 
els have the highest values of the desolvation free energy AGd. 
However, for the Vinal 1 prediction the compensation is not strong 
enough, and the conformation is distinguished from the X-ray due 
to its much higher internal energy. 

During the last few years a large variety of structure-based and 
hydrophobic potentials have been developed that do not include 
internal or molecular mechanics energy terms (Vajda et al., 1997). 
The primary application of these potentials is threading and ab 
initio simulation of small proteins. Since threading uses “strain- 

free” backbone structures observed in proteins, the potentials can 
perform reasonably well. Similarly, in  folding studies it is mean- 
ingful to assume that local strains are removed on a much shorter 
time scale than that of the folding itself, and hence one can restrain 
consideration to terms representing desolvation and hydrogen bond- 
ing. By contrast, our results show that in homology modeling the 
selection of native and near-native conformations generally re- 
quires including molecular mechanics energy terms in the poten- 
tial. To emphasize this observation, in Tables 2-5 we list the values 
of a nonbonded free energy potential, A(?, that does not include the 
internal energy. While A(? was shown to provide an adequate tool 
for calculating the binding free energy in receptor-ligand com- 
plexes (Vajda et al., 1994; Gulukota et al., 1996; King et al., 1996; 
Weng et al., 1996), in homology modeling it fails to discriminate 
the native structure in two of the four cases (see Tables 2, 4). 

We have found that for each homology modeling target, the free 
energies of the CASPl predictions were higher than those of the 
X-ray structure. However, we were unable to find a correlation 
between free energy and RMSD, although such correlations were 
easily identifiable in side-chain search and loop closure. We think 
that comparing entire models built by homology modeling is more 
difficult than comparing simple decoys, all generated by the same 
method. In fact, homology modeling requires not only loop closure 
and side-chain search, but also the alignment of target and template 
sequences, the selection of loop regions to be built, and the refine- 
ment of the derived structures by some type of energy minimiza- 
tion. The various groups used very different assumptions in these 
steps when working on their submissions to CASPI, resulting in 
predictions that differ from each other in a variety of ways. Since 
the differences affect many variables, we can regard these predic- 
tions as points defined in a very high dimensional conformational 
space. For each target, the set of submitted predictions can be 
regarded as a sample of ten or fewer points, which is clearly too 
small for the analysis of possible interactions. 

Conclusions 

In the eighties Novotny and coworkers (Novotny et al., 1988) 
made the protein community accept that molecular mechanics alone 
is unable to distinguish between correct and misfolded protein 
conformations, and one has to add measures of solvation and pos- 
sibly entropic effects. It is interesting that now  we  may have moved 
too far away from molecular mechanics. During the last few years, 
simplified potentials have been increasingly used  in protein mod- 
eling, primarily for threading and folding simulations. These po- 
tentials attempt to represent the main factors that are known to 
contribute to the stability of folded proteins, i.e., hydrophobic in- 
teractions and hydrogen bonding, and generally do not include 
internal energy terms (Vajda et al., 1997). 

The results of the present paper indicate that, apart from side- 
chain search with a fixed backbone, for ranking near-native con- 
formations that occur in homology modeling it is vital to include 
the internal energy term, in addition to free energy contributions 
representing electrostatic, solvation, and entropic effects. While on 
its own the internal energy may not be able to discriminate be- 
tween native and non-native folds, its addition to the other terns 
drastically improves the discriminating power of the free energy 
function. 

Although protein folding is governed by hydrophobic inter- 
actions, hydrogen bonding, and the loss of conformational entropy, 
these quantities are dwarfed in relation to the internal energy over 
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large fractions of the conformational space. In principle, one can 
reduce the internal energy of the molecule by relaxing all defor- 
mations of the polypeptide geometry, and then use a simplified, 
empirical potential. However, the methods routinely used in con- 
formational searches are unable to accomplish this, and most tra- 
jectories  end up in local minima that are still in the region of high 
internal energy. For  example, although the models submitted to 
CASPl have been refined by their authors and further minimized 
by us, the internal energy dominates the free energy in most cases. 

Although we emphasized that the molecular mechanics terms 
cannot be omitted, ranking near-native conformation requires the 
use  of a complete free energy function that also includes solvation 
and entropic terms. At the beginning of a conformational search, 
the backbone conformations are usually strained, and the internal 
energy dwarfs all other free energy terms. However, selecting con- 
formations with low internal energy moves the search into regions 
of the conformational space where the molecular mechanics and 
desolvation terms are on the same scale. Finally, after a backbone 
conformation is accepted, the all-atom RMSD can be further re- 
duced by a side-chain search governed by the desolvation free 
energy alone. The importance of the molecular mechanics energy 
has recently been emphasized in a study focusing on loop closure 
(Pellequer & Chen, 1997), but without noticing the increasing role 
of solvation as backbone strains are reduced. 

temperature-induced protein unfolding (Weng et al., 1997). The 
method has been extensively used for calculating the loss of en- 
tropy of the side chains that become part of the receptor-ligand 
interface upon protein-protein association. However, the approach 
is less appropriate for calculating the side-chain entropy difference 
between two folded conformations. In fact, although the side-chain 
entropy should depend only on the backbone conformation, we use 
the change in the solvent exposed area of a  side chain to assess if 
it is exposed and hence has its entropy, or becomes buried and 
hence loses it. Since side-chain positions can vary even with a 
fixed backbone, the method has an inherent error. In addition, in 
homology modeling the backbones of the template and the target 
must be similar, and hence the difference in side-chain entropy is 
relatively small. This difference may be comparable in magnitude 
to the inherent error of the method, and hence in some applications 
it may  be more appropriate to ignore the change in side-chain 
entropy. In particular, we did not include the conformational en- 
tropy change term, TAS,, when evaluating the free energy of CASPl 
submissions. While side-chain entropy loss could be calculated by 
a number of more accurate methods requiring simulation or iter- 
ative determination of self-consistent rotamer probabilities, the 
small difference in the side-chain entropy between two similar 
conformations does not justify the use  of these computationally 
more demanding methods. 

Methods Decoy generation 

Free energy calculation 

The energy change A E  in Equation 1 was calculated using version 
19  of the CHARMm force field (Brooks et al., 1983) with a distance- 
dependent dielectric coefficient E = 4r,  and nonbonded cutoff 
17 A. Only polar hydrogens were used. To refine the proteins 
before free energy evaluation (i.e., to remove van der Waals clashes 
or substantial deformations of geometry), we performed either 200 
steps of minimization using the CHARMm potential, or applied 
the van der Waals normalization procedure, in which the minimi- 
zation was carried out until the van der Waals energies of different 
conformations were within 1 kcal/mol of each other. 

The desolvation free energy AGd is based on the atomic solva- 
tion parameter (ASP) model 

As we described, side-chain decoys were generated by fixing the 
backbone coordinates, removing all side chains from certain sur- 
face regions of the HPR protein, and then searching for acceptable 
side-chain placement using the ALL option of the CONGEN pro- 
gram (Bruccoleri et al., 1988; Bruccoleri & Novotny, 1992). These 
searches for side-chain decoys involved fragments 1-12, 33-45, 
and 55-66 of the HPR protein. 

The loop decoys were downloaded from http://prostaxcarb. 
nist.govlPDeclPDecInfo.htm1, the ProStar website. CASPl pre- 
dictions as well as native structures are available for downloading 
on the web at http://PredictionCentexllnl.gov/ from the Protein 
Structure Prediction Center, Lawrence Livermore National Labo- 
ratory, Livermore, California. 

Gd = Z A ~ U !  Testing an alternative method of free energ)’ calculation 

Throughout this paper we used van der Waals normalization in 
where Ai denotes the solvent accessible surface area of the ith 
atomic group  and ui is the corresponding atomic parameter (Eisen- 
berg & McLachlan, 1986), obtained from octanol-to-water transfer 
free energies (Vajda et  al., 1994). 

The calculation of the side-chain conformational entropy loss 
AS, is based on an empirical entropy scale (Pickett & Sternberg, 
1993) in which the maximum conformational entropy S, of each 
side chain was calculated by the classical expression S, = -R X 
XLpi1n(pi), where pi denotes the probability of the ith rotamer. In 
the free energy calculation we assume that the entire side-chain 
entropy is lost, Le., ASc = S,, if the change AA, in the total solvent 
accessible surface area of the side chain is more than 60% of its 
standard side-chain surface areaA,*(Shrake & Rupley, 1973). Other- 
wise the entropy loss is scaled according to AS, = as,, where a = 
AA,/(0.6A,*). 

We have shown that the above entropy scale agrees very well 
with side-chain entropies based on calorimetric observation of 

order to avoid the need for estimating vdW interactions between 
the protein and the solvent. As mentioned in the introduction, an 
alternative  approach to this problem is modeling the solute- 
solvent vdW interactions implicitly as part of the desolvation free 
energy AGd. Within the framework of the atomic solvation param- 
eter (ASP) model, this can be accomplished using ASPS based  on 
vapor-to-water transfer free energies (Wesson & Eisenberg, 1992). 
Then vdW interactions among protein atoms are also included in 
the free energy, and are calculated based  on the Lennard-Jones 
potential. As we mentioned, the shortcoming of this approach is its 
extreme sensitivity to atomic  positions,  Nevertheless, we at- 
tempted to use this more straightforward method, and calculated 
the free energies for the four targets shown in Table 1 and their 
predictions. Prior to energy evaluation, each conformation was 
minimized for 200 steps. For EDN and CRABP some of the ho- 
mology models have lower van der Waals energy than the native 
(results not shown). This is not surprising considering that mini- 
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mization in vacuum can lead to structures more compact than the 
native (Vajda et al., 1993). Although the desolvation energy which 
includes solute-solvent vdW interactions attempts to counteract 
the artificially low vdW energies, its magnitude is too small for 
compensation, and hence we gave up the method in favor of van 
der Waals normalization. 
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