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Abstract: Using techniques from optimization theory, we have natorial libraries and to perform mutational studiggeidhaar-
developed a computer program that approximates a desired pro®lson & Sauer, 1988; Hu et al., 1993; Pu & Struhl, 199%Bean
ability distribution for amino acids by imposing a probability dis- and Kauffman developed a spreadsheet-based method to partially
tribution on the four nucleotides in each of the three codon positionsautomate the generation of bias in amino acids. Their method
These base probabilities allow for the generation of biased codonsearches the space of potential distributions either by manually
for use in mutational studies and in the design of biologically changing the nucleotide mixture, or by exhaustively searching for
encoded libraries. The dependencies between codons in the genetiie best mixture in a specified subregion of the space of all mix-
code often makes the exact generation of the desired probabilittures(LaBean & Kauffman, 1998

distribution for amino acids impossible. Compromises are often This paper describes a fully automated computer program de-
necessary. The program, therefore, not only solves for the “optisigned to generate a probability distribution on amino acids by
mal” approximation to the desired distributidwhere the defini-  biasing codon usage. The program imposes a probability distribu-
tion of “optimal” is influenced by several types of parameters tion on the four nucleotides in each of the three codon positions to
entered by the usgrbut also solves for a number of “sub-optimal” either approximate a desired probability distribution defined for all
solutions that are classified into families of similar solutions. A amino acids, or to approximate a probability distribution defined
representative of each family is presented to the program user, whfor classes of amino acids. Such classes include size, hydropho-
can then choose the type of approximation that is best for théicity, charge, or other properties that the program user might care

intended application. Theéombinatorial Codongrogram is avail-  to define. The probability within each of these classes of amino
able for use over the web from htfgwww.wi.mit.eduy/kim/ acids can be arbitrarily distributed by the program among the
computing.html. individual amino acids in the class or can be skewed by additional

user-imposed constraints. The base probabilities output by the pro-
gram allow for the generation of the biased codons by creating a
weighted mixture of the four nucleotides at each codon position.

Keywords: codon bias; combinatorial libraries; computational
techniques

] ) ] ] ) Methods: Approach: The problem of approximating the desired
Combinatorial and mutational studies of protein structures anjistibution of probabilities for amino acids was formulated as an

functions often require an investigator to generate a nucleotidgyimization problem. Eachotentialsolution (corresponding to a
sequence encoding an amino acid sequence that has a bias towaythicyjar probability distribution for the bagesas assigned an
specific properties. West and Hecht studied correlations betweegnergy based upon thifferencesetween the desired amino acid

protein structures and hydrophobic patterning in amino acid seprgpapilities input by the user and the amino acid probabilities
quences created with a simplified alphabet of two codon typesyenerated by the program. This energy function was used to eval-
NAN (polan and NTN(nonpolaj (West & Hecht, 1995 Otherad | 5te the quality of potential solutions.

hoc methods for generating peptides with specific properties through

biased codon usage have been used in the construction of combi- Computing the probability distribution on amino acids from the

distribution on nucleotideslet P,, P,, and P; denote the three

Reprint requests to: Peter S. Kim, Howard Hughes Medical Institute,pmb"’1bi|ity functions defined by the program on the four nucleo-

Whitehead Institute, Department of Biology, MIT, Nine Cambridge Center, tides in the first, second, and third codon positions, respectively.
Cambridge, Massachusetts 02142; e-mail: tocio@wi.mit.edu. The probability for codom;NoN3z is P1(N;) - Po(N,) - P3(N3). Com-
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bining these values over different codons for an amino aeid ¢ ranging over amino acids, stop codons, and classes of amino

leads to a probability estimaf®.s) on the amino acid of acids chosen by the program user:
E = > wt(c) * E(c). (3)
Pes(@@) = X Pi(Np)-Po(N,)-P3(Ny), 1) c
C=N; Ny N3

The program user enters the weightc) to capture the relative

where the sum is over all codofiscoding foraa. The probability importance of correctly estimating the desired probability for the

of a class of amino acids is the sum of the probabilities of theCth class or amino acid. In addition, this weight can be set sepa-
amino acids in the class. rately for overestimating the probability and for underestimating it

(as it may be more detrimental to miss the probability in one

direction than the othgr
Computing the energy of an amino acid probability distribu- recti 2

tion: To find the “best” solution, an energy function measuring the Solving for the “best” solution: The problem of finding a dis-
quality of the solutions is required. Each amino acid or class ofyihytion on the four bases to approximate the desired probability
amino acids contributes to the energy based on the differencgistriution on amino acids can now be formulated as a problem in
between the estimated probability distributid®.s) output by the  onlinear optimization. The energy function in Equation 3 can be
program and the desired probability distributid®yes input by the  computed from Equations 1 and 2 as a nonlinear combination of
program user. The energy contribution from either a class of amingne pase probabilitieB;(N). Finding the “best” solution is then a
acids or from a single amino aclis matter of minimizing this energy subject to the following linear
constraints:

E(c) = 1 - cos(|Pued) — Pest(©)[ 7). @ « Each of the four base probabiliti&(N) in the three codon

positionsi = 1,2,3 lies between 0 and 1:

This energy function has a basin-like shdpég. 1) that changes
slowly near the desired probability, increases, and then tapers off 0=P(N)=1 forN=AC,GTandi=1,2,3.
as the difference becomes large. In the calculation of the total
energy(which involves combining many of these individual en-
ergy contributiong this shape allows a moderate difference be-
tween the desired and estimated probability for one amino acid or > PR(N)=1 fori=123.
class to have a greater effect than the combined contribution from N=AC.GT
very small differences for a number of amino acids that are not
considered as detrimental t_o the quality 0].( _the _solytlo_n. . the computed probability of an amino adiat stop codon or clags

The total energy of an estimated probability distribution is com- : .

. N o above or below particular values:

puted as a weighted sum of the individual energy contributions for

* The probabilities sum to 1 for each codon position:

Additional nonlinear constraints can also be specified to bound

* P.sf(c) < upper bound an®s(c) > lower bound.

Similarly, the probability of generating a particular codon can
also have an upper bound enforced. This feature can be useful in

2 " i i i T j i " practice to steer the program solution away from rare codons,
1.8k which may cause problems with protein expresgigane, 1995.
1.6r Solving for locally minimal solutionsOften the probability dis-
1.4l tribution on amino acids desired by the user cannot be approxi-
mated exactly by a probability distribution on bases. For example,
o 12 no base probability distribution can generate amino acidécbgons
g "1l TAT and TAC) and Trp(codon TGQ with nonzero probability,
S while also giving zero probability to stop codofBAA, TAG, and
0.8¢ TGA). There are several approximate solutions and the choice of
0.6l the “best” solution depends on the intended application for the
distribution. Thus, it is desirable to present the program user with
0.4 a number of different types of solutions from which to choose.
0.2 | To this end, the base probability space was divided into 125
\ subspaces, wherein each subspace was specified by placing bounds
0 1 i

on the base probabilities in the three codon positions. For each
codon position, either one bashl; was bounded above 0.5 prob-
Estimated Probabilty ability (P;(N;) > 0.5 while the other three base probabilities were
bounded below 0.5, or all four bases were bounded below 0.5.

Fig. 1. Thg qua(ljity of an gséimated probabigty dis”ifbumbﬁes')hfor the dThese five different types of bounds result i 5 125 regions
amino acids is determined by energy contributions from each amino aci . - . -
The energy is based upon the difference between the estirfRgdand of the entire probability space over all three codon positions. Min

desired probabilitie$Pye9. The shape of the energy contribution function imizing the energy on each subspace generates if2éntial
is plotted asPeq varies on thex-axis for Pges = 0.2. solutions.
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A number of the solutions obtained may be unsatisfactory due tavere given weight 1, and the probability of generating a stop
the lack of a good solution within a particular subspace. The procodon was additionally constrained to lie between 0 and 0.1 by
gram eliminates these bad solutions by discarding a fra€tiath imposing bounds.
the largest energy. For the examples presented in this p&jdenf 3
the solutions were discarded.

In addition, many of the remaining solutions are redundant,
generating the same or very similar probability distributions of

Results: Defining the test problems for the prograriio demon-

strate the applicability and limitations of the program, several nat-

. . . e o ral cl f amin ids wer fin n common amin

amino acids. The solutions were therefore classifiedmrfamilies - o, ©'a55€S of amino ac ds we ed? ed t_)asedo common amino
acid properties. For purposes of illustration, we present results

of similar solutions, whera is determined by the program user. - o
. . . . . from using the program to generate codon distributions based upon
For the examples in the results section, five families were consid-

ered. Each family was represented by the member of the familsom? of the groupings of amino acids presented by T?(ﬂ'g’.*a-

: . he input parameters for the program were set to distribute the
with the smallest energgcorresponding to the best solutjofo " : o . .

: " ' . robability approximately equally among the individual amino acids

determine the families, a measure was defined to quantify th&"oP -

S L . >, within each class. The results from running the program to gener-
similarity between two probability distributions on amino acids. o . ) -

. ) . ate these distributions are available via the web at:

The distance between two such potential solutiBgg and Psop
was defined to be the sum over all amino acfofeluding stop
codons, but excluding clasges the absolute value of the differ-
ence between the two probability values:

http://www.wi.mit.edy kim/computing.html.

The website also allows for program users to generate their own
distributions and define their own classes of amino acids to suit
their experimental needs.

The properties used as examples and available at the website
are:

d(Psoizs Psoiz) = E |Psoll(aa) - Psolz(aa)|-
aa

Solutions with similar distributions according to this distance mea-

sure were classified into the same family. A distad¢®as chosen 1. Size:

(via a binary search of the possible distanddsetween pairs of
solutiong to divide the solution space into the desired number of
familiesn. The following procedure incrementally creates families
of solutions by examining each solution in ascending order of
energy(thereby looking at the best solutions fjrsind adding the
solution to a currently existing family if it lies within distanceof

the lowest energy member of the family, and otherwise making the
solution the representative member ofi@vfamily. 2.

Compute the distances between all pairs of solutions. Order
these distances in ascending order.

Start withd equal to the median distance in the ascending list
of all distances.

Step through the solutiorSin ascending order of energy.

Find the representative solutidhfrom the currently created 3
list of families such that the distance betwegandR is less
thand. PlaceSin R's family. If there are no such representa- 4.
tives, then maké the representative of a new family.

« If at any point the number of solutions in the current list of
representatives is greater tharthen start over withl chosen

to be the median in the upper half of the remaining possibles'
distances.

If all solutions are classified by the distance into fewer than
families, then start over witl chosen to be the median in the
lower half of the remaining possible distances.

Solving the nonlinear programThe CFSQP optimization rou-
tines available at

http://www.isr.umd.edylLabs/ CACSE/FSQRfsgp.html 7.

e Tiny: Cys! Ser, Ala, Gly(Fig. 2)

« Small: Asn, Thr, Asp, Pro, CysSer, Ala, Gly
* Medium: Met, Leu, lle, His, GIn, Glu, Val
 Large: Trp, Arg, Tyr, Phe, Lys

The relative size classifications were based upon the van der
Waals volume of the amino acid®ichards, 1974

Hydrophobic residues: Phe, lle, Val, Leu, Met, Trp, His, Tyr,
(Ala, Gly). A hydrophobicity scaléRose et al., 1985vas used

to determine the hydrophobic residues, using both Gly and Tyr
as cutoff amino acids for two different trials. Despite its hy-
drophobic nature, cysteine was not included due to its ability to
form disulfide bonds.

Polar: Arg, Lys, His, Glu, Asp, GIn, Asn, Thr, S€@Figs. 3, 4.

Positive: Arg, Lys(His). Histidine was considered in one trial
run as positively charged and in another as noncharged since
the K, of the histidine side chain is near seven.

Negative: Glu, Asp.

6. Charged: Arg, Lys(His), Glu, Asp(Figs. 5, 6. For the desired

probability in this example, half of the probability was distrib-
uted equally among the positively charged residiesg, Lys,
and Hig, while the other half was distributed among the neg-
ative residuesGlu and Asp. Again, histidine was considered
in one trial run as positively charged and in another as
noncharged.

Aliphatic: Leu, lle, Val.

8. Aromatic: Phe, Tyr, Trp.

were used to solve the nonlinear prograinawrence et al., 1997
A default probability of O and weight or relative importance of 1 9.
was given to amino acids not explicitly specified by the program

user. For the examples in Results, the amino acids in the classeslprogram results for “tiny” and “small” with and without cysteine were

and the entire class were given weight 10 with lower and uppegomputed, since experimental applications may often want to avoid cys-
bounds on the probabilities of 0 and 1, respectively. Stop codongeine residues due to potential disulfide bond formation.

Beta branched: Val, lle, Thr.
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Fig. 2. Probability distributions for the class of tiny amino aciés. Comparison between the distribution of probabilitgsto be
approximatedopen barsand the probabilitie®.s generated by the prograffilled barg. The y-axis gives the probability for each
amino acid listed. The energy of the solution is given at the top in arbitrary Wiit§he nucleotide probabilities generated by the
program in each of the three codon positions to gend?ateFrom top to bottom the panels plot the probabilities for the first, second,
and third positions of the codon.

Note that when a stop codon received nonzero probability, thehat family of solutions. The variability of this range gives a rough
rest of the probabilities were normalized by-1P(STOP. The indication as to the accuracy required when experimentally gen-
probability given in the examples for amino a@d therefore rep-  erating the base probabilities. The range of tolerable accuracy can
resents the fraction of all generated nonstop codons codirmgfor prove useful to the experimentalist generating the nucleotide dis-

tribution, as experimental systems have limitations on their accu-
Analyzing the output for the test exampléor purposes of illus-  racy. For more information on the accuracy required, it is important
tration we present representatives of the types of solutions outpub consider the covariance between different nucleotide probabil-
by the program for several of the classes defined in the previougies by examining the individual solutions within each family. For
section. The optimal solution to the nonlinear program for the clasgxample, T and C nucleotides in the last position of a codon are
of tiny amino acids(including cysteingyields an exact solution. interchangeable in the genetic code, which means that, within a
Figure 2A shows a comparison between the desired probabilitiefamily, covarying the probabilities of T and C while keeping their
input to the program as open bars and the generated probabilitissim constant results in identical probability distributions on amino
output by the program as filled bars. The stacked charts in Figacids. Since the program only identifies one minimal energy so-
ure 2B show the nucleotide probability values that generate théution on each of the 125 subspaces, any variability within base
solution. probabilities in a single subspace is not accessible to the program

For other classes of amino acids, there was often no singleser. For instance, the second solution in Figure 5 allows for more
solution that matched all of the desired probabilities. Additionalvariability among the T and C nucleotides than shown, as long as
amino acids that are outside the desired class are often generatfte total probability allotted to T and C remains constant. The
with nonzero probability due to unavoidable dependencies withiraccuracy required to generate the biased codons should be evalu-
the genetic code. In these cases, the program was used to generated on a case by case basis by the program user.
multiple potential solutions, each with different advantages and Figure 3 shows an example of the top four families generated for
disadvantages in comparison to the ideal solution. These multipléhe class of polar amino acids. While none of the solutions can
solutions were created by running the program in multiple solutionexactly match the desired amino acid probabilities, the solutions
mode, which solves for the best solution on each of 125 subspacesach distribute the probability with different biases, giving the
of the entire space of nucleotide distributions. The program rankgrogram user the choice of which solution to use. The comparison
these solutions based on their quality, and keeps the h&st 2 plot of the amino acid distributions for each family shows the
fraction of solutions that are then grouped into five families of differences between the desired amino acid probabilitigzen
similar solutions based upon the distance measure and the algbar9 and the generated amino acid probabilitiééed bars for
rithm defined in the approach section. For the examples presentethe lowest energy solution within the family. The energy of this
we only show the top four families in each figure, since the lastsolution (in arbitrary unit$ is indicated in each case. The nucleo-
family is often of low quality(though not alway)s All five families tide probabilities that generate this lowest energy solution are plot-
are available for viewing at the website. ted as narrow filled horizontal bars in the three stacked charts

In the figures, the nucleotide variation among the solutions within(corresponding to the nucleotide probabilities for the first, second,
each family is plotted as open bargpresenting a range of prob- and third codon positionsThe open horizontal bars for the nu-
abilities) in the three stacked charts. This range shows the maxieleotide probabilities show the maximum and minimum values
mum and minimum probability values taken by each base withintaken by that base within the family.
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Figure 4 demonstrates the effect of placing an upper bound oare of potential use in designing mutational studies and combina-
the probability of the rare codons AGG and AGA for arginine whentorial libraries. These distributions were chosen for their general
generating solutions for polar amino acids. The ability to constrainapplicability. For specific mutational studies where other distribu-
the probability of generating a particular codon could prove usefultions are required, the program allows for many adjustments of the
as rare codons can often result in decreased levels of protein eparameters to best match the user’s experimental needs.
pression(Kane, 1995. For the arginine example, the two codons  Finally, on a practical experimental note, the user needs to de-
were upper bounded by the fraction at which they occuEsch-  cide whether to use a pre-mixed combination of nucleotides, or to
erichia coli (0.00182 for AGG and 0.00287 for AGADalphin have the nucleotide mixture generated by an automated oligonu-
et al., 1998. As in Figure 3, the top four families of solutions are cleotide synthesizer. This decision will be dictated by the specifics
shown. Restricting the use of the two rare codons restricts the typesf the application. Pre-mixing nucleotides can be expected to give
of solutions that can be generated: one can notice that two of thmore accurate distributions, although pre-mixing will be less con-
examples in Figure 4 have very little probability of generating anvenient, unless a particular mixture is to be used repeatedly in a
arginine due to the avoidance of the rare codons, while all of thegiven application.
examples in Figure 3 have a significant probability of generating

arginine. . . Acknowledgments: Thanks to Masaru Ueno and Yoshihisa Hagihara
Figure 5 provides an example of the top four solution typest,, yheir suggestions of how to make the Combinatorial Codons program

generated when there are competing factors in the desired probgwore intuitive to use. This research was supported by an NIH gRO1L

bility distribution (charged amino acids, for this figyrghat cannot ~ HL41484 from the Program of Excellence in Molecular Biology.
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