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Abstract

We describe an extensive test of Geocore, an ab initio peptide folding algorithm. We studied 18 short molecules for
which there are structures in the Protein Data Bank; chains are up to 31 monomers long. Except for the very shortest
peptides, an extremely simple energy function is sufficient to discriminate the true native state from more than 108

lowest energy conformations that are searched explicitly for each peptide. A high incidence of native-like structures is
found within the best few hundred conformations generated by Geocore for each amino acid sequence. Predictions
improve when the number of discretef0c choices is increased.
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We describe an extensive test of a simple computer algorithm,
called Geocore, for predicting the three-dimensional structures of
peptides from their amino acid sequences~Yue & Dill, 1996!.
Geocore differs from other ab initio protein folding algorithms
~Levitt & Warshel, 1975; Kuntz et al., 1976; Wilson & Doniach,
1989; Skolnick & Kolinski, 1990; Covell, 1992; Sippl et al., 1992;
Vajda et al., 1993; Covell, 1994; Hinds & Levitt, 1994; Kolinski &
Skolnick, 1994; Monge et al., 1994; Wallqvist & Ullner, 1994;
Boczko & Brooks, 1995; Srinivasan & Rose, 1995! in several
respects. First, Geocore is intended as afiltering algorithm, rather
than a folding algorithm. It aims to find a small ensemble of
conformations, within which are native-like structures, rather than
to find the single best conformation. While a folding algorithm is
obviously more desirable in the long run than a filtering algorithm,
we believe that simplified models, at least in their present state of
development, may not be sufficiently good to discriminate subtle
differences~Dill, 1997!. If the ultimate aim is to be predictive for
the broadest possible range of protein structures, then overmodel-
ing to force a few sequences to fold to their single native confor-
mations may be counterproductive for ultimately predicting the
folded structures of other proteins. Hence, in recognition of the
limitations of simple models, our more modest goal here is just to
develop a filtering algorithm.

Second, Geocore is unique in its extensive conformational search
strategy. While this limits the method to short chains, i.e., peptides
shorter than about 30 amino acids at the present time, it has the
advantage of providing a deep test of the energy function. When
other folding methods fail, it is often unclear whether the problem

is a poor energy function or an incomplete search of it. In Geocore,
because the wide coverage of the conformational space, failures
can be attributed unambiguously to the energy model. The large
ensemble of conformations generated by Geocore, often number-
ing over billions, provides the data to evaluate what is wrong with
the potential function. We believe this is an essential step toward
building folding algorithms that can be refined and improved.

Third, among folding algorithms, Geocore has arguably one of
the simplest energy functions, with relatively few parameters. We
find here that when we addf0c choices, taken from the study of
PA Karplus ~Karplus, 1996!, the predictions of Geocore are im-
proved. This implies that the energy function is not limiting, even
in this simple model.

The Geocore algorithm

Here we summarize the method; details are given in Yue and Dill
~1996!. Each amino acid is represented at the united-atom level,
with polar hydrogens included explicitly, for the purpose of hy-
drogen bonding. United atoms include methylene groups, amide
groups, hydroxyl groups, etc. Each~united! atom is a hard sphere
with its appropriate van der Waals~vdW! radius, but with a tol-
erance that allows two atoms to overlap by 0.2 to 0.5 Å. Backbone
conformations are represented by discrete sets of torsion angles
~f0c!. Standard values are used for bond lengths and bond angles.
The user has the option to specify the value of steric tolerance and
the values off0c angles. The default numbers and values of the
f0c angle preferences for each amino acid are extracted from the
Protein Data Bank~PDB! ~Yue & Dill, 1996!.

The Geocore energy function has two terms, hydrophobic inter-
action and hydrogen-bond energy~Yue & Dill, 1996!. Geocore
seeks conformations with minimal nonpolar exposure to the sol-
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vent. This is implemented by finding maximal pairwise shared
nonpolar surface areas among nonpolar atoms, called “HH con-
tacts.” When two carbon united atoms contact, the energy is
20.7 kcal0mol. Since the drive for polar groups to hydrogen-bond
can be satisfied by either bonding with water or with polar groups
in the protein, Geocore assigns an energy penalty to the burial of
carbonyl or amide groups in the core that are not hydrogen bonded.
Each buried polar group that is not H-bonded has an energy pen-
alty of 1.5 kcal0mol.

Geocore constructs conformations by adding one residue at a
time to a growing chain. By adding residues with differentf0c
angles defined by the chain representation, Geocore exhaustively
considers all the conformations, even without explicitly evaluating
them. A branch and bound method is used that guarantees that all
globally optimal and near-globally optimal conformations will be

found, while neglecting less important conformations. The search
is done in depth-first order~Aho et al., 1974!. On the search tree,
the nodes represent added amino acids and the different branches
are thef0c choices. When the full chain length or a dead end is
reached, the search backtracks. Geocore performs a complete search,
subject to the two constraints that steric overlap is not permitted~in
excess of the tolerance criterion!, and that the chain must be com-
pact enough to lead to a near maximal number of nonpolar con-
tacts. Geocore gives the user the option to specify possible bounds
on the shape of allowed conformations. Geocore is written in C
and runs on most hardware platforms. The work described here
was performed mainly on a Pentium-Pro-based personal computer.

For each amino acid sequence, for each run of Geocore, we
retain only approximately 400 “best” conformations, as defined by
either of two criteria.~1! We keep 400 conformations that are

Fig. 1. Distributions of conformations by RMSDs for 1VII.

Table 1. Proteins tested

Protein Sequence Description

1WBR QAERMSQIKRLLSEKKT Human CD4 receptor peptide
1PAO ACKSTQDPMFTPKGCDN PAO Pilin Trans peptide
1EDP CSCSSLMDKECVYFCHL Endothelin I
1FGE CEAPEGYILDDGFICTDIDE Thrombomodulin
1TER ALCNCNRIIIPHMCWKKCGKK Tertiapin
1OMG CKGKGAKCSRLMYDCCTGSCRSGKC Omega-conotoxin
1ANS RSCCPCYWGGCPWGQNCYPEGCSGPKV Neurontoxin III
2ETI GCPRILMRCKQDSDCLAGCVCGPNGFCG Trypsin inhibitor
1KAL SWPVCTRNGLPVCGETCVGGTCNTPGCTC Kalata B1
1MMC VGECVRGRCPSGMCCSQFGYCGKGPKYCGR AC-AMP2
1SCY AFCNLRMCQLSCRSLGLLGKCIGDKCECVKH Scyllatoxin

1DEP RSPDFRKAFKRLLCF Beta-adrenoreceptor peptide
1ALE ALDKLKEFGNTLEDKARE Apolipoprotein C-I, residues 7–24
1ODR YSDELRQRLAARLEALKENG Human APOA-I peptide
1BTR VLAAVIFIYFAALSPAITFG Human manc 3, synthetic peptide
1SOL KHVVPNEVVVQRLFQVKGRR PIP2 and F-a. of gelsolin
1FAC TRYLRIHPQSWVHQIALRMEV Coagulation factor VIII
1PEI VEEKSIDLIQKWEEKSREFIGS CTP phisphichholic peptide

aProteins starting from 1DEP are not water-soluble.

Fig. 2. Distributions of conformations by RMSDs for 2MLT.
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among the lowest in energy~energy-based criterion!. ~2! We keep
the 400 conformations that are among the lowest in root-mean-
square deviation~RMSD! relative to the true native structure, as
defined by the PDB coordinates~geometry-based criterion!. The
latter is just to test the adequacy of the chain representation. For
the purpose of deciding which 400 to keep, we use a sampling
algorithm that skips geometrically similar conformation to ensure
a representative ensemble in the program output.

The Geocore program can make use of disulfide bond informa-
tion. The user can specify which cysteine residues form disulfide
bridges, or can specify only that some form, and let the program
find them. Specifying the disulfide bonds biases the search and
speeds it up. To test this bias, we have compared the RMSDs of
conformations generated with and without assumptions of disul-
fide bonds for endothelin~1EDN!, a 21mer peptide. In the runs
without the disulfide bond assumption, we found a minimum RMSD
from the native structure of 3.8 Å and an average RMSD of 5.94 Å,
with a standard deviation of 0.95 Å. With the disulfide bonds
assumed as a constraint, we found a minimum deviation of 3.0 Å
and an average RMSD of 4.6 Å, with standard deviation of 0.65 Å.
We note that for a conformational space in which each residue has
four f0c choices, the total number of Geocore generated compact
conformations for 1EDN is approximately 51 million. The num-
bers of conformations with RMSDs of 6.0 or less, 4.6 Å or less,
and 3.8 Å or less are 28 million, 5.6 million, and 0.8 million,
respectively. Figures 1 and 2 show the numbers of conformations
sampled by Geocore as a function of RMSD from the native struc-
ture for 1VII ~villin head piece! and 2MLT ~melittin!. This shows
that most conformations deviate by 7–8 Å, and very few are native-
like. It indicates that native-like structures that are being found
by Geocore are not due to some property of the constraints or the
search, but are due to the energy function, 18 peptides are tested in
our study. Tables 1 and 2 show the proteins tested and disulfide
bonds in water-soluble proteins, respectively.

Results

Comparing the first two columns of Table 3 shows that for 8 of the
11 water-soluble proteins, the true native structure has a lower
value of the Geocore energy function than the lowest energy struc-
ture computed by Geocore. This means that the Geocore energy
function is perfectly adequate for the job it is supposed to perform:
It can recognize real native structures, and can distinguish them

from poorer conformations.~By “recognize”~Maiorov & Crippen,
1992!, we mean that the energy function reports the native struc-
ture to have lower energy than the alternatives.! The three excep-
tions, 1WBR, 1PAO, and 1OMG, are relatively small and have too
little hydrophobic core for hydrophobicity to dominate the energy.
According to these results, native structures, even in peptides, are
substantially driven by hydrophobic interactions.

A test of how well the energy function can discriminate the true
native structure from the most nearly native structures the model

Table 2. Disulfide bonds in water-soluble proteins

Protein Sequence Disulfide bonds

1WBR QAERMSQIKRLLSEKKT
1PAO ACKSTQDPMFTPKGCDN 2–15
1EDP CSCSSLMDKECVYFCHL 3–11, 1–15
1FGE CEAPEGYILDDGFICTDIDE 1–15
1TER ALCNCNRIIIPHMCWKKCGKK 3–14, 5–18
1OMG CKGKGAKCSRLMYDCCTGSCRSGKC 1–16, 8–20, 15–25
1ANS RSCCPCYWGGCPWGQNCYPEGCSGPKV 4–11, 3–17, 6–22, III
2ETI GCPRILMRCKQDSDCLAGCVCGPNGFCG 2–19, 9–21, 15–27
1KAL SWPVCTRNGLPVCGETCVGGTCNTPGCTC 5–22, 13–27, 17–29
1MMC VGECVRGRCPSGMCCSQFGYCGKGPKYCGR 4–15, 9–21, 14–28
1SCY AFCNLRMCQLSCRSLGLLGKCIGDKCECVKH 3–21, 8–26, 12–28

Table 3. Energies (kcal0mol) of native structures, energy-based
most native-like conformations, and geometry-based most
native-like conformationsa

Protein

Energy
of native
structure

~kcal0mol!

Energy of
conformations of

energy-based search
~kcal0mol!

Energy of
conformations of

geometry-based search
~kcal0mol!

1WBR 272.2 2101.5 261.0
1PAO 262.6 284.3 266.8
1EDP 269.2 268.4 259.6
1FGE 2120.9 2107.6 291.2
1TER 2152.2 297.9 275.9
1OMG 2106.4 2108.3 287.8
1ANS 2158.4 2120.0 2106.2
2ETI 2122.8 2103.3 2103.3
1KAL 2161.2 2109.3 299.4
1MMC 2157.3 2103.5 287.1
1SCY 2166.7 2137.30 2121.9

1DEP 283.0 285.8 264.5
1ALE 294.3 280.4 276.2
1ODR 286.2 293.5 282.9
1BTR 294.9 291.2 276.3
1SOL 271.3 295.0 294.0
1FAC 289.6 2114.6 288.9
1PEI 2105.5 2108.0 299.3

aHere, a conformation is judged “most native-like” if its RMSD from
the native structure is minimal among all possible conformations. Energy-
based most native-like conformations are chosen from the pool of low
energy conformations. Geometry-based native-like conformations are found
from the entire conformational space. Proteins starting from 1DEP are not
water-soluble.
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can produce is given by comparing columns one and three of
Table 3. In 16 of the 18 molecules, the energy function correctly
distinguishes the true native structure from the most native-like
structure that the model can produce. This means the current lim-

itation is not a poor energy function, but the inability of the chain
to reach a better conformation, due tof0c limitations. One of the
two failures is 1SOL, which is not water-soluble. The other is
1PAO, which also failed the test described above, and is small.
Hence, with these few exceptions, the energy function is an ade-
quate discriminator of native from nonnative structures.

Column one of Table 4 shows the geometric limitations of the
model. Shown are the RMSD values between the true native struc-
ture and the best structures the model can produce. Remarkably,
the water-insoluble proteins are more accurately captured by the
canonicalf0c values in the model chain representation than the
water-soluble proteins. Errors are generally larger in larger pep-
tides. Comparison of column two to column one shows that Geo-
core’s lowest energy conformations are usually not much worse
than Geocore’s best geometric structures. Said differently, the present
main limitation of Geocore is the chain representation and the
discreteness of thef0c options.

To test this, we performed a limited test on the few peptides that
were short enough that we could increase the computational search
from fourf0c options to five. Table 5 shows that when the number
of options is five, the Karplus values for the most probablef0c’s
are generally an improvement over our original default values.
Table 6 shows the result of using fourf0c options. Comparison of
the two tables shows, not surprisingly, that using fivef0c options
rather than four, improves the performance of the model with
respect to the true native structures. This is a further indication that
computer time is a greater limitation at present for this algorithm
than any weakness in the physical model.

The limitations of the Geocore model can be seen in Figure 3.
Hydrophobic interactions compete with the tendencies toward he-
lical structures and the helices of water-insoluble proteins are not
well predicted. On the other hand, Geocore was not intended for
water-insoluble proteins; we included them here because we were

Table 4. RMSD values of C-a atoms between a native structure
and an energy0geometry-based most native-like conformationa

Protein

RMSDs of
conformations of

geometry-based search
~Å!

RMSDs of
conformations of

energy-based search
~Å!

1WBR 1.749 3.010
1PAO 1.847 2.900
1EDP 2.183 2.461
1FGE 2.480 2.992
1TER 2.952 3.464
1OMG 2.608 3.904
1ANS 4.221 4.880
2ETI 4.586 4.586
1KAL 4.552 4.835
1MMC 4.680 5.508
1SCY 4.028 5.090

1DEP 1.000 2.113
1ALE 0.913 2.769
1ODR 1.500 3.233
1BTR 2.098 4.000
1SOL 1.360 3.138
1FAC 1.826 3.039
1PEI 0.953 3.133

aProteins starting from 1DEP are not water-soluble.

Table 5. Comparison of RMSD values between default and Karplusf0c values, fivef0c choices

Protein
Chain
length

Default f0c
geometry-based search

~Å!

Default f0c
energy-based search

~Å!

Karplusf0c
geometry-based search

~Å!

Karplusf0c
energy-based search

~Å!

1PAO 17 1.85 2.62 1.31 2.03
1EDP 17 2.16 2.44 1.46 2.10
1TER 21 2.92 3.44 2.30 2.98
1ANS 27 4.03 5.00 3.31 6.25
1DEP 15 0.86 2.67 0.97 2.30

Table 6. Comparison of RMSD values between default and Karplusf0c values, fourf0c choices

Protein
Chain
length

Default f0c
geometry-based search

~Å!

Default f0c
energy-based search

~Å!

Karplusf0c
geometry-based search

~Å!

Karplusf0c
energy-based search

~Å!

1PAO 17 1.85 2.90 1.61 2.41
1EDP 17 2.18 2.46 1.80 2.65
1TER 21 2.91 3.32 2.93 3.55
1ANS 27 4.25 4.92 4.08 4.93
1DEP 15 1.00 2.11 1.27 3.01
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interested to see what the algorithm would do with them. For
water-soluble proteins, the most native-like energy-based confor-
mation is not considerably different from the most native-like
geometry-based conformation, but these are not always native-
like. This is probably due to the limited number off0c choices in
the conformational search.

Summary

We have tested an algorithm called Geocore on the prediction of
the structures of 18 peptides from their amino acid sequences.
Geocore uses a very simple energy function and a very complete
conformational search method. The energy function has essentially
two parameters, one for hydrophobic interactions and the other for
the burial of polar groups, in addition to a few steric tolerance
parameters and PDB-derivedf0c propensities. Despite its sim-
plicity, the energy function is sufficient to distinguish native from
a very extensive list of non-native conformations. The main lim-
itation at the present time is the discreteness of thef0c options and
the computational limitations to chain lengths less than about 30–40
monomers. Compared to our earlier report on this algorithm~Yue
& Dill, 1996!, we find that the algorithm is improved either by

using moref0c options per amino acid, or by using the Karplus
f0c propensities.

Materials and methods

Choosing the test proteins

We chose 18 peptides to study, based on the following criteria:
structures were known and available in the PDB; chain lengths
were restricted to 22 amino acids when we applied no disulfide
constraints or 31 when they were included; we eliminated mol-
ecules that crystallize as dimers or that involve prosthetic groups.
To avoid bias, we otherwise took all peptides that meet those
criteria. In all cases, structures were determined by NMR. Eleven
of the 18 protein structures were determined in aqueous solution,
while the other 7 were determined in the presence of detergent or
organic solvents, because they are otherwise insoluble or adopt
multiple conformations.

In the conformational search each residue has fourf0c choices,
except glycines and the residues around glycines~two residues
before and two after!, which have one additionalf0c choices. The
numbers of generated conformations and the run time are listed in
Table 7.

Fig. 3. Ribbon diagrams of the native structure~N! from the PDB and Geocore-generated low energy structure~G! for each of the
water-soluble proteins studied and 1FAC, one of the water-insoluble proteins. The figure labeled~G! in each pair of structures
represents not the very lowest energy conformation but the most similar structurally from the set of around 400 recorded lowest energy
conformations.
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Comparing predictions to native structures

Because the molecules we study are peptides and their structures
are determined by NMR, there is no single true native structure.
The PDB files contain multiple conformations. The energy of a
native structure was determined by averaging the energies of all
the conformations in the PDB file. Table 3 compares the energies:
~1! the lowest energy conformation found by Geocore,~2! the
energy computed with the Geocore energy function, averaged
as noted above, for the native structure, and~3! the energy of the
most native-like structure that is possible within the Geocore chain
representation.

Table 4 shows the RMSDs of C-a coordinates between gener-
ated and native conformations. Figure 3 is the ribbon diagrams that
show these comparisons.

Thef0c values of PA Karplus

To see if it is possible to improve the RMSD values relative to a
native structure, another set off0c values were tested. PA Karplus
~Karplus, 1996! reportedf0c-distributions from 70 diverse pro-
teins refined at 1.7 Å or better. Thef0c values found in high-
resolution crystal structures cluster around definite regions with
fairly sharply defined borders on the edges of these regions in the
Ramachandran plot. From the Karplus study, we assignedf0c 5
2950315, 9000, 55035, 750190, 2700170, and 27000 for Gly; 3000
300 and 2850145 for Pro; 3000315 and 2400125 for Val and Ile;
3000320, 2400140, 2800140, 60040, and 27000 for other residues.

For residues other than Gly, Pro, Val, and Ile, our approach
toward systematic improvement was to use fivef0c values to
cover the Ramachandran plot, rather than the fourf0c choices
used previously in Geocore. With our current search strategy, this
test can only be performed on the short proteins, so we used 1PAO,
1EDP, 1TER, 1ANS, and 1DEP.
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