Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Apr;8(4):873–882. doi: 10.1110/ps.8.4.873

The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent.

Y O Kamatari 1, S Ohji 1, T Konno 1, Y Seki 1, K Soda 1, M Kataoka 1, K Akasaka 1
PMCID: PMC2144319  PMID: 10211833

Abstract

We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin (apoMb) to investigate the existence of the compact and expanded denatured states. A combination of far- and near-ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scattering (SAXS) was used, allowing a phase diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four conformational states, the native (N), acid-denatured (U(A)), compact denatured (I(M)), and expanded helical denatured (H) states, and indicates that the compact denatured state (I(M)) is stable under relatively mild denaturing conditions, whereas the expanded denatured states (U(A) and H) are realized under extreme conditions of pH (strong electric repulsion) or alcohol concentration (weak hydrophobic interaction). The results of this study, together with many previous studies in the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the alcohol-pH plane. Furthermore, to determine the general feature of the H conformation we used several proteins including ubiquitin, ribonuclease A, alpha-lactalbumin, beta-lactoglobulin, and Streptomyces subtilisin inhibitor (SSI) in addition to apoMb. SAXS studies of these proteins in 60% methanol showed that the H states of these all proteins have expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated Kratky profiles also supports this structural feature of the H state.

Full Text

The Full Text of this article is available as a PDF (433.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Ng Y. L., Dobson C. M. Characterization of a trifluoroethanol-induced partially folded state of alpha-lactalbumin. J Mol Biol. 1994 Jan 14;235(2):587–599. doi: 10.1006/jmbi.1994.1015. [DOI] [PubMed] [Google Scholar]
  2. Barrick D., Baldwin R. L. Stein and Moore Award address. The molten globule intermediate of apomyoglobin and the process of protein folding. Protein Sci. 1993 Jun;2(6):869–876. doi: 10.1002/pro.5560020601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrick D., Baldwin R. L. Three-state analysis of sperm whale apomyoglobin folding. Biochemistry. 1993 Apr 13;32(14):3790–3796. doi: 10.1021/bi00065a035. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharjya S., Balaram P. Hexafluoroacetone hydrate as a structure modifier in proteins: characterization of a molten globule state of hen egg-white lysozyme. Protein Sci. 1997 May;6(5):1065–1073. doi: 10.1002/pro.5560060513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brutscher B., Brüschweiler R., Ernst R. R. Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy. Biochemistry. 1997 Oct 21;36(42):13043–13053. doi: 10.1021/bi971538t. [DOI] [PubMed] [Google Scholar]
  6. Buck M., Radford S. E., Dobson C. M. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry. 1993 Jan 19;32(2):669–678. doi: 10.1021/bi00053a036. [DOI] [PubMed] [Google Scholar]
  7. Buck M., Schwalbe H., Dobson C. M. Characterization of conformational preferences in a partly folded protein by heteronuclear NMR spectroscopy: assignment and secondary structure analysis of hen egg-white lysozyme in trifluoroethanol. Biochemistry. 1995 Oct 10;34(40):13219–13232. doi: 10.1021/bi00040a038. [DOI] [PubMed] [Google Scholar]
  8. Buck M., Schwalbe H., Dobson C. M. Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J Mol Biol. 1996 Apr 5;257(3):669–683. doi: 10.1006/jmbi.1996.0193. [DOI] [PubMed] [Google Scholar]
  9. Bychkova V. E., Dujsekina A. E., Klenin S. I., Tiktopulo E. I., Uversky V. N., Ptitsyn O. B. Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry. 1996 May 14;35(19):6058–6063. doi: 10.1021/bi9522460. [DOI] [PubMed] [Google Scholar]
  10. Bychkova V. E., Pain R. H., Ptitsyn O. B. The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett. 1988 Oct 10;238(2):231–234. doi: 10.1016/0014-5793(88)80485-x. [DOI] [PubMed] [Google Scholar]
  11. CRUMPTON M. J., POLSON A. A COMPARISON OF THE CONFORMATION OF SPERM WHALE METMYOGLOBIN WITH THAT OF APOMYOGLOBIN. J Mol Biol. 1965 Apr;11:722–729. doi: 10.1016/s0022-2836(65)80030-4. [DOI] [PubMed] [Google Scholar]
  12. Cocco M. J., Kao Y. H., Phillips A. T., Lecomte J. T. Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy. Biochemistry. 1992 Jul 21;31(28):6481–6491. doi: 10.1021/bi00143a018. [DOI] [PubMed] [Google Scholar]
  13. Damaschun G., Damaschun H., Gast K., Gernat C., Zirwer D. Acid denatured apo-cytochrome c is a random coil: evidence from small-angle X-ray scattering and dynamic light scattering. Biochim Biophys Acta. 1991 Jun 24;1078(2):289–295. doi: 10.1016/0167-4838(91)90571-g. [DOI] [PubMed] [Google Scholar]
  14. Damaschun G., Damaschun H., Gast K., Misselwitz R., Müller J. J., Pfeil W., Zirwer D. Cold denaturation-induced conformational changes in phosphoglycerate kinase from yeast. Biochemistry. 1993 Aug 3;32(30):7739–7746. doi: 10.1021/bi00081a019. [DOI] [PubMed] [Google Scholar]
  15. Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
  16. Dyson H. J., Sayre J. R., Merutka G., Shin H. C., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992 Aug 5;226(3):819–835. doi: 10.1016/0022-2836(92)90634-v. [DOI] [PubMed] [Google Scholar]
  17. Eliezer D., Jennings P. A., Wright P. E., Doniach S., Hodgson K. O., Tsuruta H. The radius of gyration of an apomyoglobin folding intermediate. Science. 1995 Oct 20;270(5235):487–488. doi: 10.1126/science.270.5235.487. [DOI] [PubMed] [Google Scholar]
  18. Eliezer D., Wright P. E. Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol. 1996 Nov 8;263(4):531–538. doi: 10.1006/jmbi.1996.0596. [DOI] [PubMed] [Google Scholar]
  19. Eliezer D., Yao J., Dyson H. J., Wright P. E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol. 1998 Feb;5(2):148–155. doi: 10.1038/nsb0298-148. [DOI] [PubMed] [Google Scholar]
  20. Evans S. V., Brayer G. D. Horse heart metmyoglobin. A 2.8-A resolution three-dimensional structure determination. J Biol Chem. 1988 Mar 25;263(9):4263–4268. [PubMed] [Google Scholar]
  21. Flanagan J. M., Kataoka M., Fujisawa T., Engelman D. M. Mutations can cause large changes in the conformation of a denatured protein. Biochemistry. 1993 Oct 5;32(39):10359–10370. doi: 10.1021/bi00090a011. [DOI] [PubMed] [Google Scholar]
  22. Flanagan J. M., Kataoka M., Shortle D., Engelman D. M. Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):748–752. doi: 10.1073/pnas.89.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gilmanshin R., Callender R. H., Dyer R. B. The core of apomyoglobin E-form folds at the diffusion limit. Nat Struct Biol. 1998 May;5(5):363–365. doi: 10.1038/nsb0598-363. [DOI] [PubMed] [Google Scholar]
  24. Goto Y., Fink A. L. Phase diagram for acidic conformational states of apomyoglobin. J Mol Biol. 1990 Aug 20;214(4):803–805. doi: 10.1016/0022-2836(90)90334-I. [DOI] [PubMed] [Google Scholar]
  25. Griko Y. V., Privalov P. L., Venyaminov S. Y., Kutyshenko V. P. Thermodynamic study of the apomyoglobin structure. J Mol Biol. 1988 Jul 5;202(1):127–138. doi: 10.1016/0022-2836(88)90525-6. [DOI] [PubMed] [Google Scholar]
  26. Haezebrouck P., Joniau M., Van Dael H., Hooke S. D., Woodruff N. D., Dobson C. M. An equilibrium partially folded state of human lysozyme at low pH. J Mol Biol. 1995 Feb 24;246(3):382–387. doi: 10.1006/jmbi.1994.0093. [DOI] [PubMed] [Google Scholar]
  27. Hapner K. D., Bradshaw R. A., Hartzell C. R., Gurd F. R. Comparison of myoglobins from harbor seal, porpoise, and sperm whale. I. Preparation and characterization. J Biol Chem. 1968 Feb 25;243(4):683–689. [PubMed] [Google Scholar]
  28. Hirota N., Mizuno K., Goto Y. Cooperative alpha-helix formation of beta-lactoglobulin and melittin induced by hexafluoroisopropanol. Protein Sci. 1997 Feb;6(2):416–421. doi: 10.1002/pro.5560060218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hirota N., Mizuno K., Goto Y. Group additive contributions to the alcohol-induced alpha-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins. J Mol Biol. 1998 Jan 16;275(2):365–378. doi: 10.1006/jmbi.1997.1468. [DOI] [PubMed] [Google Scholar]
  30. Hoshino M., Hagihara Y., Hamada D., Kataoka M., Goto Y. Trifluoroethanol-induced conformational transition of hen egg-white lysozyme studied by small-angle X-ray scattering. FEBS Lett. 1997 Oct 13;416(1):72–76. doi: 10.1016/s0014-5793(97)01172-1. [DOI] [PubMed] [Google Scholar]
  31. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  32. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  33. Kamatari Y. O., Konno T., Kataoka M., Akasaka K. The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering. J Mol Biol. 1996 Jun 14;259(3):512–523. doi: 10.1006/jmbi.1996.0336. [DOI] [PubMed] [Google Scholar]
  34. Kamatari Y. O., Konno T., Kataoka M., Akasaka K. The methanol-induced transition and the expanded helical conformation in hen lysozyme. Protein Sci. 1998 Mar;7(3):681–688. doi: 10.1002/pro.5560070317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kataoka M., Goto Y. X-ray solution scattering studies of protein folding. Fold Des. 1996;1(5):R107–R114. doi: 10.1016/S1359-0278(96)00047-8. [DOI] [PubMed] [Google Scholar]
  36. Kataoka M., Hagihara Y., Mihara K., Goto Y. Molten globule of cytochrome c studied by small angle X-ray scattering. J Mol Biol. 1993 Feb 5;229(3):591–596. doi: 10.1006/jmbi.1993.1064. [DOI] [PubMed] [Google Scholar]
  37. Kataoka M., Head J. F., Persechini A., Kretsinger R. H., Engelman D. M. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry. 1991 Feb 5;30(5):1188–1192. doi: 10.1021/bi00219a004. [DOI] [PubMed] [Google Scholar]
  38. Kataoka M., Head J. F., Seaton B. A., Engelman D. M. Melittin binding causes a large calcium-dependent conformational change in calmodulin. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6944–6948. doi: 10.1073/pnas.86.18.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kataoka M., Kuwajima K., Tokunaga F., Goto Y. Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering. Protein Sci. 1997 Feb;6(2):422–430. doi: 10.1002/pro.5560060219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kataoka M., Nishii I., Fujisawa T., Ueki T., Tokunaga F., Goto Y. Structural characterization of the molten globule and native states of apomyoglobin by solution X-ray scattering. J Mol Biol. 1995 May 26;249(1):215–228. doi: 10.1006/jmbi.1995.0290. [DOI] [PubMed] [Google Scholar]
  41. Khechinashvili N. N., Privalov P. L., Tiktopulo E. I. Calorimetric investigation of lysozyme thermal denaturation. FEBS Lett. 1973 Feb 15;30(1):57–60. doi: 10.1016/0014-5793(73)80618-0. [DOI] [PubMed] [Google Scholar]
  42. Kippen A. D., Sancho J., Fersht A. R. Folding of barnase in parts. Biochemistry. 1994 Mar 29;33(12):3778–3786. doi: 10.1021/bi00178a039. [DOI] [PubMed] [Google Scholar]
  43. Konno T., Kamatari Y. O., Kataoka M., Akasaka K. Urea-induced conformational changes in cold- and heat-denatured states of a protein, Streptomyces subtilisin inhibitor. Protein Sci. 1997 Oct;6(10):2242–2249. doi: 10.1002/pro.5560061019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Konno T., Kataoka M., Kamatari Y., Kanaori K., Nosaka A., Akasaka K. Solution X-ray scattering analysis of cold- heat-, and urea-denatured states in a protein, Streptomyces subtilisin inhibitor. J Mol Biol. 1995 Aug 4;251(1):95–103. doi: 10.1006/jmbi.1995.0418. [DOI] [PubMed] [Google Scholar]
  45. Lehrman S. R., Tuls J. L., Lund M. Peptide alpha-helicity in aqueous trifluoroethanol: correlations with predicted alpha-helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry. 1990 Jun 12;29(23):5590–5596. doi: 10.1021/bi00475a025. [DOI] [PubMed] [Google Scholar]
  46. Loh S. N., Kay M. S., Baldwin R. L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5446–5450. doi: 10.1073/pnas.92.12.5446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Nelson J. W., Kallenbach N. R. Persistence of the alpha-helix stop signal in the S-peptide in trifluoroethanol solutions. Biochemistry. 1989 Jun 13;28(12):5256–5261. doi: 10.1021/bi00438a050. [DOI] [PubMed] [Google Scholar]
  48. Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
  49. Nishii I., Kataoka M., Goto Y. Thermodynamic stability of the molten globule states of apomyoglobin. J Mol Biol. 1995 Jul 7;250(2):223–238. doi: 10.1006/jmbi.1995.0373. [DOI] [PubMed] [Google Scholar]
  50. Nishii I., Kataoka M., Tokunaga F., Goto Y. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry. 1994 Apr 26;33(16):4903–4909. doi: 10.1021/bi00182a019. [DOI] [PubMed] [Google Scholar]
  51. Ohgushi M., Wada A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983 Nov 28;164(1):21–24. doi: 10.1016/0014-5793(83)80010-6. [DOI] [PubMed] [Google Scholar]
  52. Ptitsyn O. B., Bychkova V. E., Uversky V. N. Kinetic and equilibrium folding intermediates. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):35–41. doi: 10.1098/rstb.1995.0043. [DOI] [PubMed] [Google Scholar]
  53. Segawa S., Fukuno T., Fujiwara K., Noda Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments. Biopolymers. 1991 Apr;31(5):497–509. doi: 10.1002/bip.360310505. [DOI] [PubMed] [Google Scholar]
  54. Shiraki K., Nishikawa K., Goto Y. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol. 1995 Jan 13;245(2):180–194. doi: 10.1006/jmbi.1994.0015. [DOI] [PubMed] [Google Scholar]
  55. Sosnick T. R., Trewhella J. Denatured states of ribonuclease A have compact dimensions and residual secondary structure. Biochemistry. 1992 Sep 8;31(35):8329–8335. doi: 10.1021/bi00150a029. [DOI] [PubMed] [Google Scholar]
  56. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
  57. Takano T. Structure of myoglobin refined at 2-0 A resolution. II. Structure of deoxymyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):569–584. doi: 10.1016/s0022-2836(77)80112-5. [DOI] [PubMed] [Google Scholar]
  58. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
  59. Ueki T., Hiragi Y., Kataoka M., Inoko Y., Amemiya Y., Izumi Y., Tagawa H., Muroga Y. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation. Biophys Chem. 1985 Nov;23(1-2):115–124. doi: 10.1016/0301-4622(85)80069-7. [DOI] [PubMed] [Google Scholar]
  60. Uversky V. N., Narizhneva N. V., Kirschstein S. O., Winter S., Löber G. Conformational transitions provoked by organic solvents in beta-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant? Fold Des. 1997;2(3):163–172. doi: 10.1016/s1359-0278(97)00023-0. [DOI] [PubMed] [Google Scholar]
  61. van der Goot F. G., González-Mañas J. M., Lakey J. H., Pattus F. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature. 1991 Dec 5;354(6352):408–410. doi: 10.1038/354408a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES