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Abstract

We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin
(apoMb to investigate the existence of the compact and expanded denatured states. A combination of far- and near-
ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scatt€®iyS) was used, allowing a phase
diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four
conformational states, the natiii), acid-denature@U,), compact denaturgd,,), and expanded helical denaturétl)

states, and indicates that the compact denatured($tgtes stable under relatively mild denaturing conditions, whereas

the expanded denatured stateék, andH) are realized under extreme conditions of fdtrong electric repulsignor

alcohol concentratiofweak hydrophobic interactionThe results of this study, together with many previous studies in

the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the
alcohol-pH plane. Furthermore, to determine the general feature ofltbenformation we used several proteins
including ubiquitin, ribonuclease Ag-lactalbumin, 8-lactoglobulin, andStreptomycesubtilisin inhibitor (SSI) in

addition to apoMb. SAXS studies of these proteins in 60% methanol showed thétstiages of these all proteins have
expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated
Kratky profiles also supports this structural feature of thetate.

Keywords: apomyoglobin; expanded helical denatured state; methanol-induced conformational transition; molten
globule state; small-angle X-ray scattering

It is increasingly recognized that the structure of non-native stateamined in detail. It is therefore of considerable value to study a
of proteins can provide significant insight into fundamental issuesvide range of non-native states. One of the most well-studied
such as the relationship between the sequence of a protein and tssolvents that modifies protein structure is alcohol. Furthermore,
three-dimensional structure, the nature of protein-folding paththe alcohol-induced conformational transitions are also interesting
ways, the stability of proteins and their turnover in the cell, and thebecause of the similarity between these conditions and these near
transport of proteins across membranes. In contrast to the largdae membrane surfa¢Bychkova et al., 1996 For example, some
amount of structural information about native folded proteins, how-alcohol-induced molten globule states have been observed at mod-
ever, only a limited number of denatured proteins have been exerately low pH and moderately low dielectric constéBychkova
et al., 1996; Kamatari et al., 1996; Uversky et al., 199hese
Reorint reduests to: Kazuvuki Akasaka. The Graduate School of Sciencconditions could be similar to those existing near negatively charged
and Tpechnoﬁogy, Kobe Uni\);ersity, 1-1 R,okko-dai, Nada-ku, Kobe 657-Fnembrane surface{ﬁy(_:hkova et .al" .1996; U.VHSky etal, 19.97
8501, Japan; e-mail: akasaka@kobe-u.ac.jp. Therefore, these studies may give insight into the mechanism of
Abbreviations:apoMb, apomyoglobin; CD, circular dichroism; GdnHCI, denaturation of proteins in living cell. Previously, we studied the
guanidine hydrochloride:i, expanded helical denatured stdig;compact  detail of the methanol-induced conformational transition of cyto-
ﬂﬁvrl‘gtur:iglj;?t;;” rgﬁgh?gsg;rn%é_mo'fﬁn 232“';5%?“3_‘:‘;‘35232?? chromec (Kamatari et al., 1996and lysozymeKamatari et al.,
gyratilon; SAXS, srgr]lall-angle X-ray écgfter}nrjg; SSlpreptomsgnte’subtilisin 1998 and found a.Iarg.e difference betwe(_en them. A Cgmpact de-
inhibitor; TCA, trichloroacetate; TFE, 2,2,2-trifluoroethand), urea- ~ hatured conformation is accumulated during the transition of cy-
denatured statd;,, acid-denatured state. tochromec, but the transition of lysozyme is quite cooperative.
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One of the purposes of this paper is to examine the generality of
existence of the compact denatured conformation. For this purpose
we used an well-characterized globular protein, horse apomyoglobin.
Myoglobin is a small compact globular protein that contains no
disulfide bond and has a uniqgue monomeric form in solution whose
three-dimensional structure is well resold@kano, 1977a, 1977b;
Evans & Brayer, 1988 Removal of a heme molecule significantly
decreases its stability but does not essentially change its structure;
apomyoglobinfapoM} is still compact, retains an ordered hydro-
phobic core, and has extensive helicity and a unique cooperative
structure(Griko et al., 1988; Cocco et al., 1992; Eliezer & Wright,
1996. Thus, apoMb is a good model as a globular protein for
equilibrium studies of denatured states. The conformational prop-
erties of apoMb have also been studied extensively in connectiofig. 1. A: Far-UV CD spectra of apoMb at pH 5.4 in 0f4----J, 20%
with the mechanism of protein foldingennings & Wright, 1993; (= 40%(—), 50%(—), 60%(—), and 70%(—) methanolB: Near-UV
Griko & Privalov, 1994; Eliezer et al., 1995; Gilmanshin et al. CD spectra of apoMb at pH 5.4 in 0%6- - - - J, 10%(—), 20%(—, 30%
o ’ e ’ A ' (—), and 80%(—) methanol. For comparison, the spectrum for the acid-
1998. The detail of the pH and salt-induced conformational tran-denaturedUy: ---.-) state at pH 2.0 in water is presented. The spectra were
sitions were characterize®Barrick & Baldwin, 1993a; Goto & measured at 2% with a fixed protein concentration of GOM.
Fink, 1990; Nishii et al., 1994, 1995and the structures of the
denatured states found during these transitions have been exten-
sively studied(Barrick & Baldwin, 1993b; Hughson et al., 1990;
Kataoka et al., 1995; Loh et al., 1995; Eliezer et al., 198®w- methanol at pH 5.4. The spectral changes induced by methanol at
ever, only a few detailed studies of the conformational transition inpH 2.0 and 5.4 are represented by ellipticity changes at 222 nm
aqueous alcohol solution have been made. In the present study, i#]222) and at 295 nni[6#],95) as functions of methanol concen-
investigate details of the methanol-induced conformational transitration in Figure 2, in which the former primarily reflects the
tions of horse heart apomyoglobin by a combined use of far- angecondary structure, especially the helical structure, whereas the
near-UV CD, NMR spectroscopy, and small-angle X-ray scatterindatter reflects the tertiary structure. The pH value of 2.0 was se-
(SAXS), and construct a phase diagram as a function of pH and théected as a typical condition producing the acid-denatured state in
methanol concentration. water, and pH 5.4 was selected as typical conditions for producing
The fact that the denatured state in high concentration of alcothe native state from the phase diagréa@oto & Fink, 1990;
hols (H) has helical conformations and disrupted tertiary struc-Barrick & Baldwin, 1993a
tures is widely acceptedNelson & Kallenbach, 1986, 1989; At pH 2.0, addition of methanol decreased tftd,, value
Lehrman et al., 1990; Segawa et al., 1991; Dyson et al., 1992a@Imost linearly over the full range of methanol concentration ex-
1992b; Kippen et al., 1994; Shiraki et al., 1995; Hirota et al., 1997, amined, suggesting that the transition is not a highly cooperative
1998. However, there are not enough data to form general conone(Fig. 2A). No significant change was observed [f6},95 either,
clusions about the overall chain conformati@ng., the size, the indicating that methanol did not induce any specific tertiary struc-
shape, etg.of the H state(Kamatari et al., 1996, 1998; Hoshino ture(Fig. 2B). Thus, we may conclude that, although the extent of
et al., 1997. The difference between the and “molten globule”  secondary structure increases gradually, the protein continues to
states is also not clear because of the lack of such information. Theemain in a denatured state over the entire range of methanol
second purpose of this paper is to investigate general features ebncentration.
the overall chain conformation of th state. For this purpose, we At pH 5.4, the behavior in the presence of methanol was com-
used not only apoMb but also various other proteins that includepletely different from that at pH 2.0. In the methanol concentration
ubiquitin, ribonuclease Ay-lactalbuming-lactoglobulin, andtrep-  range from 0 to 30%, th¥],,, value was almost constant and the
tomycessubtilisin inhibitor (SSI). Data from all of these in 60% [0].95 Value considerably decreased. The result indicates that the
methanol showed that they have expanded helical conformationgelical content does not change, but that almost all the tertiary
and indicate the general existence of a considerably expanded astructure is destroyed at 30% methanol. Above 40% methanol, the
flexible broken rod-like chain conformation. To check the validity [6]22- value decreased almost linearly with the concentration of
of this model in high concentration of methanol, we computer-methanol, suggesting a gradual formation of a helical structure.
simulated SAXS data using conformations that have helix regions
connected by random chains. The qualitative agreement of th

simulated SAXS data with the experimental data also supports thiz‘he methanol-induced conformational transition of apoMb

structural feature of thél state. as monitored byH-NMR spectroscopy
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The methanol-induced conformational transition was also moni-
tored by 'H-NMR spectroscopy. The NMR experiments carried
out in ?H,0/C?H;0?H at pH* 5.6 are shown in Figure 3. At 0%
methanol, the spectrum showed a considerable signal dispersion
characteristic of the native conformation. Addition of methanol
induced a gradual decrease of the signal intensities of the native
Methanol-induced conformational transitions of apoMb were mon-species without significant changes in their chemical shifts, and all
itored first by far- and near-UV CD spectroscopy at various pHof the native signals disappeared at about 30% methanol. In the
values. Figure 1 shows CD spectra in various concentrations afethanol concentration range from 20 to 30%, the signal disper-

Results

The methanol-induced conformational transition of apoMb
as monitored by far- and near-UV CD spectroscopy
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Fig. 2. Changes in ellipticity of apoMb with methanol concentration at
pH 2.0 (open circleg and 5.4(filled triangles: (A) at 222 nm;(B) at

295 nm. CD measurements were made at fixed concentration of apoME:hain conformations of apoMb in methayakter as
(60 uM) at 25°C. . .
g monitored by small-angle X-ray scattering

Small-angle X-ray scatterin@SAXS) would be the best available

sion was almost lost, indicating that the tertiary structure wagechnique for elucidating compactness and shape of prateiasa-
destroyed. The signals in 20 to 30% methanol were quite broadjan et al., 1992, 1993; Kataoka et al., 1993, 1994, 1995, 1997,
resembling those of typical molten globule states induced by acid-attman, 1994; Konno et al., 1995, 1997; Kataoka & Goto, 1996
or salt. Above 40% methanol, the linewidth of the spectra graduMore specifically, Guinier plots of SAXS data give the radius of
ally became sharp. gyration(Ry), which provides information about the size or com-
pactness. Figure 5A shows Guinier plots of SAXS data obtained
for apoMb at infinite dilution under typical solvent conditions.
Each curve in Figure 5A clearly possesses a region where the plot
is well approximated by a straight line, the Guinier regiGuinier

The results presented so far show the existence of at least or& Fournet, 1955. R; values were deduced from the slopes of the
intermediate state in the methanol-induced conformational transiregression lines within the Guinier region, definedg® < 1.3 in

tion of apoMb. We call this intermediate stdie Therefore, apoMb  the present stud¢Kataoka et al., 1995 and are given in Table 1
exists in at least four typical conformational stafésUp (the acid  for typical conformational states of apoMb. TRgvalue of 22.7 A
denatured stajel,;, andH (the helical denatured state in the high for the I, state is significantly smaller than 34.2 A for the urea-
concentration of methandh the wateymethanol solvent mixture. denatured state or 30.2 A for the acid-denatured state, and is closer
The relative stability of these conformational states depends critto 19.7 A for the native state or 23.1 A for the molten globule state.
ically on pH and the methanol concentration. To make clear théThe Ry value of 30.6 A for theH state is significantly larger than
dependence of the conformation on pH and methanol concentrahat for the native state, but is closer to that for the urea- and
tion, we studied both methanol-induced transitions at fixed pH andacid-denatured states.

pH-induced transitions at fixed methanol concentrations. Above The Kratky plot,1(Q)Q? vs. Q, is useful for examining the
pH 6, precipitation of the protein prevents these measurementglobularity or randomness of a chain molec(®atter & Kratky,

The results are summarized in a phase diagram in Figure 4. W&982, and has been widely used to study folding intermediates and
note that the midpoint betweé¥hand |y, depends on pH, but the the structures of non-native states of protgibamaschun et al.,
midpoint between,, (or Us) andH mainly depends on the meth- 1991, 1993; Flanagan et al., 1993; Kataoka et al., 1993, 1995;
anol concentration. Kataoka & Goto, 1996 It gives a clear peak for the globular

Phase diagram of apoMb involving N,nUly, and H
conformations against pH and the methanol concentration



876 Y.O. Kamatari et al.

80 conformation, while it shows a plateau and then increases mono-
tonically for the unfolded chain-like conformati¢Rlanagan et al.,
1993; Kataoka et al., 1993; Kataoka & Goto, 199Bigure 5B

H shows the Kratky plots for the typical conformational states of
apoMb. The plots for thé, andH states show that the conforma-
tions are globular and expanded, respectively. We find that the
plots for thely, andH state are quite similar to those for the molten
globule and acid-denatured state, respectively.

60 —

LUl el

Structure of the H state of proteins

Methanol concentration(%)

0 Im S We also investigated the structure of other proteins, ubiquitin,
Ua ribonuclease Ag-lactalbumin,B-lactoglobulin, andStreptomyces
subtilisin inhibitor (SSI) in 60% methanol at pH 2. All of these
have a helical content higher than that of the native state monitored
0 | I | I | by far-UV CD spectroscopydata not shown no specific tertiary
structure monitored by near-UV CD and NMR spectrosc@jata
not shown and a 1.5-2.0-fold expansigiable 2 with chain-like
conformationgFig. 6; Table 2 as monitored by SAXS.

pH

Fig. 4. Experimentally determined phase diagram of apoMb isOH
CH3OH mixture at 25C. N, the native state}) 5, the acid-denatured state;
Iw, the compact denaturgdr molten globulg state;H, the helical dena-
tured state. The continuous lines were drawn to indicate the phases boundi® examine structural features of thestate, we performed com-

ary where the fractions of the two conformational states are equal. Theyyter simulation of SAXS data of cytochroraeBecause, at present,

broken line indicates the midpoint §f],,, values between the denatured : : .
state in 0 and 80% methanol. Each data point was obtained from a titratio we do not have the structural information at the atomic level on the

Open symbols were obtained in an experiment in which the methanor]'| state, we genc_arated a Strugtural .model in which Fhe helical
concentration was varied at fixed pH values and filled symbols were obfegions in the native state remain helical and the remainder of the
tained in an experiments in which pH values varied at fixed methanolprotein adopts a random coil conformation. We call this model for

concentration. The symbols of open circles and closed circles are obtainegmulation a broken helixBH). Generating many conformations
by [0].95 values. The symbols of open diamonds and closed diamonds ar - -
obtained by NMR spectroscopy. The symbol down open triangle and up8f theBH chain and taking correct account of the contrast effect of

closed triangle is obtained H¥]»» and[8]290 values, respectively. Data  Solvent water on X-ray scattering, we obtained their scattering
above pH 4.5 could not be obtained due to precipitation of the protein. profiles.

Computer simulation of the SAXS data
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Fig. 5. A: Guinier plots for apoMb in théy (open circleg H (open triangles and native(+) states at 28C. Each plot was obtained

by extrapolation of the data for four different protein concentrations to zero protein concentiidtitanka et al., 1989 The
experimental conditions were as follows: pH 4.5 in 15% methanol fotjh&tate; pH 2.0 in 60% methanol for théstate; pH 7 in

water forN state. For clarity, individual plots are shifted on thgl Q)] axis. The regression lines were fitted to the data witRj@ <

1.3.B: Kratky profiles of apoMb in théy (open circleg H (open triangles native(+), molten globulg.-- - . ), acid-denatured—)

states at 28C. The experimental conditions were as follows: pH 4.5 in 15% methanol fohtlséate; pH 2.0 in 60% methanol for
theH state; pH 7 in water for thil state; pH 4 in water for the molten globule state; pH 2.0 in water for the acid-denatured state. The
protein concentration was kept at 10 fngL for all the profiles.
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Table 1. Spectroscopic properties of typical conformational state of apdMb

Conformational Chemical shift Ry

states [6]222 [6]295 dispersiofi Linewidth® (R) Shapé

Im —16.000 -2 Small Broad 22.7 Globular
H —23.000 0 Small Very sharp 30.6 Chain
N —18.000 20 Large Sharp 19.7 Globular
Ua —4.000 0 Small Sharp 302 Chain
MG —16.000 0 Small Broad 231 Globular
U —1.000 -1 Small Very sharp 342 Chain

a8Experimental conditions were as follows: pH 4.5 and 15% methanol fohtlstate(ly); pH 2 and 60% methanol for the helical
denatured statéH ); pH 5.5 in water for the native stat®l); pH 2 in water for the acid-denatured stét£,); pH 2 and 20 mM NaTCA
for the TCA-induced molten globule stat®!G); pH 2 and 5 M urea for the urea-denatured state at 25°C.

bChemical shifts dispersion dH-NMR spectra.

CLinewidth of *H-NMR signals.

dMolecular shape obtained from Kratky plots.

eKataoka et al(1995.

A Kratky plot of the scattering profile for th&H model, as  Discussion
determined from the average of those calculated above, is shown
in Figure 7B. For comparison, simulated Kratky plots for the na-Conformational transitions of apoMb
tive and the random coilRC) structures are also displayed in the in methanol-water solvent
figure. The simulated Kratky plot for the native state exhibits a
large peak a@ = 0.12 A2, characteristic of the globular structure, ~ EXxistence of an intermediate state ]
whereas the plot for the random coil chain reaches a plateau, both We investigated details of the transition of horse heart apomyo-
of which agree with theoretical expectations. The simulated Kratkyglobin (apoMb by a combined use of far- and near-UV CD and
plot for theBH chain does not have a clear peak, and qualitativelyNMR spectroscopy and small-angle X-ray scatte(iB4XS). The
agrees with experimental data for thechain. TheR, values for  discrepancy of the transitions monitored by far and near-Uv CD
the native, RC, an®H model obtained from the simulation are spectroscopy(Fig. 2) and characteristic NMR spectra in about
13.5, 31.5, and 29.8 A, respectively. These values are also consi80% methanol, which are quite distinct from that of the native state
tent with the experimental da{d@able 2; Kamatari et al., 1996  and that found in the methanol concentration above 5B#. 3),
These results support the view that tHestate has an expanded show the existence of at least one intermediate sigtgin the
BH-like structure. methanol-induced conformational transition. Therefore, apoMb ex-

Table 2. Ry of the H, native (N), and urea-denatured (U) states of proteins

Shape of the

MW Ro. Rou Ra. Ro./Rau H stat
Ubiquitin 8.600 28.4 13.2 26.3 2.2 Chain
Cytochromec® 12.400 31.7 14.6 32.1 2.2 Chain
Ribonuclease A 13.700 25.3 18.0 27.3 1.7 Chain
Lysozymé 14.300 24.9 15.7 28.7 1.6 Chain
a-Lactalbumin 14.300 24.3 15.7 30 1.5 Chain
Apomyoglobin 17.500 30.6 1997 34.28 1.6 Chain
B-Lactoglobulin 18.400 39.5 18.0 44.4 2.2 Chain
Ssi 11.500 28.3 21"gdimen 320 — Chain

a8experimental conditions were as follows: pH 2 in 60% methanol fotthsate at 25C; pH 7 in 50 mM Tris-HCI buffer for the
N state of ubiquitin at 25C; pH 4.5 in water for thé\ state of cytochrome at 25°C; pH 5.7 in water for thé\ state of ribonuclease A
at 56°C; pH 7 in water for theN state of lysozyme, and-lactalbumin at 25C; pH 6 in 10 mM HEPES buffer for th#l state of
apomyoglobin at 20C; pH 7.0 in water for théN state SSI at 20C; pH 2 in water for theN state ofa-lactoglobulin at 25C; pH 2
in 5 M urea for theU state of ubiquitin, cytochrome, ribonuclease A, lysozymey-lactalbumin, angs3-lactoglobulin at 25C; pH 2
in 5 M urea for theU state of apomyoglobin at 2C; pH 3.0 in 5 M urea for théJ state of SSI at 28C.

PMolecular shape obtained from Kratky plots.

Kamatari et al(1996.

dSosnick and Trewhell&1992).

eKamatari et al(1998.

fKataoka et al(1997.

9Kataoka et al(1995.

"Konno et al.(1995.
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Fig. 6. Kratky profiles of (A) ubiquitin, (B) ribonuclease A(C) a-lactalbumin, andD) B-lactoglobulin in theH (open triangles
native(+), urea-denaturef—) states at 23C. The experimental conditions were as follows: pH 2.0 in 60% methanol fdi ttate;
pH 7 in water for theN state of ubiquitin, ribonuclease A, amdlactalbumin; pH 2 in water for th&l state ofg-lactoglobulin; pH 2
in water containing 5 mM urea for the urea-denatured state. The protein concentration was kept @tmlOfongall the profiles.

ists in at least four typical conformational statds,U, (the acid Structure of the H state
denatured stajely, andH (the helical denatured state in the high  The H state of apoMb has a helical content higher than that
concentration of methanpin water/methanol solvent. of the native state as monitored by far-UV CD spectroscopy
(Figs. 1A, 2A, no specific tertiary structure as monitored both by
Structure of they) state near-UV CD(Figs. 1B, 2B and NMR spectroscopgFig. 3), and

This intermediate state has a helical content similar to that of thein expandedTable 3 and nonglobulatFig. 5B) conformation as
native state as monitored by far-UV CD spectroscdfig. 2A), N0 monitored by SAXS. Taking all these results together, we conclude
specific tertiary structure as monitored both by near-UV CDthat theH state of apoMb has a considerably expanded and chain-
(Fig. 2B) and NMR spectroscopyFig. 3), and a compadfTable ) |ike conformation with an extremely high helical content.
and globulanFig. 5B) conformation as monitored by SAXS. All
the available structural information indicates that the structure of Phase diagram
the Iy is almost identical with that of the well-known molten  To make clear the dependence of the conformations on pH and

globule statdMG) of this protein induced by acid or sdBarrick methanol concentration, we constructed a phase diagram as a func-

& Baldwin, 1993a, 1993b; Nishii et al., 1994, 1995; Kataoka et al.,tion of pH and the methanol concentrati¢Rig. 4). The phase
1995. diagram indicates that the compact denatured stgt®r MG) is
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stable under relatively mild denaturing conditions, whereas theappears not only in high salt and acidic conditions but also at
expanded denatured staté$, andH) are realized under extreme intermediate pH(about pH 4; Goto & Fink, 1990; Barrick &
conditions of pH(large electric repulsioror alcohol concentration  Baldwin, 1993% that of cytochromec appears only in high salt
(small hydrophobic interactions and acidic conditiofOhgushi & Wada, 1983 that of lysozyme
It is known that non-native states of protein can exist in living does not appear at dllanford, 1970; Khechinashvili et al., 1973;
cells and can be involved in a number of physiological processeslaezebrouck et al., 19950ne reasonable explanation of the dif-
(Bychkova et al., 1988 The MG state is one of the candidate ference in these feature of the transitions may be that these three
structure for the non-native state in the living cell. It has beenstates, the nativeN), compact denaturedG), and expande@U
suggested that a local decrease of pH and a decrease of the dielesid H) states, are general thermodynamic states not only in the
tric constant of the bulk solvent on the membrane surface can bpH—salt concentration plane but also in the alcohol-water plane,
responsible for the denaturation of protefBychkova et al., 1988; and that theN, MG, andU states are brought into existence by the
van der Goot et al., 1991; Bychkova & Ptitsyn, 1993; Ptitsyn et al.,balance of their relative stability. Increasing stability of tetate
1995, and the suggestion has been confirmed for cytochrome or decreasing stability of th&IG state of lysozyme should be
(Bychkova et al., 1996; Kamatari et al., 19%hdg-lactoglobulin  responsible for the cooperative transition without appearance of
(Uversky et al., 1997 The phase diagram of the apoNBig. 4) the MG state.
shows the existence of thdG state under such conditions and The existence of a compact denatured state in the methanol—
further support the suggestion. water solvent mixture has been reported for various proteins, which
include cytochromec (Bychkova et al., 1996; Kamatari et al.,
1996, B-lactoglobulin (Uversky et al., 199% and apoMb(the
General existence of the compact denatured present study The compact denatured state @flactoglobulin
conformations in alcohol-water mixtures was reported not only in methanol but also in several types of

This feature of the transition of apoMb is similar to that of cyto- Ordanic solvents including ethanol, isopropanol, dimethylformam-

chromec (Bychkova et al., 1996; Kamatari et al., 199% which ide, and dioxandUversky et al., 1997 The compact denatured

the compact denatured state appears and makes a striking contr3&ite in hexafluoroacetone hydrate was also reported for lysozyme

to that of lysozyme Hoshino et al., 1997; Kamatari et al., 1998 (Bhattacha_rjya & Balaram, 199.7'_I’here results also indicate the
for which the transition is highly cooperative. Comparison of the 9eneral existence of tHidG state in alcohol-water solvents.
phase diagram of apoMtFig. 4), cytochromec (Kamatari et al.,

199.6' and lysozyme(Kamatari et a!., 199)8|nq||cates that the General feature of the expanded conformation (H)

region for thely, state of the apoMb is much wider than those of in high concentrations of alcohol
cytochromec and lysozyme, showing that the stability of thg

state is highly protein dependent. The area of lthestate in the  The highly helical conformation and disrupted tertiary structure of
phase diagram decreases in the order apoMbytochromec > proteins in alcohol are widely known, but their size and overall
lysozyme. Similar cooperativity differences have also been obshape are not known until recentlitamatari et al., 1996, 1998;
served in other denaturation processes. For example, in the caseldbshino et al., 1997 We investigated the general feature of Hhe
acid denaturation, the compact denatured state of apomyoglobistructure using not only apoMb but also several other proteins,
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Fig. 7. A: Experimental Kratky profiles of cytochrontein the native(+), H (open triangles and acid-denatured) states at 25C.
The experimental conditions were as follows: pH 4.5 for the native state; pH 1.7 and 60% meth&hgiifb2.0 for the acid-denatured
state. The protein concentrations were kept at 1@mmigfor all the profiles B: Simulated Kratky profiles of cytochrontan the native
(+), broken helix in which protein have native helical elements but the other regions are random coil conforfopgonsiangles
and random coil*) states.
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which include ubiquitin, ribonuclease Ay-lactalbumin,B-lacto-  Conclusions

globulin, anQStreptomycesubtl.Ilslln |nh|b|t0r(SSI). Thengalues Taking all the results together, the compact and expanded confor-
are summarized in Table 2. This is quite a range of proteins. ApoMb_ . . :

o A mations formed in alcohol-water mixtures appear to be general
and cytochrome are a-proteins; ubiquitin, ribonuclease A, lyso-

zyme. a-lactalbumin, andStreptomycesubiilisin inhibitor (SS) conformational states. These conformations are clearly distinguish-

are a/B-proteins; ands-lactoglobulin is as-rich protein. SSI is able by their size, shape, and existence of hydrophobic clustering.

a dimer protein, while the others are monomeric. However, all OfThe present study also indicates that the compact denatured state

the Ry values of theH state are expanded 1.5-2.2-fold compared“’%" or MG)his stabledur:jdzr relativzly mild denaturing conlqlitic;ns,

to those of the native states, and are close to that of the ureé"-’ ereas the expan .E.E enatured statde c_Jr ) arg reafize
under extreme conditions of pHarge electric repulsionor the

denatured state§Table 2. In all cases the Kratky patterns also concentration of alcohasmall hydrophobic interactiohs

indicated nonglobular conformationEig. 5B).

A 2,2,2-trifluoroethanol TFE)-induced highly helical structure
of lysozyme has been extensively studied by Buck and coworkergjaterials and methods
by NMR methods(Buck et al., 1993, 1995, 1996who showed
that the protein has six helices, five of which are located in theytarials
helical region while the other is located in tBesheet region of
the native state. More recently Brutscher and coworkers reporte@PoMb was prepared from horse heart myoglof8igma Type
the NMR characterization of the ubiquitin in 60% methad@% V) by 2-butanone extraction of the herfidapner et al., 1968
water at pH 2, conditions identical to ouBrutscher et al., 1997  and purified by Sepadex G-50 filtration to remove aggregates. Hen
They showed that the N-terminal half of tiestate, comprising €99 wWhite lysozyméSigma, St. Louis, Missouribovine ubiquitin
the antiparalle]3-sheet and a central-helix, conserve the native (Sigma, horse heart cytochrome(type VI; Sigma, bovine pan-
secondary structural elements while the C-terminal half, which iscreatic ribonuclease fiype XII-A; Sigma), a-lactalbumin(Sigma,
in the native state rich iB-strand character, undergoes a methanol-and -lactoglobulin(Sigma were used without further purifica-
induced transition to a dynamic state with a uniformly high pro- tion. Crude solutions of SSI were obtained frdstreptomyces
pensity for helical structure. They also showed there three segme@ibogriseolusS-3253, and were purified on chromatographic col-
(one B-sheet and twer-helix) have independent rotational corre- umns with DESXWatman, Maidstone, UKand Sephacryl S-200
lation time. Combining these results with ours, we suppose that thePharmacia, Uppsala, Swedeas described by Saito and Murao
H states have expanded and flexible broken rod-like chain confort1973. The homogeneity of the proteins was checked by electro-
mations, in which the rods are usually helical but may be small set@horesis. The concentration of apoMb in solutions was determined
of B-strands on rare occasions. photometrically, using,go = 14,300(Crumpton & Polson, 1965

The fact thatH states have expanded conformations is alsoMethanol concentrations are given as %y.v
supported by other data in addition to the SAXS results shown
above. One example is the qualitative agreement of the eXperiMethods
mental and simulated Kratky plots in which protein have native
helical elements with other regions in random coil conformations

; . o . pH measurements
(Fig. 7). This also supports the validity of oul conformation ) )
model. The absence of fluorescence quenching ofHrstate of The pH of the solution was measured on a HORIBA/[t
cytochromec (Kamatari et al., 1996also supports the expanded Meteér F-23. The pH values of the protein solutions ipOK
conformation. Horse cytochronmehas a single tryptophan residue, C'2'|3OH2 were adjusted by adding HCI. The pH values*t;0/
Trp59, which is completely buried near the center of the moleculd™ HsO?H solvent were adjusted by addiRgiCl and are given as
and hydrogen bonded to a heme propionate. In the native anBH* The reported pH and pH* values are direct meter readings
molten globule state of this protein, the fluorescence of Trp59 iincorrected for the isotope and methanol effects.
guenched due to resonance energy transfer to the heme moiety. On
the other hand, both thel and acid-denatured states show an CD measurements
increased level of fluorescence intensity, reflecting a separation of CD measurements were carried out af@®n a Jasco spectro-
Trp59 from the heme moiety. Absence of the hydrophobic core ofolarimeter, Model J-720, with a quartz cell of 0.1 mm light path
the H state, indicated by the absence of ANS bindiidexan- ~ for the far-UV and of 10.0 mm light path for the near-UV CD
drescu et al., 1994; Kamatari et al., 19%nd noncooperative heat region at protein concentrations of /. The temperature of the
denaturationBuck et al., 1998 may also indirectly support the cell was controlled by circulating water through a jacket around the
expanded conformation of the state. cell to within =0.1°C. The results are expressed as mean residue

Hoshino et al. reported the TFE-denatured state of lysozyméllipticity [6], which is defined agf] = 100 0ps/Ic, wherebopsis
(Hoshino et al., 1997 Their data show that the denatured state inthe observed ellipticity in degreesis the concentration in residue
30% TFE has a similaR, value and chain shape to the GdnHCI- moles per liter, andiis the length of the light path in centimeters.
denatured state rather than the native state. This indicates that the
noncompact nonglobular conformation exists not only in methanol- NMR measurements
water solvents but also in the other alcohol-water solvents. NMR measurements were performed af@%n a Bruke(Ger-

In conclusion, the helical and noncompact conformatibh many DMX 750 NMR spectrometer operating at 750 MHz. The
in an alcohol-rich aqueous environment should be a general corprotein sample was dissolved in®/CHzOH or 2H,0/C?H;0%H
formation in globular proteins. This structure is clearly distin- to a concentration of 1 to 7 mM with the sodium salt of 3-trimethyl-
guishable from the “molten globule” type of compact denatured[3,3,2,22H]-propionic acid TSP) added as a internal chemical shift
state. reference.



The compact and expanded denatured conformations of apomyoglobin 881

SAXS measurements SAXS profile for each model of the denatured cytochramPe-

Solution X-ray scattering experiments were carried out at the@ils of the SAXS simulation method will be reported elsewhere.
solution scattering statioitSBAXS camerainstalled at BL-10C, the
Photon Factory, Tsukuba, Japddeki et al., 1985; Kataoka et al.,
1991). The sample to detector distance was about 90 cm for meg2cknowledgments
surements of SAXS, calibrated with meridional diffraction of dried \ye are indebted to Y. Harano and H. Kamikubo for their help with X-ray
chicken collagen. The X-ray wavelength was 1.488 A. The samplacattering experiments. We thank Y. Inoko and K. Kobayashi for their
cell was 50uL in volume with a 15um thick quartz window, and ~ support with experiments at the Photon Factory. The X-ray scattering mea-

had a 1 mnX-ray path length. The temperature of the sample wasSurements were performed under an approval from the Program Advisory
trolled at chp by ci 9 lati ¢ P ¢ trolled P t Committee of the Photon FactoffProposal Nos. 95G262 and 95G264
controfled a y circulating temperature-controlied Water. \yg thank professor O.B. Ptitsyn, Dr. V.E. Bychkova, Dr. M. Buck, Dr. M.

Protein samples were dissolved in® CH;OH; concentrations  Hoshino, Dr. D. Hamada, Dr. R. Brueschweiler, Professor F. Toma, Dr. T.
were varied within the range of 1 to 10 gL, and for each  Yamaguchi, and Dr. J.A. Jones for their useful discussion. This work was
experiment the measurement time was 10 min. Solvent solutiongupported by the Grant-in-Aid for Scientific Reseatgiven to K.A) and

containing no protein sample were measured as background. for JSPS Fellowggiven to Y.O.K) from the Ministry of Education, Sci-
ence, Sports and Culture of Japan.
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