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Abstract

In the past few years, a new generation of fold recognition methods has been developed, in which the classical sequence
information is combined with information obtained from secondary structure and, sometimes, accessibility predictions.
The results are promising, indicating that this approach may compete with potential-based methods~Rost B et al., 1997,
J Mol Biol 270:471–480!. Here we present a systematic study of the different factors contributing to the performance
of these methods, in particular when applied to the problem of fold recognition of remote homologues.

Our results indicate that secondary structure and accessibility prediction methods have reached an accuracy level
where they are not the major factor limiting the accuracy of fold recognition. The pattern degeneracy problem is
confirmed as the major source of error of these methods. On the basis of these results, we study three different options
to overcome these limitations: normalization schemes, mapping of the coil state into the different zones of the Ram-
achandran plot, and post-threading graphical analysis.

Keywords: fold recognition; protein function identification; protein structure prediction; remote homologues;
secondary structure and accessibility predictions; sequence annotation; threading

In light of the vast amount of information generated by the differ-
ent genome projects, improvement in the performance of fold
recognition methods has become an important challenge for those
researchers working in the genomics field~Lander, 1996!. These
methods, also known as threading methods, provide a very prom-
ising approach to the problem of protein structure prediction and
function identification, as can be seen by the results of the last
CASP2 prediction experiment~Marchler-Bauer & Bryant, 1997!.
The first fold recognition methods generally used either distance-
based~Jones et al., 1992; Sippl & Weitckus, 1992; Bryant & Law-
rence, 1993! or profile-based~Bowie et al., 1991; Ouzounis et al.,
1993! scoring functions. However, since the original work by Sheri-
dan et al.~1985!, different researchers~Fischel-Ghodsian et al.,
1990; Fischer & Eisenberg, 1996; Russell et al., 1996, 1998; Rice
& Eisenberg, 1997; Rost et al., 1997; Aurora & Rose, 1998! have
developed a series of related methods that combine sequence in-
formation with secondary structure~SS! and accessibility~AC!
predictions. In these prediction-based methods~PBM!, all the struc-
tural information is encoded into a one-dimensional~1D! string of
symbols, thus allowing matching in 1D and the use of classical
dynamic programming algorithms~Needleman & Wunsch, 1970;

Smith & Waterman, 1981!. When tested in different cases~Rost
et al., 1997; Rice et al., 1997!, these methods have given promising
results, comparable to the more complex distance-based methods
~DBM ! ~Rost et al., 1997!. Furthermore, matching in one dimen-
sion is about 10 times faster~Rost, 1996!, which is important for
the vast sequence searches related to genome projects. Despite
these promising results, there is no clear understanding of the
factors affecting0 limiting the recognition ability of the PBM. In
the case of the DBM, researchers from several laboratories have
studied different aspects of their performance. In a thorough study,
Kocher et al.~1994! analyzed the ability of different potential
terms and side-chain models to recognize the native-fold of the
query sequence within a set of candidates. Later, researchers from
the same group~Lemer et al., 1995!, studying the results from the
first CASP prediction experiment, suggested that fold recognition
may be achieved, despite poor alignment quality, by a generally
unspecific maximization of the hydrophobic interactions, and a
reasonably good prediction of the local secondary structure. West-
head et al.~1995! compared the behavior of two different threading
algorithms when used together with the distance-based potentials.
Bryant~1996!, using his DBM~Bryant & Lawrence, 1993!, shows
that there is a clear relationship between the percentage of residues
of the query sequence aligned with its remote homologue and the
recognition specificity of the method. This result has been sup-
ported by the analysis of the results of the CASP2 prediction
experiment~Marchler-Bauer et al., 1997!. For the PBM the dif-
ferent authors have provided serious descriptions on the behavior
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of their respective methods. However, to the best of our knowledge
no systematic studies have yet been published similar to the ones
described for the DBM.

In this paper we utilize a scoring function that shares the main
characteristics of those used in the PBM and a representative dy-
namic programming algorithm to study different effects contrib-
uting to the performance of these methods. In particular, we
concentrated in the study of their limitations when applied to the
fold recognition of remote homologues. Remote homologues~Rus-
sell et al., 1997! are proteins, which, despite their low sequence
homology, are evolutionarily related and generally have a similar
function. The interest in this problem lies in the identification of
function by recognition of a relationship between the query se-
quence and a protein of known function~Russell et al., 1998!. Our
results indicate that inaccuracies in the predictions are not the main
limiting factor preventing improved specificity. Secondary struc-
ture and sequence pattern degeneracies have a more important
effect. We explore how the use of functional annotations may help
to improve discrimination.

Results and discussion

Performance in the fold recognition of remote homologues

To test the performance of the threading method, we used a set of
73 pairs of proteins that are remote homologues~see Methods!.
The sequence of the first protein in each pair~the query sequence!
was used to search the structural database for the second protein in
the pair~the target structure!. Using the optimized parameters~see
Methods!, the fold recognition program ranked the target structure
in the first position in 29 queries, while in the remaining 44 ex-
amples a nonhomologous structure was ranked first. Therefore, the
success rate~29073! was 39.7% higher than the 29% success rate
reported by Rost et al.~1997!. ~Note: This calculation increases
dramatically when homologues for the query sequence are not
specifically excluded from the database; see below.! Several fac-
tors may account for this difference in performance:

~1! The parameter optimization was done on the same set of pro-
teins used to evaluate the performance of the method.

~2! The test sets are not the same. In our case we were only
interested in the fold recognition of remote homologues, while
Rost et al.~1997! include analogous proteins and consider the
general threading problem.

~3! We are using a smaller database of structures~627 proteins!
than Rost et al.~1997! ~701 proteins!, who have shown that the
smaller the database, the better the performance.

~4! Our probabilities are dependent on the reliability indexes, and
this may improve the performance of our method~Fischer &
Eisenberg, 1996!.

~5! These results may also indicate that, on the average, it is
slightly easier to identify remote homologues than analogues
due to their higher conservation of sequence and structural
properties. This accords with the results of Russell et al.~1998!,
who achieved higher accuracies for homologues~64%! than
analogues~56%!, using a smaller test set including multiple
targets.

Fischer and Eisenberg~1996! present higher success rates~74%!
on their WWW server, but this reflects the sequence similarity

between many of the sequences in their database. A simple se-
quence search using the PAM250 matrix gives a success rate on
their dataset of 51%, while on ours the same search identifies only
9% of the targets.

The quality of the alignments obtained here is comparable to
previous PBM methods. Comparing our predicted alignments against
the structure-based alignments derived using the SSAP program
~Taylor & Orengo, 1989!, we find that 62% of correct hits show
more than half of their residues correctly aligned. This 62% is
close to the value derived by Rost et al.~1997!. If we use the
STAMP program~Russell & Barton, 1992! structural alignments,
this value drops to 38%. This illustrates one of the problems when
trying to assess the accuracy of the threading alignments: different
structure comparison methods provide different alignments~Godzik,
1996; Zu-Kang & Sippl, 1996!.

Thus the method used here shows a success rate comparable to
previous methods. As it is based on essentially the same principles
as these other PBMs, we can reasonably assume that the results
obtained from the performance analysis of our method will be
generally applicable.

Effect of the number of fold representatives
in the searched database

To compute the performance of our method for each query se-
quence, all its remote homologues present in the original database
~Rost, 1996! were included in the target database~see Methods!.
The average number of target structures per query sequence in-
creased from 1 to 3.8, on average, giving a much improved per-
formance, with an average success rate of 67.4%. This result
generalizes the initial observation by Lemer et al.~1995!, and
shows that searched databases should include the maximum avail-
able number of fold representatives.

Comparison between the structural
and the threading alignments

One of the goals of the threading methods is to provide an align-
ment of the query sequence against the target sequence to allow an
accurate model to be built by using homology modeling techniques
~Rost et al., 1997!. However, the outcome of the modeling criti-
cally depends on the accuracy of the alignment, as shown by the
results of the CASP prediction experiment~Sali et al., 1995; Sam-
udrala et al., 1995; Martin et al., 1997!. When comparing the
observed and the predicted alignments, we found that there was no
case for which the threading alignment coincided entirely with the
structural alignment. To explore the reasons for the nonrecognition
of the structural alignments, we compared the score decomposition
~see Methods! for the predicted and the observed alignments
~Table 1!. To take into account the structural alignment ambigu-
ities ~Godzik, 1996; Zu-Kang & Sippl, 1996!, two sets of structural
alignments were used, derived from SSAP~Taylor & Orengo,
1989! and STAMP~Russell & Barton, 1992!. The results for both
sets were similar.

For the observed structural alignments, we see that both the
sequence and the gap terms make unfavorable negative contribu-
tions to the alignment scores~20.100 and20.258, respectively,
for the SSAP alignments!. Only the structure term has a positive
contribution~0.049!, derived solely from the SS prediction term.
This reflects the fact that SS is both better predicted and more
conserved between homologues than AC. The very negative con-
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tributions of the gap penalties can be attributed to the high number
of gaps observed in the structural alignments of remote homo-
logues~Russell et al., 1997!.

In the predicted threading alignments, both the structure and
sequence terms have positive values of 0.188 and 0.083, respec-
tively. In addition, decomposition of the structure term shows that
both the secondary structure and the accessibility terms make pos-
itive contributions to the alignment scores. It is not surprising that
the predicted alignments show better scores, since they were de-
rived to optimize these values. However, this highlights the inad-
equacies of the scoring function~an incorrect alignment scores
better than the correct observed alignment!.

This conclusion is essentially independent of the ambiguities in
the structural alignments~Godzik, 1996; Zu-Kang & Sippl, 1996!,
as similar results are reached when using the STAMP~Russell &
Barton, 1992! structural alignments~Table 1!.

Factors affecting the fold recognition specificity
of remote homologues

Above we used a simple score decomposition corresponding to the
three terms of the scoring function: structure, sequence, and gap.
Unless otherwise stated, we will use score differences to describe
the contribution of the different terms to the successes or failures
of the method~see Methods!.

When looking at the successes of the method, we see that on
average the sequence, structure, and gap terms of the scoring func-
tion ~0.051, 0.041, and 0.013! all favor the recognition of the
correct fold. In particular, the sequence and the structure terms are
the most discriminating. If we plot the sequence identity distribu-
tion for both the successes and failures of the method~Fig. 1!, we
observe that sequence identity is in general higher for the success-
ful than for the failed queries, emphasizing that homologues shar-
ing higher sequence similarities are easier to recognize. However,
there is a substantial overlap between both distributions, and for
60% of the successes, the contribution of the structure term is
higher than that of the sequence term. These results confirm that at
this level of sequence identity the structure term is needed for a
fruitful fold recognition.

For the failures of the method, all the terms—sequence, struc-
ture, and gap—contribute to recognizing the wrong partner
~Table 2!, although in this case the more important contributions
come from the structure and the gap term,20.019 and20.024,
respectively. On average the structure term difference is more
than twice as large as the sequence term difference~Table 2!,
which arises from the large contribution of the SS prediction
score ~20.020!. This probably reflects the highly nonrandom

Table 1. Average values for the different scoring terms in the observed structural
and predicted threading alignments

Observed alignments Predicted alignments

SSAPa STAMPb Threading

Sequence 20.100~0.055! 20.090~0.063! 0.083~0.073!
Structurec ~SS1 AC! 0.049~0.058! 0.057~0.050! 0.188~0.045!
Gap 20.258~0.224! 20.349~0.155! 20.103~0.045!
Structural decompositiond

SSe 0.049~0.047! 0.053~0.040! 0.121~0.029!
ACf 0.000~0.022! 0.004~0.020! 0.067~0.026!

aStructure contribution obtained for the SSAP alignments~Taylor & Orengo, 1989!.
bStructure contribution obtained for the STAMP alignments~Russell & Barton, 1992!.
cTotal contribution of the structure term~SS1 AC!.
dDecomposition of the structural term.
eContribution due to the SS term.
f Contribution due to the AC term.

Fig. 1. Distribution of sequence identities from structural alignments for
the successes~black! and failures~grey! of the method. The sequence
identities for the 73 test cases were derived from the SSAP structural
alignments~Taylor & Orengo, 1989!. Similar results were obtained using
the STAMP alignments~Russell & Barton, 1992! ~results not shown!.
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distribution of the SS states along the sequence~i.e., long stretches
of SS can match, even in incorrectly paired sequences!.

In the following sections, we discuss in more detail different
effects modulating the fold recognition performance of PBM.

Structure prediction accuracy

As expected, the contribution of residues with correctly pre-
dicted structure~SS1 AC! makes a major contribution~0.066! to
the successful recognition of the target structure. In contrast, the
average contribution of those residues with incorrectly predicted
structure~20.025! favors recognition of the wrong candidate. This
is also true for the failures of the method~Table 2!, indicating the
relevance of good structure predictions in the recognition of the
correct target structure.

To further evaluate the relevance of the prediction accuracy to
the recognition process, we computed the secondary structure and
accessibility prediction accuracies for the 73 query sequences. The
results obtained show that, on average, they are only slightly better
when the method succeeds in recognizing the remote homologue
~76.0% and 59.5% for SS and AC, respectively! relative to 73.0%
and 55.2%, respectively, when the method fails. These differences
in prediction accuracy partly explain the failures of the method

~see Fischer & Eisenberg, 1996; Rost et al., 1997! but when plot-
ting the histograms for both the SS and AC accuracies~Fig. 2!, we
can see a clear overlap between the successes and failures of the
method.

Table 2. Summary of the score decompositions for the successes
and failures of the fold recognition procedurea

Successesb

~28 cases!
Failuresc

~38 cases!

Sequence 0.051~0.036! 20.008~0.055!
Structured 0.041~0.063! 20.019~0.037!
Gap 0.013~0.053! 20.024~0.064!
Structural decompositione

Correctly predictedf 0.066~0.04! 20.005~0.042!
Incorrectly predictedg 20.025~0.025! 20.014~0.028!

SS decompositione

SSh 0.019~0.028! 20.020~0.028!
ACi 0.022~0.025! 0.001~0.02!

SS decompositionj

Alpha 1 betak 0.017~0.016! 20.007~0.022!
Coill 0.002~0.021! 20.013~0.018!

aCalculated as the differencesD between the correct match and nonho-
mologous match with the highest score. Positive values indicate a favorable
contribution to the correct candidates while negative scores indicate that
the nonhomologous protein scored more highly.

bThe values are listed for the different contributions computed for each
protein using Equation 6 and averaged over the 28 successful fold recog-
nition examples. The standard deviations are given in parentheses.

cSame as in footnote b, for the 38 protein pairs that were not success-
fully matched.

dD in total contribution of the structure term~SS1 AC!.
eDecomposition of the structuralD term.
f Contribution from those residues for which SS1 AC are correctly

predicted.
gContribution from those residues for which SS1 AC are incorrectly

predicted.
hTotal contribution toD of the SS term.
i Total contribution toD of the AC term.
j Decomposition of the total SS term.
kContribution to theD SS term from the aligned residue pairs in which

the residues belonging to the selected candidates were in helix and sheet.
l Same as in footnote k for residues in the coil state.

A

B

Fig. 2. Prediction accuracy histograms for~A! SS and~B! AC. The data
corresponding to the successes of the method are represented in black. The
data corresponding to the failures are represented in grey. In each case the
prediction accuracies are computed by comparing the query sequence pre-
dictions ~from the PHD package, Rost & Sander, 1993! and observed
structures~from the DSSP assignments, Kabsch & Sander, 1983!.
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The previous results indicate that while correct predictions make
an important contribution to the success of the method, the present
level of structure prediction accuracy is not the main factor dis-
criminating correct from incorrect fold recognition. Two factors
have more effect on the correct recognition of the target structure:
the degree of similarity between the query and the target structures
and the pattern degeneracy problem.

In Figure 3 we display the fraction of secondary structure con-
served between the known query and the target structures, for both
the successes and the failures of the method. We can see that
secondary structure is clearly more conserved for the successes
than for the failures of the method. This indicates that even at the
present level of secondary structure prediction accuracy, recogni-
tion of the target structure will strongly depend on the degree of
similarity between the query and the target structures. This is in
accordance with the results by Bryant~1996!.

Pattern degeneracy in secondary structure
and accessibility matching

Usually in PBM the problem of pattern degeneracy refers to the
secondary structure pattern degeneracy. It corresponds to the fact
that different folds, or parts of them, may have similar 1D structure
patterns~Rost et al., 1997!. Its origin lies in the information loss
due to the projection of the three-dimensional~3D! structure of the
protein into a 1D string of symbols~Rost et al., 1997!. The infor-
mation loss is most pronounced in the coil state, because coil
residues can map to different zones of the Ramachandran plot.
This can be seen in the case of the remote homologue pairs. If we
compute the percentage of Ramachandran zone conservation~see
Methods!, for the aligned residues in the 73 pairs, we can see that
it is very high for residues in the alpha or beta states~99.8% and

96.3%, respectively!, while it drops clearly~60.7%! when consid-
ering residues in the coil state.

To evaluate, at the score level, the effect of this information loss
in the recognition performance of the PBM, we computed the
contribution of the coil-based SS terms to the score difference
between the correct alignment and the highest ranking incorrect
match~Table 2!. The results obtained show that the coil term plays
an important role in the recognition of the wrong candidate, while
the remaining secondary structure elements, alpha and beta, appear
to favor more frequently and strongly the recognition of the correct
candidate.

Finally, note that secondary structure repetitions, which are very
common~e.g., in TIM barrel!, exacerbate the pattern degeneracy
problem.

The pattern degeneracy problem also affects the accessibility
term, as the same accessibility state—buried, exposed, or half-
exposed—may be obtained from different combinations of neigh-
bors. However, the average low contribution of the accessibility
term to the failures of the method~0.001! indicates that the acces-
sibility cannot distinguish the correct and incorrect matches for the
failures at all.

Pattern degeneracy in the sequence term

Sequence effects usually favor the ranking of an incorrect fold
in the first position. These unspecific effects are similar to the
secondary structure pattern degeneracy, and can be explained by
the fact that even for different proteins, hydrophobic residues mainly
constitute the core, and hydrophilic residues mainly constitute the
surface. Therefore, just by aligning core and surface positions we
may obtain positive scores, favoring the alignment between any
protein pair, despite underlying structural differences.

The predicted alignments generally comprise correctly and in-
correctly aligned stretches of residues~data not shown!, a feature
obscured by the average alignment shifts. In general, favorable
sequence contributions are expected to come only from the cor-
rectly aligned residues, e.g., in Figure 4 we see that for the pair
~1abe, 1gca!, with an average shift of 0.43, the vast majority of the
residues are correctly aligned. However, in some cases sequence
information may benefit the correct over the incorrect match, even
though the alignment is grossly incorrect. For example, for the pair
~3blm, 3pte!, the correct target is ranked first, favored only by the
sequence term, despite an average alignment shift of 48.4. Figure 4
confirms that in this case the number of residue pairs with high
shifts is large.

Possible alternatives to improve the performance of prediction-
based methods. The previous analysis highlights some of the prob-
lems that affect the success of PBM. In this section, we discuss
some strategies that could be used to overcome them.

As we have previously seen, the pattern degeneracy problem is
the main factor limiting the accuracy of fold recognition using
PBM. One approach to eliminate this effect could, in principle, be
the use of a normalization scheme to estimate the significance of
a match. Bryant and Altschul~1995! suggest a procedure to elim-
inate unspecific sequence composition effects based on the gener-
ation of a reference state by randomly shuffling the aligned residues.
In a second step this reference state is used to normalize the score
of the alignment. Unfortunately, this procedure cannot be easily
applied to scoring functions involving SS terms, due to the high
correlation between the SS state of neighboring residues. This
problem is likely to affect any correction scheme involving SS

Fig. 3. Histogram of SS conservation between the query and the target
structures for the successes~black! and the failures~grey! of the method.
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shuffling. For this reason, we decided to explore a different ap-
proach to evaluate the reliability of the threading hits and decrease
the weight of unspecific effects.

The SS pattern degeneracy problem is due in part to the struc-
tural degeneracy of the coil state. In the coil state, residues are
characterized by the fact that theirf,c angles may occupy any
allowed zone of the Ramachandran plot. Interestingly, Swindells
et al. ~1995! have shown that residues in the coil state have well-
defined propensities for different zones of thef-c map. This sug-
gests that replacing the simple coil state by a set off-c zones may
help to improve the recognition ability of PBM.

The feasibility of such an approach relies in the conservation of
thef-c zones, for the residues in the coil state, across proteins in
the same structural families. However, the degree of zone conser-
vation is only 61% for the aligned coil residues in the observed
structural alignments and a very similar percentage~57%! was
observed in the threading alignments. This suggests a limited use-
fulness for the proposed approach. A more refined analysis was
done in which coil residues were classified according to their
accessibility state. The results obtained showed that, for the ob-
served structural alignments, only buried coil residues display a
high degree~70%! of f-c zone conservation. However, as they
only are a small fraction of the coil residues in the protein, it is
very unlikely that the use off-c zones for these residues will
contribute to increase the success rate of the method. Also a change
of f,c values for a single residue can critically affect the overall
3D topology of the coil, rendering such predictions very sensitive
to errors.

Post-threading analysis

In our threading method, the contribution of all the residues has
been given the same weight. However, for remote homologues

with similar functions, it is likely that the functionally important
residues will be more conserved. Therefore, if we have information
to identify these residues~from multiple sequence alignments or
structural data!, these data should be used to aid recognition. To
this end we have utilized a tool already developed in our labora-
tory, the program SAS~Milburn et al., 1998!, to annotate sequence
alignments with information extracted from the Protein Data Bank
~PDB! file ~Bernstein et al., 1977! of the target sequence, e.g.,
SITE records, contacts with the ligand, etc. Unfortunately, the
results obtained are limited by the fact that such information is
often not available.

For the 21 pairs in our database for which SITE records were
available, only for the pair of protein tyrosine phosphatases~2hnq,
1yts! did the observed coincidence suggest a common function. In
this case, 1yts was the top hit in the threading method. The anno-
tated alignment is shown in Figure 5. Protein 1yts shows two
segments of active-site residues, residues 350–360 and residues
402–410, according to the PDB file records. It can be seen that for
2hnq several of these residues are conserved. These matches sug-
gest that the query protein is likely to have the same function as the
target protein. We have not attempted to quantify the likelihood of
these matches, as this is beyond the scope of this paper.

Conclusions

Our results indicate that by enriching the number of remote ho-
mologues per fold in the searched database, the average accuracy
of PBM may increase substantially. We have also observed that the
accuracy level reached by secondary structure and accessibility
predictions is often sufficient to allow their use in the recognition
of remote homologues by PBM, without introducing any major
source of error. Interestingly, at this stage the degree of structural
similarity between the query and the target structure becomes a
more relevant factor. However, the pattern degeneracy problem, a
consequence of using 1D information, is probably the main prob-
lem affecting fold recognition by PBM. This suggests two direc-
tions for the improvement of prediction-based fold recognition
methods: use of more specific function-related sequence informa-
tion, as shown by our use of structure-derived sequence annota-
tions, or the introduction of 3D information such as that used in
distance-based threading methods, in the form of additional terms
to the scoring function. We are at present exploring these two
alternatives.

Methods

The set of remote homologue pairs

We used a set of 73 remote homologue pairs derived from the set
provided by Russell et al.~1997!, after eliminating all the pairs
where one of the proteins had missing or unknown residues. In this
paper, the first and the second protein in each pair will be consid-
ered as the query and the target sequences, respectively.

The searched database

The searched database was a set of 627 proteins, with less than
25% sequence identity between any pair, derived from the set
provided by Rost~1996! after eliminating all those proteins having
missing or unknown residues.

Fig. 4. Frequency distribution of the alignment shifts of the predicted align-
ments for the pairs 1abe–1gca~black! and 3blm–3pte~grey!.
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Due to the nature of the database, there are several remote
homologues for each of the 73 query sequences. However, when
performing a search with a given query sequence, only the remote
homologue coinciding with the target sequence was kept in the
database. This provided a much more conservative measure of the
success of our method~see Results and discussion!.

Fold recognition performance and alignment quality

We measured the fold recognition performance of our method by
the percentage of correct first hits computed as follows:

100•nf

N
~1!

where nf is the number of pairs for which the query sequence
ranked its corresponding target sequence in the first position;N is
the number of test cases, 73 in our case.

The alignment accuracy was measured using the alignment mean
shift error, computed as follows:

100•(
i51

Nal

6shifti 6

Nal
~2!

summed over all the query sequence residues present both in the
threading and the structural alignments.Nal is the total number of
these residues. The shifti is the residue shift between the correct
~structural! alignment and the predicted~threading! alignment for
a given query sequence residue.

Effect of having multiple target structures
in the fold recognition performance

To test the effect of the number of targets0query, the performance
of our method was computed using all the homologues of each

Fig. 5. Annotated predicted threading alignment between the two tyrosine-phosphatases 2hnq and lyts. 2hnq was used as the query
sequence to search the structure database and lyts; the remote homologue of 2hnq was the first hit found by our threading method. The
alignment shift errors were 1.7 and 3.8 residues, relative to the SSAP~Taylor & Orengo, 1989! and STAMP~Russell & Barton, 1992!
alignments, respectively. Residues colored in red correspond to 1yts active-site residues, according to the PDB file records~Bernstein
et al., 1977!. The upper case is used for the 1yts sequence to indicate that information on the active-site residues is available. The
display was produced using the in-house program SAS~Milburn et al., 1998!.
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query sequence present in the target database, rather than only
using one target per query. However, some of the query sequences
in our test set belonged to the same SCOP superfamily~Murzin
et al., 1995!. To avoid any bias due to this fact, we generated a
collection of 50 reduced test sets. Each set was constituted by 35
query sequences, randomly chosen from the 73 query sequences of
our initial test set, and each belonging to different superfamilies.
Finally, the performance of the method was averaged over the
values corresponding to the 50 sets.

Structural alignments

Due to the ambiguity in structural alignments~Godzik, 1996; Zu-
Kang & Sippl, 1996!, two sets of structural alignments were used
in this paper: one is available from Russell et al.~1997!, who
derived them using the STAMP program~Russell & Barton, 1992!,
and the other set was obtained using the SSAP program~Taylor &
Orengo, 1989!.

The threading procedure

Our threading procedure is based in the use of a typical dynamic
programming algorithm~Needleman & Wunsch, 1970! and a scor-
ing function combining sequence information with SS and AC
information derived from predictions. Given a pair~i, j ! of aligned
residues,i belonging to the query sequence andj to a given protein
from the searched database, their contribution,scij , to the align-
ment score was obtained utilizing the following equation:

scij 5 wseq. mij 1 wstct . ~ssij 1 accij ! ~3!

wheremij , ssij , andaccij correspond to the sequence, SS, and AC
contributions, respectively, andwseq andwstct correspond to their
respective weights. Note that the secondary structure and accessi-
bility terms have the same weight.

The sequence contribution to the score,mij , was obtained using
the normalized PAM250 matrix~Dayhoff et al., 1978! from the
GCG program manual~GCG, 1994!.

The SS and AC terms were derived utilizing database probabil-
ities p. The formula used for the secondary structure case was

sc5 lnFpS OBSss

PREDssù rl DG2 ^ ln@ . . .#& ~4!

where sc corresponds to the score for aligning a residue in the
target protein, with observed secondary structure~OBSss!, to a
residue in the query sequence, with predicted secondary structure
~PREDss!, and an associated reliability index~rl !. OBSssand PREDss

may be equal to one of the three secondary structure states:H
~helix!, E ~strand!, or C ~coil!. The normalization term̂ln@ . . .#& is
equal to

^ ln@ . . .#& 5
1

3 (
i51

3

lnFpS OBSss
i

PREDssù rl DG ~5!

where OBSss
i goes through all the three possible SS states. The

score for the AC was derived in exactly the same way.
The probabilitiesp in Equation 3 were obtained from the query

sequences in our set of 73 remote homologue pairs by aligning, for
each residue, its assigned~using the DSSP program, Kabsch &

Sander, 1983! and predicted~using the PHD program, Rost &
Sander, 1993! SS. That is to say, the probability to observe a
residue in the helix state when it is predicted to be in a beta state,
with reliability 7, is equal to

pS H

E ù 7D 5
nH,E,7

nE,7
~6!

wherenH,E,7 is the total number of residues havingH as observed
secondary structure andE as predicted secondary structure with
reliability 7. The denominatornE,7 is the total number of residues
havingE as predicted SS with reliability 7.

The final comparison matrix was linearly scaled so that the
maximum and minimumsc values were equal to 1 and21, re-
spectively~Rost, 1996!.

The gap function used was a simple linear gap scheme typically
used in PBM~Fischer & Eisenberg, 1996; Rice & Eisenberg, 1997;
Rost et al., 1997! in which the penalty for opening a gap involving
n residues is given by

go 1 ge•n ~7!

where go and ge are the gap opening and elongation penalties,
respectively. No end gap penalties were applied.

The penalty gap valuesgo andge, as well as those of the two
weightswseq andwstct, were obtained following a simple optimi-
zation procedure in which our threading method was applied to a
set of 73 protein pairs for different sets of values of these param-
eters. The objective function used for the optimization procedure
was the percentage of correct first hits~see above!. The different
sets were obtained as follows:go was systematically varied be-
tween21 and29 at intervals of22 U andge was set to 0.1go

~Rost, 1996!. The weightwseq was varied between 0 and 1, at
intervals of 0.25 U, andwstct was set equal to 12 wseq. Finer
intervals were not utilized to avoid overfitting problems. During
the optimization runs, the values of the probabilities in Equation 3
were computed using a jackknife procedure. Also, for each query
sequence, the jackknifed SS and AC predictions were used. In our
case we are interested in studying the factors limiting the perfor-
mance of the PBM, rather than comparing the performance of a
newly developed method relative to already developed methods.
Therefore, the use of optimal parameters does not affect the con-
clusions reached. Note that the values of the optimal parameters
depend on the distribution of sequence similarities in the test set
used. However, due to the careful procedure followed by Russell
et al.~1997!, to select their set of remote homologue pairs, as well
as because of the final number of pairs, 73, the test set used
reasonably reflects an average threading scenario. The best results
in the optimization runs were then obtained for weights equal to
0.75 and 0.25 for the sequence and structure terms, respectively.
Note that this does not mean that the sequence contribution to the
final alignment score is higher than that of the structure term. The
optimal gap opening and elongation penalties were 3.0 and 0.3,
respectively. To test that the results obtained do not depend on
some pathological characteristic of the test set, we repeated the
optimization runs after eliminating, in turn, each of the 73 pairs.
The optimal parameters obtained for the 73 optimization runs were
the same, suggesting that the parameters listed are not significantly
biased.
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The final scoreSC for the alignment between two sequences
was given by

SC5 S~i, j ! scij 1 Sk~go 1 nk•ge! ~8!

where the indexes~i, j ! andk run over all the aligned pairs and the
opened gaps, respectively;nk is the size ofkth gap.

Score decompositions

To understand how different factors such as SS prediction accuracy
contribute to the performance of the threading method, we decided
to use a score decomposition in which each score was divided into
three main terms: the sequence, structure, and gap contributions.
The structure term was divided in two different ways: contribu-
tions from the SS and AC residue states, and contributions from the
correctly and incorrectly predicted residue structural states. Fi-
nally, the SS contribution was divided into the alpha1 beta and the
coil terms. An example of the score decomposition is given in
Table 3.

These score decompositions can tell us which are the main
contributions to the optimal alignment between the query sequence
and a database protein. However, given a query sequence, the
correct ranking of the corresponding target protein also depends on
whether the score for their alignment is better than that of the
alignment between the query sequence and the best scoring non-
homologous protein. Therefore, to assess the relevance of the above-
mentioned effects, we need to understand their contribution to the
difference between the two scores. To that end, for each of the 73
query sequences, we compared the score decomposition of its
alignment with the target protein, the remote homologue alignment

~RHA!, against that of the highest scoring alignment with a non-
homologous protein, the nonhomologue alignment~NHA!. Before
comparison, the scores and their components were normalized by
the number of aligned pairs. The few cases for which the raw and
the normalized scores had different relative rankings for the RHA
and the NHA were discarded. To avoid any confusion, note that the
RHA utilized at this stage is the alignment generated by our thread-
ing method, not the structural alignment.

To quantify the contribution of the different terms of interest
~e.g., sequence, structure, etc.! to the successes or failures of the
threading method, we divided the 73 test cases in two sets. One set
corresponded to the 28 cases where the correct target was identi-
fied, and the second set corresponded to the 38 cases where the
nontarget protein was ranked in the first position. Then, for a given
termX ~X 5 sequence, structure, etc.!, the average contribution to
the successes or failures of the method is computed as follows:

(
i

N

@Xi ~RHA! 2 Xi ~NHA!#

N
~9!

where the sum may run over theN 5 28 successes orN 5 38
failures of the method.Xi~RHA! and Xi~NHA! are the contribu-
tions of the termX to the score of the RHA and NHA alignments,
respectively, for thei th case. Notice that a positive sign indicates
a favorable contribution of termX to the RHA, while a negative
sign indicates a favorable contribution to the NHA.

Thef-c regions

Thef-c regions used in this paper are the ones defined by Swin-
dells et al.~1995!. They defined four main regions: a~right-handed
alpha!, b ~beta nonaccessible to Pro!, p ~beta accessible to Pro!,
and L ~left-handed helix!. To simplify, we have considered only
one beta state, B, as the division between b and p is not relevant for
the purposes of this paper.
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