Protein Sciencé€1999, 8:1500-1504. Cambridge University Press. Printed in the USA.
Copyright © 1999 The Protein Society

Heat capacity change for ribonuclease A folding

C. NICK PACE!?3 GERALD R. GRIMSLEY! SUSAN T. THOMAS?

AND GEORGE I. MAKHATADZE*

1Department of Medical Biochemistry and Genetics, Texas A&M University, College Station, Texas 77843-1114
2Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128

3Center for Macromolecular Design, Texas A&M University, College Station, Texas 77843-2128
4Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409

(RECEIVED January 8, 1999AccepTED March 26, 1999

Abstract

The change in heat capaciyC, for the folding of ribonuclease A was determined using differential scanning calo-
rimetry and thermal denaturation curves. The methods gave equivalent raiyts, 1.15+ 0.08 kcal mor* K.
Estimates of the conformational stability of ribonuclease A based on these results from thermal unfolding are in good
agreement with estimates from urea unfolding analyzed using the linear extrapolation method.
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In a recent paper, we were puzzled by the wide range of values fakH, values from the TDC were plotted as a functionTgf ac-
AC, for RNase A folding(Pace et al., 1998For example, a recent cording to the Kirchhoff equation:
compilation by Pfeil(1998 gives 37 values oAC, ranging from
1.0 to 2.3 kcal mot? K1 with an average of 1.3% 0.33 kcal AC, = d(AH)/d(T) D
mol~! K~1. A selection of these values is given in Table 1. The
ACp values obtained from differential scanning Ca|0rimé|g8c) to estimateACp, and the results are shown in Figure 1. The result-
based onAHcy Vs. T, measurements are generally smaller thaning AC,, values are given in Table 2C, values based on plots of
AC, values obtained by other methods basedAdt,;. Some  AH,n andAHg; from the DSC data, a global fit of all of the DSC
evidence suggested that a highe,, value(~2 kcal mol 1 K ~1) data, and on the difference between the posttransiigid) and
might be correct. For example, it gives better agreement with th@retransitionCy(N) baselines of the DSC experiments are also
observed temperature of maximum stability valligéEquation 3 given. TheAC, value based on plots dfHcq vs. Ty in Table 2 is
and with conformational stabilities measured by an analysis ofower than theAC, values determined in the same way that are
solvent denaturation curves. Consequently, we decided to study tH#ven in Table 1. We are not sure why. It could be because we use
f0|d|ng of RNase A under identical conditions by DSC and by onIy 10 mM buffer and most of the other studies used hlgher buffer
thermal denaturation curvégDC). concentrations(See McCrary et al., 1998 for a possible explana-
tion.) Table 2 also gives estimates aC, obtained by Privalov
et al.(1973 using the same methods. The agreement is reassuring.

Results

An analysis of the DSC scans gave valuesAéf.,, AH,4, and Discussion

AHy, that are in excellent agreement, although at each pH thehe difference in heat capacity between the foldgdF) and

AHcq values are slightly larget\Hea/AH, = 1.02+ 0.02 and  unfolded C,(U) states of a proteinAC, = C,(U) — C,(F), is

AHca/AHg = 1.03 + 0.02. An analysis of the TDC gaveH,;  important in determining the temperature dependence of the con-

values in reasonable agreement with fig., values, but, again, formational stabilityAG = G(U) — G(F) (Becktel & Schellman,

the AHc, were largerAHca/AH, = 1.07+ 0.04. The presence of  1987; Privalov, 1990 This is illustrated in Figure 2, which shows

a small concentration of intermediate states at equilibrium wouldhe protein stability curve for ribonucleasg RNase A calculated

explain these differencédackson & Brandts, 1970; Freire & Bil- using AC, = 1.15 kcal mot! K1, a value consistent with the

tonen, 1978 TheAHc, values from the DSC experiments and the results in this paper, andC, = 2.2 kcal mol! K1, a value
reported by Pace and Laurerit089. These curves were calcu-
lated with the Gibbs—Helmholtz equation:

Reprint requests to: Dr. C.N. Pace, Medical Biochemistry, Texas A&M
University, College Station, Texas 77843-1114; e-mail: nickpace@tamu.edu. AG(T) = AHL(1— T/Ty,) — AC [T — T+ TIn(T/Tw)]  (2)
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Table 1. AC, values for RNase A folding from the literature

AC,

Group Method (kcal mol™t K1)
Privalov Lab(1973-199% AHcg VS. Ty 1.27
Schwarz and Kirchhoff1988 1.67
Fujita and Nod&1991) 1.09
Hinz et al.(1994 1.08
Makhatadze et al1995 1.24+ 0.07
Liu and Sturtevant1996 1.74+ 0.02
Catanzano et al1997) 1.31+ 0.14
Average 1.34+ 0.26
Brandts and Hunt1967) AH,y (global fit — pH) 2.0+ 0.04

AH,y (global fit — urea 1.7+ 0.3
Salahuddin and Tanford 970 AH, (global fit — GdnHC) 2.2+ 0.5
Shiao et al(1972) AH,y (global fit — pH) 20+ 0.2
Hawley (1979 AH,y (pressurg 1.7+ 0.25
Pace and Laurentd989 AG's from UDC (LEM) 22+0.3
Yamaguchi et al(1995 AH,y (pressurg 1.8
Arnold and Ulbrich-Hofmanr(1997) AG’s from UDC (LEM) 2.3+ 0.06
Average 20+ 0.24

aTheAC, values in the top half were all determined from plot\éfcy vs. T, using results from DSC.
The AC, values in the bottom half usetiH,; values determined by noncalorimetric methods.
bThe value used is from Makhatadze and Privalb995.

whereAG(T) is the conformational stability at temperatdreT,,
is the midpoint of the thermal denaturation curve, and}, is the
enthalpy change ak,,. The temperature of maximum stabilify
can be calculated usin@ecktel & Schellman, 1987

Ts = Tmexp(AHL/(ThAC)). (3)
Note that the curvature of the plots dependsA®y, and that the
maximum stability ranges from-19 to +18°C asAC, increases
from 1.15 to 2.2 kcal mol* K~1. Next, we will explain why the
higherAC, value reported by Pace and Laure(it889 is wrong.

In the Pace and Laurentd989 method, an analysis of urea
denaturation curve$UDC) by the linear extrapolation method
(LEM) (Greene & Pace, 1974

AG = AG(H,0) — m(urea (4)

is used to determin&G(H,0), AG at 0 M urea, anan, a measure
of the observed linear dependenceAd® on urea concentration.

method has been shown to give good agreement with different
methods in other studigScholtz, 1995

In a previous study of RNase A, we determined the pH depen-
dence of the stability by measurings(H,0) as a function of pH
(Pace et al., 1990If we use seven of thegeG(H,0) values at pH
values ranging from three to seven with tlig and AH,, values
reported here, we can again calculatg, using Equation 2. The
averageAC, value from this approach is in excellent agreement
with the other valueg¢Table 2.

As the pH is lowered from pH 7 to 2, the net charge on RNase
Aincreases from 4 to 17. Does this increase in the net charge effect
the conformation of the folded and unfolded states? The effect on
the conformation of the folded state will probably be small as long
as the protein does not begin to unfold. However, the average
conformation of the ensemble of denatured states might change
significantly with pH. We showed previously that time value
(Equation 4 for urea denaturation doubles between pH 7 and 2,
and concluded: “This suggests that the unfolded conformations of
RNase A become more accessible to urea as the net charge on the
molecule increasegPace et al., 1990If this is correct, we would

The AG(H,0) values are then used in Equation 2 along with expectAC, to increase at lower pkiMyers et al., 1995 There is

values ofT, andAH, to calculateAC,. The AG(H;0) values are

some indication that this occurs based &8, values estimated

determined at different temperature to reflect the curvature of thérom the baselines. The averag€, based on the 12 DSC scans

protein stability curve. In the original papef,, = 42.6°C and

between pH 2 and 3 was 1.20 0.32 kcal mot* K%, and the

AHy, = 95 kcal/mol values at pH 2.8 from Freire and Biltonen average based onthe 11 DSC scans between pH 3.5 and 5 i5 0.86

(1978 were used, and this led tC, = 2.2 kcal mol'* K~1. We

0.20 kcal mot* K1, There is considerable uncertainty in esti-

have since found 10 values in the literature at the same pH anthating AC, from the baselines, but these results from DSC are

using the averagé,, = 44.0+ 1.9 andAH,, = 83.7 + 5.2 yields
AC, = 1.35= 0.45 kcal mol'* K. Using theT,, andAH,, values
reported heréTable 3 givesAC, = 1.28+ 0.20 kcal mol* K1

as shown in Table 2. Thus, the Pace and Laur&ri89 method
is a valid, noncalorimetric method for estimating,, but it re-
quires accurate values @f, and AH,,, from TDC or DSC. The

consistent with the conclusions based on studies of the pH depen-
dence of urea unfolding. In contrast, for staphylococcal nuclease
(Carra et al., 1994 a-lactalbumin(Griko et al., 1994, and apo-
myoglobin (Griko & Privalov, 1994, the AC, values from the
baselines indicate that the unfolded state may become more com-
pact at lower pH. In these cases, other evidence also indicates that
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o T T Table 2. AC, values for RNase A folding
AC,
(kcal mol"* K1)
DSC (this paper?
’g AHca vs. Ty 1.09+ 0.07
g AH,y vs. Ty, 1.07+ 0.08
g AHg vs. Ty 1.09+ 0.10
< Global fit 1.08+ 0.42
L8 Co(D) — Cy(N) 1.03+ 0.32
< TDC (this papey®
AH,q vs. Ty, 1.13+ 0.08
DSC and TDC(Privalov et al., 1978
AHea VS. T 1.14+ 0.11
60 —T T T T T T— T AH,H vs. Ty 1.06+ 0.11
30 35 40 45 50 55 60 Cp(D) — Cp(N) 1.09+ 0.09
Tm(OC) Pace and Laurentd989 method
4AG(H,0) values from UDC, and
T T i T ! T T T Ty and AH,, values from this papér 1.28+ 0.20
100 -
AC, required to giveAG(H,0) = AG (25°C)
J 7AG(H,0) from UDC (Pace et al., 1990
90 + and T, andAH,, values from this papér 1.12+ 0.16
1 Averagé 1.15+ 0.09

@
o
1

aThe AC, values were determined as described in Materials and meth-
- ods. The value foAHg, vs. Ty, is based on the plot shown in Figure 1A.
The AC, value is based on the plot shown in Figure 1B.
“The four AG(H,0) values used to estimat®C, are based on urea
7 denaturation curvedJDC) determined at four temperatures at pH 2.8 and
reported in Pace and Laurerii989. TheT,, = 44.85°C andAH,, = 79.4
kcal/mol values used are the average of values determined by DSC and
TDC in this paper.

1 1 9The sevemAG(H,0) values used to estimateC, were interpolated
40 . : . : . : . : from Figure 6 in Pace et a1990. The pH 7 value and the pH 3.55 value

AH , (kcal/mol)
3
1

fo2
o
]

50

20 30 40 50 60 are also given in Pacgd990. The T, andAH, values used in Equation 2
o to calculateAC, are based on results reported héTFable 3.
T.(C) €This is the average of the values of 1.09, 1.13, 1.28, and 1.12 kcal

mol~! K~ that depend on the data in this paper; i.e., the three values from
Fig. 1. AHy from DSC experiment$A) and AH,4 from TDC (B) as @ Privalov et al.(1973 were not included.
function of Ty, for the folding of RNase A. ThaH., values are averages
based on duplicate or triplicate DSC runs at the pH values shown near the
data points. The solid lines are based on least-squares fits of the data that
yielded(A) AC, = 1.09+ 0.07 kcal mol't Kt and(B) AC, = 1.13+ 0.08

1 1
keal mol™ K==, We are still puzzled b¥fs. The results presented here gike=

—19°C. In contrast, the data of Brandts and H{&®67 who

destabilized RNase A by pH and urea and of Haw{&$71) who
these proteins form compact denatured states in the low pH regiomlestabilized RNase A by pressure indicdtevalues near €C.
but this is probably not the case with RNase(¥ao & Bolen, More recent studies of the pressure dependence of the thermo-
1995; Baskakov & Bolen, 1998 dynamics of RNase A folding indicate & ~ 19°C (Yamaguchi

In our previous studies, we analyzed UDC by the linear extrap-t al., 1995%. Salahuddin and Tanford 970 observed &5~ 7°C

olation method to determinaG(H,0) as a function of pH and inthe presence of 3.1 M GdnHCI. We have confirmed this and find
temperaturéPace & Laurents, 1989; Pace et al., 1920selection Ts~ 9°C near pH 3 in the presence of 2.5 M GdnHCl or 2.6 M
of these values is given Table 3 along witks(T) values calcu-  urea.(The earlier studies of Foss and Schellnia®59 suggest an
lated with Equation 2 using values @f,, AH,,, andAC, reported  even higherTs.) There is no clear trend in howC, varies with
here. We usaC, = 1.09 kcal mol'* K~ so that theA\G(T) values ~ GdnHCI concentratior(Pfeil & Privalov, 1976; Makhatadze &
are based exclusively on DSC and TDC results. In all cases, thBrivalov, 1992; Barone et al., 1994; Grantcharova & Baker, 1997,
values are in remarkably good agreemereble 3. This suggests Kuhlman & Raleigh, 1998 or urea concentratiofPace & Tan-
the following: (1) The denatured state ensembles after thermal andiord, 1968; Griko & Privalov, 1992; Makhatadze & Privalov, 1992;
urea denaturation are thermodynamically equivalent even thougBarone et al., 1994; Scholtz, 1995; Nicholson & Scholtz, 1996;
they do not appear to be structurally equivalent, as has been noteghiti et al., 1998. Using Equation 2 andl,, AHm, andAC, values
before(Tanford, 1968; Pfeil & Privalov, 1976and(2) conforma-  for RNase A folding determined in the presence of GdnHCI or urea
tional stability estimates based on an analysis of urea denaturatideads toTs values of —18°C (0 M), —11°C (1 M ureg, —6°C
curves by the linear extrapolation method are reliable. (1 M GdnHC), —7°C (2 M urea, and +4°C (2 M GdnHCJ)
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16 L e A A B A B — 5.0, and 10 mM MOPS or HEPES at pH 7. Protein concentrations

1 were determined from absorbance measurements at 27@aom
rected for light scatteringusing a molar absorption coefficient at
278 nm of 10,020 M* cm™1! for RNase A.

3“7 7 Differential scanning calorimetry (DSC)
% o4 i The DSC experiments were performed on VP-DSC calorimeter
g i (Microcal Inc) (Plotnikov et al., 199Y. The RNase A solutions
5 4 4 (0.5-3 mgmL) were extensively dialyzed at’€ against the cor-
< / T, =618°C ] responding buffer using Spectrapor 3 dialysis membranes with a
-sJ AH_ =102.3 keal mol” . molecular weight cutoff of 3,500 Da. Insoluble material was re-
ACp = 1.15 keal mol” deg” | | moved by centrifugation for 15—2_0 min at 13,Q00 rpm. AII exper-
24 S AGp = 2.2 keal mol" dog” | ] iments were performed at a heatln_g rate Otl_m_ln as previously
| I described Makhatadze, 1998 Duplicate or triplicate scans were
60 40 20 0 20 40 60 performed at the following pH values: 2.0, 2.3, 2.65, 2.8, 3.0, 3.5,
TCC) 4.0, 4.5, 5.0, and 7.0. Calorimetric profiles were analyzed as de-

scribed in Makhatadz€1998. Values of AH¢, were determined

Fig. 2. AG for the unfolding of RNase A as a function of temperature. from the area under the excess heat capacity profiles. The van't
AG(T) was calculated using Equation 2 and the parameters shown.  Hoff enthalpy was calculated using the following relation:

AHuH = 4Ran% Cp,max/AHcaI (5)

(Makhatadze &_Prlvalov, 1992Thus, the tren_d with these data is where Cp max is the maximum value of the excess heat capacity
clearly toward increasedC, and Ts values in the presence of profile. AHy, is the enthalpy of the DSC transition obtained by
GdnHCI and urea. We have experiments underway that may helgnalyzing the transition by a two-state model in the same way that
solve this puzzle. the TDC were analyzed as described below. In addition to the
analyses of the individual profiles, a global fit of all of the data was
performed using two sets of fitted parameters. The fitted param-
eters, in addition to the individudl,; andAHc,; values, included
RNase A(Type XlI-A, Catalog #550Dand the buffers were pur- the global temperature independent heat capacity change upon
chased from SigméSt. Louis, Missouni. The buffers used were unfolding AC, and the global linear functions for the heat capac-
10 mM glycine from pH 1 to 3.0, 10 mM acetate from pH 3.5 to ities of the nativdjp'.“(T) = C,L“(Tm) + T-5C,L“ and unfolded:;J =
Cy(Tm) + T-8CY states. In the first set, the value &€, (Table 2,
fourth row) was independent of th&)(T) andCy(T) functions.

In the second set, the global heat capacity chafigkle 2, fifth

row) was defined a€y(T,,) — C)'(T.), where T, is an average

Materials and methods

Table 3. Comparison ofAG(T) values from DSC

with AG(H,0) values from UDC trans_ition temperature for all DSC prof_iles. The overall quality of
the fit and the absolute values of the fitted parameters were com-
T Tn? AHR? AG(T)? AG(H,0)° parable for both sets of the fitted parameters.
pH (°C) (°C) (kcal/mol) (kcal/mol) (kcal/mol)
2.8 17.1 44.9 79.4 5.6 5.4 Thermal denaturation curves (TDC)
2.8 21.1 44.9 79.4 4.9 4.9 ] )
28 24.9 44.9 79.4 4.3 4.3 Thermal denaturation curves were determined and analyzed as
28 27.8 44.9 79.4 3.7 35 described in Pace et 4l.998. A total of 25 TDC were determined:
2.8 25.0 44.9 79.4 4.3 4.3 23 between pH 1.2 and 5, and 2 at pH 7. At low gH,is low and
3.0 25.0 49.1 82.7 5.2 5.2 the pre-transition baselines are short and the post-transition base-
3.6 25.0 54.5 91.5 6.7 6.4 lines are long, but at high pH the situation is reversed. The curves
4.0 25.0 56.1 94.2 7.2 7.3 were analyzed by both of the methods suggested by Allen and
50 250 586 99.1 8.1 7.9 Pielak (1998, and the results did not differ significantly.
6.0 25.0 60.3 100.7 8.5 8.6
7.0 25.0 61.8 102.3 9.0 9.1
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