Heat capacity change for ribonuclease A folding

C. NICK PACE,^{1,2,3} GERALD R. GRIMSLEY,¹ SUSAN T. THOMAS,⁴ AND GEORGE I. MAKHATADZE⁴

¹Department of Medical Biochemistry and Genetics, Texas A&M University, College Station, Texas 77843-1114
²Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
³Center for Macromolecular Design, Texas A&M University, College Station, Texas 77843-2128
⁴Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409

(RECEIVED January 8, 1999; ACCEPTED March 26, 1999)

Abstract

The change in heat capacity ΔC_p for the folding of ribonuclease A was determined using differential scanning calorimetry and thermal denaturation curves. The methods gave equivalent results, $\Delta C_p = 1.15 \pm 0.08$ kcal mol⁻¹ K⁻¹. Estimates of the conformational stability of ribonuclease A based on these results from thermal unfolding are in good agreement with estimates from urea unfolding analyzed using the linear extrapolation method.

Keywords: differential scanning calorimetry; heat capacity change; protein folding; protein stability; ribonuclease A; urea denaturation

In a recent paper, we were puzzled by the wide range of values for ΔC_p for RNase A folding (Pace et al., 1998). For example, a recent compilation by Pfeil (1998) gives 37 values of ΔC_p ranging from 1.0 to 2.3 kcal mol⁻¹ K⁻¹ with an average of 1.39 ± 0.33 kcal mol⁻¹ K⁻¹. A selection of these values is given in Table 1. The ΔC_p values obtained from differential scanning calorimetry (DSC) based on ΔH_{cal} vs. T_m measurements are generally smaller than ΔC_p values obtained by other methods based on ΔH_{vH} . Some evidence suggested that a higher ΔC_p value (≈ 2 kcal mol⁻¹ K⁻¹) might be correct. For example, it gives better agreement with the observed temperature of maximum stability values T_S (Equation 3) and with conformational stabilities measured by an analysis of solvent denaturation curves. Consequently, we decided to study the folding of RNase A under identical conditions by DSC and by thermal denaturation curves (TDC).

Results

An analysis of the DSC scans gave values of ΔH_{cal} , ΔH_{vH} , and ΔH_{fit} that are in excellent agreement, although at each pH the ΔH_{cal} values are slightly larger: $\Delta H_{cal}/\Delta H_{vH} = 1.02 \pm 0.02$ and $\Delta H_{cal}/\Delta H_{fit} = 1.03 \pm 0.02$. An analysis of the TDC gave ΔH_{vH} values in reasonable agreement with the ΔH_{cal} values, but, again, the ΔH_{cal} were larger: $\Delta H_{cal}/\Delta H_{vH} = 1.07 \pm 0.04$. The presence of a small concentration of intermediate states at equilibrium would explain these differences (Jackson & Brandts, 1970; Freire & Biltonen, 1978). The ΔH_{cal} values from the DSC experiments and the

 $\Delta H_{\nu H}$ values from the TDC were plotted as a function of T_m according to the Kirchhoff equation:

$$\Delta C_p = d(\Delta H)/d(T) \tag{1}$$

to estimate ΔC_p , and the results are shown in Figure 1. The resulting ΔC_p values are given in Table 2. ΔC_p values based on plots of ΔH_{vH} and ΔH_{fit} from the DSC data, a global fit of all of the DSC data, and on the difference between the posttransition $C_p(D)$ and pretransition $C_p(N)$ baselines of the DSC experiments are also given. The ΔC_p value based on plots of ΔH_{cal} vs. T_m in Table 2 is lower than the ΔC_p values determined in the same way that are given in Table 1. We are not sure why. It could be because we use only 10 mM buffer and most of the other studies used higher buffer concentrations. (See McCrary et al., 1998 for a possible explanation.) Table 2 also gives estimates of ΔC_p obtained by Privalov et al. (1973) using the same methods. The agreement is reassuring.

Discussion

The difference in heat capacity between the folded $C_p(F)$ and unfolded $C_p(U)$ states of a protein, $\Delta C_p = C_p(U) - C_p(F)$, is important in determining the temperature dependence of the conformational stability $\Delta G = G(U) - G(F)$ (Becktel & Schellman, 1987; Privalov, 1990). This is illustrated in Figure 2, which shows the protein stability curve for ribonuclease A (RNase A) calculated using $\Delta C_p = 1.15$ kcal mol⁻¹ K⁻¹, a value consistent with the results in this paper, and $\Delta C_p = 2.2$ kcal mol⁻¹ K⁻¹, a value reported by Pace and Laurents (1989). These curves were calculated with the Gibbs–Helmholtz equation:

$$\Delta G(T) = \Delta H_m (1 - T/T_m) - \Delta C_p [T_m - T + T \ln(T/T_m)]$$
(2)

Reprint requests to: Dr. C.N. Pace, Medical Biochemistry, Texas A&M University, College Station, Texas 77843-1114; e-mail: nickpace@tamu.edu.

Table 1. ΔC_p values for RNase A folding from the literature

Group	Method ^a	ΔC_p (kcal mol ⁻¹ K ⁻¹)
Privalov Lab (1973–1995) ^b	ΔH_{cal} vs. T_m	1.27
Schwarz and Kirchhoff (1988)		1.67
Fujita and Noda (1991)		1.09
Hinz et al. (1994)		1.08
Makhatadze et al. (1995)		1.24 ± 0.07
Liu and Sturtevant (1996)		1.74 ± 0.02
Catanzano et al. (1997)		1.31 ± 0.14
Average		1.34 ± 0.26
Brandts and Hunt (1967)	ΔH_{vH} (global fit – pH)	2.0 ± 0.04
	ΔH_{vH} (global fit – urea)	1.7 ± 0.3
Salahuddin and Tanford (1970)	ΔH_{vH} (global fit – GdnHCl)	2.2 ± 0.5
Shiao et al. (1971)	ΔH_{vH} (global fit – pH)	2.0 ± 0.2
Hawley (1971)	ΔH_{vH} (pressure)	1.7 ± 0.25
Pace and Laurents (1989)	ΔG 's from UDC (LEM)	2.2 ± 0.3
Yamaguchi et al. (1995)	ΔH_{vH} (pressure)	1.8
Arnold and Ulbrich-Hofmann (1997)	ΔG 's from UDC (LEM)	2.3 ± 0.06
Average		2.0 ± 0.24

^aThe ΔC_p values in the top half were all determined from plots of ΔH_{cal} vs. T_m using results from DSC. The ΔC_p values in the bottom half used ΔH_{vH} values determined by noncalorimetric methods.

^bThe value used is from Makhatadze and Privalov (1995).

where $\Delta G(T)$ is the conformational stability at temperature *T*, T_m is the midpoint of the thermal denaturation curve, and ΔH_m is the enthalpy change at T_m . The temperature of maximum stability T_S can be calculated using (Becktel & Schellman, 1987)

$$T_S = T_m \exp(\Delta H_m / (T_m \Delta C_p)). \tag{3}$$

Note that the curvature of the plots depends on ΔC_p and that the maximum stability ranges from -19 to +18 °C as ΔC_p increases from 1.15 to 2.2 kcal mol⁻¹ K⁻¹. Next, we will explain why the higher ΔC_p value reported by Pace and Laurents (1989) is wrong.

In the Pace and Laurents (1989) method, an analysis of urea denaturation curves (UDC) by the linear extrapolation method (LEM) (Greene & Pace, 1974)

$$\Delta G = \Delta G(H_2O) - m(urea) \tag{4}$$

is used to determine $\Delta G(H_2O)$, ΔG at 0 M urea, and *m*, a measure of the observed linear dependence of ΔG on urea concentration. The $\Delta G(H_2O)$ values are then used in Equation 2 along with values of T_m and ΔH_m to calculate ΔC_p . The $\Delta G(H_2O)$ values are determined at different temperature to reflect the curvature of the protein stability curve. In the original paper, $T_m = 42.6$ °C and $\Delta H_m = 95$ kcal/mol values at pH 2.8 from Freire and Biltonen (1978) were used, and this led to $\Delta C_p = 2.2$ kcal mol⁻¹ K⁻¹. We have since found 10 values in the literature at the same pH and using the average $T_m = 44.0 \pm 1.9$ and $\Delta H_m = 83.7 \pm 5.2$ yields $\Delta C_p = 1.35 \pm 0.45$ kcal mol⁻¹ K⁻¹. Using the T_m and ΔH_m values reported here (Table 3) gives $\Delta C_p = 1.28 \pm 0.20$ kcal mol⁻¹ K⁻¹ as shown in Table 2. Thus, the Pace and Laurents (1989) method is a valid, noncalorimetric method for estimating ΔC_p , but it requires accurate values of T_m and ΔH_m from TDC or DSC. The method has been shown to give good agreement with different methods in other studies (Scholtz, 1995).

In a previous study of RNase A, we determined the pH dependence of the stability by measuring $\Delta G(H_2O)$ as a function of pH (Pace et al., 1990). If we use seven of these $\Delta G(H_2O)$ values at pH values ranging from three to seven with the T_m and ΔH_m values reported here, we can again calculate ΔC_p using Equation 2. The average ΔC_p value from this approach is in excellent agreement with the other values (Table 2).

As the pH is lowered from pH 7 to 2, the net charge on RNase A increases from 4 to 17. Does this increase in the net charge effect the conformation of the folded and unfolded states? The effect on the conformation of the folded state will probably be small as long as the protein does not begin to unfold. However, the average conformation of the ensemble of denatured states might change significantly with pH. We showed previously that the m value (Equation 4) for urea denaturation doubles between pH 7 and 2, and concluded: "This suggests that the unfolded conformations of RNase A become more accessible to urea as the net charge on the molecule increases" (Pace et al., 1990). If this is correct, we would expect ΔC_p to increase at lower pH (Myers et al., 1995). There is some indication that this occurs based on ΔC_p values estimated from the baselines. The average ΔC_p based on the 12 DSC scans between pH 2 and 3 was 1.20 ± 0.32 kcal mol⁻¹ K⁻¹, and the average based on the 11 DSC scans between pH 3.5 and 5 is 0.86 \pm 0.20 kcal mol⁻¹ K⁻¹. There is considerable uncertainty in estimating ΔC_p from the baselines, but these results from DSC are consistent with the conclusions based on studies of the pH dependence of urea unfolding. In contrast, for staphylococcal nuclease (Carra et al., 1994), α -lactalbumin (Griko et al., 1994), and apomyoglobin (Griko & Privalov, 1994), the ΔC_p values from the baselines indicate that the unfolded state may become more compact at lower pH. In these cases, other evidence also indicates that

Fig. 1. ΔH_{cal} from DSC experiments (**A**) and ΔH_{vH} from TDC (**B**) as a function of T_m for the folding of RNase A. The ΔH_{cal} values are averages based on duplicate or triplicate DSC runs at the pH values shown near the data points. The solid lines are based on least-squares fits of the data that yielded (**A**) $\Delta C_p = 1.09 \pm 0.07$ kcal mol⁻¹ K⁻¹ and (**B**) $\Delta C_p = 1.13 \pm 0.08$ kcal mol⁻¹ K⁻¹.

these proteins form compact denatured states in the low pH region, but this is probably not the case with RNase A (Yao & Bolen, 1995; Baskakov & Bolen, 1998).

In our previous studies, we analyzed UDC by the linear extrapolation method to determine $\Delta G(\mathrm{H}_2\mathrm{O})$ as a function of pH and temperature (Pace & Laurents, 1989; Pace et al., 1990). A selection of these values is given Table 3 along with $\Delta G(T)$ values calculated with Equation 2 using values of T_m , ΔH_m , and ΔC_p reported here. We use $\Delta C_p = 1.09 \text{ kcal mol}^{-1} \text{ K}^{-1}$ so that the $\Delta G(T)$ values are based exclusively on DSC and TDC results. In all cases, the values are in remarkably good agreement (Table 3). This suggests the following: (1) The denatured state ensembles after thermal and urea denaturation are thermodynamically equivalent even though they do not appear to be structurally equivalent, as has been noted before (Tanford, 1968; Pfeil & Privalov, 1976); and (2) conformational stability estimates based on an analysis of urea denaturation curves by the linear extrapolation method are reliable.

Table 2. ΔC_p values for RNase A folding

	$\frac{\Delta C_p}{(\text{kcal mol}^{-1} \text{ K}^{-1})}$
DSC (this paper) ^a	
ΔH_{cal} vs. T_m	1.09 ± 0.07
ΔH_{vH} vs. T_m	1.07 ± 0.08
ΔH_{fit} vs. T_m	1.09 ± 0.10
Global fit	1.08 ± 0.42
$C_p(D) - C_p(N)$	1.03 ± 0.32
TDC (this paper) ^b	
ΔH_{vH} vs. T_m	1.13 ± 0.08
DSC and TDC (Privalov et al., 1973)	
ΔH_{cal} vs. T_m	1.14 ± 0.11
ΔH_{vH} vs. T_m	1.06 ± 0.11
$C_p(D) - C_p(N)$	1.09 ± 0.09
Pace and Laurents (1989) method $4\Delta G(H_2O)$ values from UDC, and	
T_m and ΔH_m values from this paper ^c	1.28 ± 0.20
ΔC_p required to give $\Delta G(H_2O) = \Delta G$ (25 °C) 7 $\Delta G(H_2O)$ from UDC (Pace et al., 1990),	
and T_m and ΔH_m values from this paper ^d	1.12 ± 0.16
Average ^e	1.15 ± 0.09

^aThe ΔC_p values were determined as described in Materials and methods. The value for ΔH_{cal} vs. T_m is based on the plot shown in Figure 1A. ^bThe ΔC_n value is based on the plot shown in Figure 1B.

^cThe four $\Delta G(H_2O)$ values used to estimate ΔC_p are based on urea denaturation curves (UDC) determined at four temperatures at pH 2.8 and reported in Pace and Laurents (1989). The $T_m = 44.85$ °C and $\Delta H_m = 79.4$ kcal/mol values used are the average of values determined by DSC and TDC in this paper.

^dThe seven $\Delta G(\mathrm{H}_2\mathrm{O})$ values used to estimate ΔC_p were interpolated from Figure 6 in Pace et al. (1990). The pH 7 value and the pH 3.55 value are also given in Pace (1990). The T_m and ΔH_m values used in Equation 2 to calculate ΔC_p are based on results reported here (Table 3).

^eThis is the average of the values of 1.09, 1.13, 1.28, and 1.12 kcal mol⁻¹ K⁻¹ that depend on the data in this paper; i.e., the three values from Privalov et al. (1973) were not included.

We are still puzzled by T_S . The results presented here give $T_S =$ -19 °C. In contrast, the data of Brandts and Hunt (1967) who destabilized RNase A by pH and urea and of Hawley (1971) who destabilized RNase A by pressure indicate T_S values near 0 °C. More recent studies of the pressure dependence of the thermodynamics of RNase A folding indicate a $T_S \approx 19$ °C (Yamaguchi et al., 1995). Salahuddin and Tanford (1970) observed a $T_{\rm S} \approx 7 \,^{\circ}{\rm C}$ in the presence of 3.1 M GdnHCl. We have confirmed this and find $T_S \approx 9$ °C near pH 3 in the presence of 2.5 M GdnHCl or 2.6 M urea. (The earlier studies of Foss and Schellman (1959) suggest an even higher T_s .) There is no clear trend in how ΔC_p varies with GdnHCl concentration (Pfeil & Privalov, 1976; Makhatadze & Privalov, 1992; Barone et al., 1994; Grantcharova & Baker, 1997; Kuhlman & Raleigh, 1998), or urea concentration (Pace & Tanford, 1968; Griko & Privalov, 1992; Makhatadze & Privalov, 1992; Barone et al., 1994; Scholtz, 1995; Nicholson & Scholtz, 1996; Chiti et al., 1998). Using Equation 2 and T_m , ΔH_m , and ΔC_p values for RNase A folding determined in the presence of GdnHCl or urea leads to $T_{\rm S}$ values of $-18\,^{\circ}{\rm C}$ (0 M), $-11\,^{\circ}{\rm C}$ (1 M urea), $-6\,^{\circ}{\rm C}$ (1 M GdnHCl), -7 °C (2 M urea), and +4 °C (2 M GdnHCl)

Fig. 2. ΔG for the unfolding of RNase A as a function of temperature. $\Delta G(T)$ was calculated using Equation 2 and the parameters shown.

(Makhatadze & Privalov, 1992). Thus, the trend with these data is clearly toward increased ΔC_p and T_s values in the presence of GdnHCl and urea. We have experiments underway that may help solve this puzzle.

Materials and methods

RNase A (Type XII-A, Catalog #5500) and the buffers were purchased from Sigma (St. Louis, Missouri). The buffers used were 10 mM glycine from pH 1 to 3.0, 10 mM acetate from pH 3.5 to

Table 3. Comparison of $\Delta G(T)$ values from DSC with $\Delta G(H_2O)$ values from UDC

рН	T (°C)	T_m^{a} (°C)	ΔH_m^a (kcal/mol)	$\Delta G(T)^{a}$ (kcal/mol)	$\Delta G(H_2O)^b$ (kcal/mol)
	(- /	(-)			(,,
2.8	17.1	44.9	79.4	5.6	5.4
2.8	21.1	44.9	79.4	4.9	4.9
2.8	24.9	44.9	79.4	4.3	4.3
2.8	27.8	44.9	79.4	3.7	3.5
2.8	25.0	44.9	79.4	4.3	4.3
3.0	25.0	49.1	82.7	5.2	5.2
3.6	25.0	54.5	91.5	6.7	6.4
4.0	25.0	56.1	94.2	7.2	7.3
5.0	25.0	58.6	99.1	8.1	7.9
6.0	25.0	60.3	100.7	8.5	8.6
7.0	25.0	61.8	102.3	9.0	9.1

^aThe T_m and ΔH_m values are from this paper and were used with $\Delta C_p = 1.09$ kcal mol⁻¹ K⁻¹ from Table 2 in Equation 2 to calculate the $\Delta G(T)$ values. Thus, the $\Delta G(T)$ values are based entirely on DSC and TDC data and the $\Delta G(H_2O)$ values are based on UDC data.

^bThe first four $\Delta G(H_2O)$ values are from Pace and Laurents (1989), and the last seven $\Delta G(H_2O)$ values are interpolated from Figure 6 in Pace et al. (1990). In a recent paper, Baskakov and Bolen (1998) found $\Delta G(H_2O) =$ 5.04 ± 0.15 kcal/mol at pH 3.0 using urea denaturation and the linear extrapolation method. 5.0, and 10 mM MOPS or HEPES at pH 7. Protein concentrations were determined from absorbance measurements at 276 nm (corrected for light scattering) using a molar absorption coefficient at 278 nm of 10,020 M^{-1} cm⁻¹ for RNase A.

Differential scanning calorimetry (DSC)

The DSC experiments were performed on VP-DSC calorimeter (Microcal Inc.) (Plotnikov et al., 1997). The RNase A solutions (0.5–3 mg/mL) were extensively dialyzed at 4 °C against the corresponding buffer using Spectrapor 3 dialysis membranes with a molecular weight cutoff of 3,500 Da. Insoluble material was removed by centrifugation for 15–20 min at 13,000 rpm. All experiments were performed at a heating rate of 1 °C/min as previously described (Makhatadze, 1998). Duplicate or triplicate scans were performed at the following pH values: 2.0, 2.3, 2.65, 2.8, 3.0, 3.5, 4.0, 4.5, 5.0, and 7.0. Calorimetric profiles were analyzed as described in Makhatadze (1998). Values of ΔH_{cal} were determined from the area under the excess heat capacity profiles. The van't Hoff enthalpy was calculated using the following relation:

$$\Delta H_{vH} = 4RT_m^2 C_{p,max} / \Delta H_{cal} \tag{5}$$

where $C_{p,max}$ is the maximum value of the excess heat capacity profile. ΔH_{fit} is the enthalpy of the DSC transition obtained by analyzing the transition by a two-state model in the same way that the TDC were analyzed as described below. In addition to the analyses of the individual profiles, a global fit of all of the data was performed using two sets of fitted parameters. The fitted parameters, in addition to the individual $T_{m,i}$ and $\Delta H_{cal,i}$ values, included the global temperature independent heat capacity change upon unfolding ΔC_p and the global linear functions for the heat capacities of the native $C_p^N(T) = C_p^N(T_m) + T \cdot \delta C_p^N$ and unfolded $C_p^U =$ $C_p^U(T_m) + T \cdot \delta C_p^U$ states. In the first set, the value of ΔC_p (Table 2, fourth row) was independent of the $C_p^N(T)$ and $C_p^U(T)$ functions. In the second set, the global heat capacity change (Table 2, fifth row) was defined as $C_p^U(T_m) - C_p^N(T_m)$, where T_m is an average transition temperature for all DSC profiles. The overall quality of the fit and the absolute values of the fitted parameters were comparable for both sets of the fitted parameters.

Thermal denaturation curves (TDC)

Thermal denaturation curves were determined and analyzed as described in Pace et al. (1998). A total of 25 TDC were determined: 23 between pH 1.2 and 5, and 2 at pH 7. At low pH, T_m is low and the pre-transition baselines are short and the post-transition baselines are long, but at high pH the situation is reversed. The curves were analyzed by both of the methods suggested by Allen and Pielak (1998), and the results did not differ significantly.

Acknowledgments

The work was supported by grants from NIH (GM37039 and GM54537), from the Robert A. Welch Foundation (A1060 and D1403), and from the Tom and Jean McMullin professorship.

References

Allen DL, Pielak GJ. 1998. Baseline length and automated fitting of denaturation data. Protein Sci 7:1262–1263.

- Arnold U, Ulbrich-Hofmann R. 1997. Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B. *Biochemistry* 36:2166–2172.
- Barone G, Del Vecchio P, Ressas D, Giancola C, Graziano G, Riccio A. 1994. Thermodynamic characterisation of RNase A in the presence of urea and GuHCl. J Thermal Anal 41:1357–1370.
- Baskakov IV, Bolen DW. 1998. Monitoring the sizes of denatured ensembles of staphylococcal nuclease proteins: Implications regarding *m* values, intermediates, and thermodynamics. *Biochemistry* 37:18010–18017.
- Becktel WJ, Schellman JA. 1987. Protein stability curves. *Biopolymers* 26:1859– 1877.
- Brandts JF, Hunt L. 1967. The thermodynamics of protein denaturation. III. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures. *J Am Chem Soc* 89:4826–4838.
- Carra JH, Anderson EA, Privalov PL. 1994. Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants. *Biochemistry* 33:10842–10850.
- Catanzano F, Graziano G, Capasso S, Barone G. 1997. Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. *Protein Sci* 6:1682–1693.
- Chiti F, van Nuland NA-J, Taddei N, Magherini F, Stefani M, Ramponi G, Dobson CM. 1998. Conformational stability of muscle acylphosphatase: The role of temperature, denaturant concentration, and pH. *Biochemistry* 37:1447–1455.
- Foss JG, Schellman JA. 1959. The thermal transition of ribonuclease in urea solutions. J Am Chem Soc 63:2007–2012.
- Freire E, Biltonen RL. 1978. Statistical mechanical deconvolution of thermal transitions in macromolecules I. Theory and application to homogeneous systems. *Biopolymers* 17:463–479.
- Fujita Y, Noda Y. 1991. Effect of reductive alkylation on thermal stability of ribonuclease A and chymotrypsinogen A. Int J Pept Protein Res 38:445–452.
- Grantcharova VP, Baker D. 1997. Folding dynamics of the src SH3 domain. Biochemistry 36:15685–15692.
- Greene RF, Pace CN. 1974. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α -chymostypsin, and β -lactoglobulin. *J Biol Chem* 249:5388–5393.
- Griko YV, Freire E, Privalov PL. 1994. Energetics of the α-lactalbumin states: A calorimetric and statistical thermodynamic study. *Biochemistry* 33:1889– 1899.
- Griko YV, Privalov PL. 1992. Calorimetric study of the heat and cold denaturation of β-lactoglobulin. *Biochemistry* 31:8810–8815.
- Griko YV, Privalov PL. 1994. Thermodynamic puzzle of apomyoglobin unfolding. J Mol Biol 235:1318–1325.
- Hawley SA. 1971. Reversible pressure-temperature denaturation of chymotrypsinogen. *Biochemistry* 10:2436–2442.
- Hinz H-J, Vogl T, Meyer R. 1994. An alternative interpretation of the heat capacity changes associated with protein unfolding. *Biophys Chem* 52:275– 285.
- Jackson WM, Brandts JF. 1970. Thermodynamics of protein denaturation. A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation. *Biochemistry* 9:2294–2301.
- Kuhlman B, Raleigh DP. 1998. Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H₂O and D₂O. Determination of the thermodynamic parameters, ΔH° , ΔS° , and ΔC_p , and evaluation of solvent isotope effects. *Protein Sci* 7:2405–2412.
- Liu Y, Sturtevant JM. 1996. The observed change in heat capacity accompanying the thermal unfolding of proteins depends on the composition of the solution and on the method employed to change the temperature of unfolding. *Biochemistry* 35:3059–3062.

- Makhatadze GI. 1998. Measuring protein thermostability by differential scanning calorimetry. Curr Prot Pro Sci 12:7.9.1–7.9.14.
- Makhatadze GI, Clore GM, Groneborn AM. 1995. Solvent isotope effect and protein stability. *Nature Struct Biol* 2:852–855.
- Makhatadze GI, Privalov PL. 1992. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol 226:491–505.
- Makhatadze GI, Privalov PL. 1995. Energetics of protein structure. Adv Protein Chem 47:307–425.
- McCrary BS, Bedell J, Edmonson SP, Shriver JW. 1998. Linkage of protonation and anion binding to the folding of Sac7d. J Mol Biol 276:203–224.
- Myers JK, Pace CN, Scholtz JM. 1995. Denaturant *m* values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. *Protein Sci* 4:2138–2148.
- Nicholson EM, Scholtz JM. 1996. Conformational stability of the *Escherichia* coli HPr protein: Test of the linear extrapolation method and a thermodynamic characterization of cold denaturation. *Biochemistry* 35:11369– 11378.
- Pace CN. 1990. Measuring and increasing protein stability. TIBTECH 8:93-98.
- Pace CN, Hebert EJ, Shaw KL, Schell D, Both V, Krajcikova D, Sevcik J, Wilson KS, Dauter Z, Hartley RW, Grimsley GR. 1998. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2, and Sa3. J Mol Biol 279:271–286.
- Pace CN, Laurents DV. 1989. A new method for determining the heat capacity change for protein folding. *Biochemistry* 28:2520–2525.
- Pace CN, Laurents DV, Thomson JA. 1990. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. *Biochemistry* 29:2564–2572.
- Pace CN, Tanford C. 1968. Thermodynamics of the unfolding of β -lactoglobulin A in aqueous urea solutions between 5 and 5.5. *Biochemistry* 1:198–208.
- Pfeil W. 1998. Protein stability and folding: A collection of thermodynamic data. Berlin Heidelberg: Springer-Verlag.
- Pfeil W, Privalov PL. 1976. Thermodynamic investigations of proteins. I. Standard functions for proteins with lysozyme as an example. *Biophys Chem* 4:23–32.
- Plotnikov VV, Brandts JM, Lin L-N, Brandts JF. 1997. A new ultrasensitive scanning calorimeter. Anal Biochem 250:237–244.
- Privalov PL. 1990. Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305.
- Privalov PL, Tiktopulo EI, Khechinashvili NN. 1973. Calorimetric investigation of ribonuclease thermal denaturation. Int J Pept Protein Res 5:229–237.
- Salahuddin A, Tanford C. 1970. Thermodynamics of the denaturation of ribonuclease by guanidine hydrochloride. *Biochemistry* 9:1342–1347.
- Scholtz JM. 1995. Conformational stability of HPr: The histidine-containing phosphocarrier protein from *Bacillus subtilis*. Protein Sci 4:35–43.
- Schwarz FP, Kirchhoff WH. 1988. Biological thermodynamic data for the calibration of differential scanning calorimeters: Heat capacity data on the unfolding transition of ribonuclease A in solution. *Thermochim Acta* 128:267– 295.
- Shiao DF, Lumry R, Fahey J. 1971. Studies of the chymotrypsinogen family of proteins. XI. Heat-capacity changes accompanying reversible thermal unfolding of proteins. J Am Chem Soc 93:2024–2035.
- Tanford C. 1968. Protein denaturation. Adv Protein Chem 23:121-282.
- Yamaguchi T, Yamada H, Akasaka K. 1995. Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. J Mol Biol 250:689–694.
- Yao M, Bolen DW. 1995. How valid are denaturant-induced unfolding free energy measurements? Level of conformance to common assumptions over an extended range of ribonuclease A stability. *Biochemistry* 34:3771– 3781.