Abstract
The effects of histidine residue placement in a de novo-designed four-alpha-helix bundle are investigated by placement of histidine residues at coiled coil heptad a positions in two distinct heptads and at each position within a single heptad repeat of our prototype heme protein maquette, [H10H24]2 [[Ac-CGGGELWKL x HEELLKK x FEELLKL x HEERLKK x L-CONH2]2]2 composed of a generic (alpha-SS-alpha)2 peptide architecture. The heme to peptide stoichiometry of variants of [H10H24]2 with either or both histidines on each helix replaced with noncoordinating alanine residues ([H10A24]2, [A10H24]2, and [A10A24]2) demonstrates the obligate requirement of histidine for biologically significant heme affinity. Variants of [A10A24]2, [[Ac-CGGGELWKL x AEELLKK x FEELLKL x AEERLKK x L-CONH2]2]2, containing a single histidine per helix in positions 9 to 15 were evaluated to verify the design based on molecular modeling. The bis-histidine site formed between heptad positions a at 10 and 10' bound ferric hemes with the highest affinity, Kd1 and Kd2 values of 1.5 and 800 nM, respectively. Placement of histidine at position 11 (heptad position b) resulted in a protein that bound a single heme with moderate affinity, Kd1 of 9.5 microM, whereas the other peptides had no measurable apparent affinity for ferric heme with Kd1 values >200 microM. The bis-histidine ligation of heme to [H10A24]2 and [H11A24]2 was confirmed by electron paramagnetic resonance spectroscopy. The protein design rules derived from this study, together with the narrow tolerances revealed, are applicable for improving future heme protein designs, for analyzing the results of randomized heme protein combinatorial libraries, as well as for implementation in automated protein design.
Full Text
The Full Text of this article is available as a PDF (546.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bearden A. J., Morgan W. T., Muller-Eberhard U. Heme complexes of rabbit hemopexin, human hemopexin and human serum albumin: electron spin resonance and Mssbauer spectroscopic studies. Biochem Biophys Res Commun. 1974 Nov 6;61(1):265–272. doi: 10.1016/0006-291x(74)90562-2. [DOI] [PubMed] [Google Scholar]
- Beaven G. H., Chen S. H., d' Albis A., Gratzer W. B. A spectroscopic study of the haemin--human-serum-albumin system. Eur J Biochem. 1974 Feb 1;41(3):539–546. doi: 10.1111/j.1432-1033.1974.tb03295.x. [DOI] [PubMed] [Google Scholar]
- Benson D. E., Wisz M. S., Liu W., Hellinga H. W. Construction of a novel redox protein by rational design: conversion of a disulfide bridge into a mononuclear iron-sulfur center. Biochemistry. 1998 May 19;37(20):7070–7076. doi: 10.1021/bi980583d. [DOI] [PubMed] [Google Scholar]
- Bryson J. W., Betz S. F., Lu H. S., Suich D. J., Zhou H. X., O'Neil K. T., DeGrado W. F. Protein design: a hierarchic approach. Science. 1995 Nov 10;270(5238):935–941. doi: 10.1126/science.270.5238.935. [DOI] [PubMed] [Google Scholar]
- Bryson J. W., Desjarlais J. R., Handel T. M., DeGrado W. F. From coiled coils to small globular proteins: design of a native-like three-helix bundle. Protein Sci. 1998 Jun;7(6):1404–1414. doi: 10.1002/pro.5560070617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
- Desjarlais J. R., Handel T. M. De novo design of the hydrophobic cores of proteins. Protein Sci. 1995 Oct;4(10):2006–2018. doi: 10.1002/pro.5560041006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieckmann G. R., McRorie D. K., Lear J. D., Sharp K. A., DeGrado W. F., Pecoraro V. L. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils. J Mol Biol. 1998 Jul 31;280(5):897–912. doi: 10.1006/jmbi.1998.1891. [DOI] [PubMed] [Google Scholar]
- Ding H., Moser C. C., Robertson D. E., Tokito M. K., Daldal F., Dutton P. L. Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bc1 complex. Biochemistry. 1995 Dec 12;34(49):15979–15996. doi: 10.1021/bi00049a012. [DOI] [PubMed] [Google Scholar]
- Dutton P. L., Jackson J. B. Thermodynamic and kinetic characterization of electron transfer components in situ in Rhodopseudomonas spheroides and Rhodospirillum rubrum. Eur J Biochem. 1972 Nov 7;30(3):495–510. doi: 10.1111/j.1432-1033.1972.tb02121.x. [DOI] [PubMed] [Google Scholar]
- Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
- Dutton P. L., Wilson D. F., Lee C. P. Oxidation-reduction potentials of cytochromes in mitochondria. Biochemistry. 1970 Dec 22;9(26):5077–5082. doi: 10.1021/bi00828a006. [DOI] [PubMed] [Google Scholar]
- Farinas E., Regan L. The de novo design of a rubredoxin-like Fe site. Protein Sci. 1998 Sep;7(9):1939–1946. doi: 10.1002/pro.5560070909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finzel B. C., Weber P. C., Hardman K. D., Salemme F. R. Structure of ferricytochrome c' from Rhodospirillum molischianum at 1.67 A resolution. J Mol Biol. 1985 Dec 5;186(3):627–643. doi: 10.1016/0022-2836(85)90135-4. [DOI] [PubMed] [Google Scholar]
- Frolow F., Kalb A. J., Yariv J. Structure of a unique twofold symmetric haem-binding site. Nat Struct Biol. 1994 Jul;1(7):453–460. doi: 10.1038/nsb0794-453. [DOI] [PubMed] [Google Scholar]
- Gibney B. R., Johansson J. S., Rabanal F., Skalicky J. J., Wand A. J., Dutton P. L. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein. Biochemistry. 1997 Mar 11;36(10):2798–2806. doi: 10.1021/bi9618225. [DOI] [PubMed] [Google Scholar]
- Gibney B. R., Mulholland S. E., Rabanal F., Dutton P. L. Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15041–15046. doi: 10.1073/pnas.93.26.15041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibney B. R., Rabanal F., Dutton P. L. Synthesis of novel proteins. Curr Opin Chem Biol. 1997 Dec;1(4):537–542. doi: 10.1016/s1367-5931(97)80050-6. [DOI] [PubMed] [Google Scholar]
- Gibney B. R., Rabanal F., Reddy K. S., Dutton P. L. Effect of four helix bundle topology on heme binding and redox properties. Biochemistry. 1998 Mar 31;37(13):4635–4643. doi: 10.1021/bi971856s. [DOI] [PubMed] [Google Scholar]
- Gruenke L. D., Sun J., Loehr T. M., Waskell L. Resonance Raman spectral properties and stability of manganese protoporphyrin IX cytochrome b5. Biochemistry. 1997 Jun 10;36(23):7114–7125. doi: 10.1021/bi970407p. [DOI] [PubMed] [Google Scholar]
- Hargrove M. S., Barrick D., Olson J. S. The association rate constant for heme binding to globin is independent of protein structure. Biochemistry. 1996 Sep 3;35(35):11293–11299. doi: 10.1021/bi960371l. [DOI] [PubMed] [Google Scholar]
- Hellinga H. W., Richards F. M. Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J Mol Biol. 1991 Dec 5;222(3):763–785. doi: 10.1016/0022-2836(91)90510-d. [DOI] [PubMed] [Google Scholar]
- Hollfelder F., Kirby A. J., Tawfik D. S. Off-the-shelf proteins that rival tailor-made antibodies as catalysts. Nature. 1996 Sep 5;383(6595):60–62. doi: 10.1038/383060a0. [DOI] [PubMed] [Google Scholar]
- Hunter C. L., Lloyd E., Eltis L. D., Rafferty S. P., Lee H., Smith M., Mauk A. G. Role of the heme propionates in the interaction of heme with apomyoglobin and apocytochrome b5. Biochemistry. 1997 Feb 4;36(5):1010–1017. doi: 10.1021/bi961385u. [DOI] [PubMed] [Google Scholar]
- Kalsbeck W. A., Robertson D. E., Pandey R. K., Smith K. M., Dutton P. L., Bocian D. F. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome. Biochemistry. 1996 Mar 19;35(11):3429–3438. doi: 10.1021/bi952662k. [DOI] [PubMed] [Google Scholar]
- Kamtekar S., Schiffer J. M., Xiong H., Babik J. M., Hecht M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993 Dec 10;262(5140):1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
- Klemba M., Regan L. Characterization of metal binding by a designed protein: single ligand substitutions at a tetrahedral Cys2His2 site. Biochemistry. 1995 Aug 8;34(31):10094–10100. doi: 10.1021/bi00031a034. [DOI] [PubMed] [Google Scholar]
- Lazar G. A., Desjarlais J. R., Handel T. M. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 1997 Jun;6(6):1167–1178. doi: 10.1002/pro.5560060605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipscomb William N., Sträter Norbert. Recent Advances in Zinc Enzymology. Chem Rev. 1996 Nov 7;96(7):2375–2434. doi: 10.1021/cr950042j. [DOI] [PubMed] [Google Scholar]
- Lu Y., Valentine J. S. Engineering metal-binding sites in proteins. Curr Opin Struct Biol. 1997 Aug;7(4):495–500. doi: 10.1016/s0959-440x(97)80112-1. [DOI] [PubMed] [Google Scholar]
- Mok Y. K., de Prat Gay G., Butler P. J., Bycroft M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. Protein Sci. 1996 Feb;5(2):310–319. doi: 10.1002/pro.5560050215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munson M., Balasubramanian S., Fleming K. G., Nagi A. D., O'Brien R., Sturtevant J. M., Regan L. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Sci. 1996 Aug;5(8):1584–1593. doi: 10.1002/pro.5560050813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munson M., O'Brien R., Sturtevant J. M., Regan L. Redesigning the hydrophobic core of a four-helix-bundle protein. Protein Sci. 1994 Nov;3(11):2015–2022. doi: 10.1002/pro.5560031114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mutz M. W., McLendon G. L., Wishart J. F., Gaillard E. R., Corin A. F. Conformational dependence of electron transfer across de novo designed metalloproteins. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9521–9526. doi: 10.1073/pnas.93.18.9521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordlund P., Sjöberg B. M., Eklund H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature. 1990 Jun 14;345(6276):593–598. doi: 10.1038/345593a0. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Peisach J., Blumberg W. E., Adler A. Electron paramagnetic resonance studies of iron porphin and chlorin systems. Ann N Y Acad Sci. 1973;206:310–327. doi: 10.1111/j.1749-6632.1973.tb43219.x. [DOI] [PubMed] [Google Scholar]
- Pinto A. L., Hellinga H. W., Caradonna J. P. Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5562–5567. doi: 10.1073/pnas.94.11.5562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rau H. K., DeJonge N., Haehnel W. Modular synthesis of de novo-designed metalloproteins for light-induced electron transfer. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11526–11531. doi: 10.1073/pnas.95.20.11526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regan L., Clarke N. D. A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry. 1990 Dec 11;29(49):10878–10883. doi: 10.1021/bi00501a003. [DOI] [PubMed] [Google Scholar]
- Rivera M., Wells M. A., Walker F. A. Cation-promoted cyclic voltammetry of recombinant rat outer mitochondrial membrane cytochrome b5 at a gold electrode modified with beta-mercaptopropionic acid. Biochemistry. 1994 Mar 1;33(8):2161–2170. doi: 10.1021/bi00174a024. [DOI] [PubMed] [Google Scholar]
- Robertson D. E., Farid R. S., Moser C. C., Urbauer J. L., Mulholland S. E., Pidikiti R., Lear J. D., Wand A. J., DeGrado W. F., Dutton P. L. Design and synthesis of multi-haem proteins. Nature. 1994 Mar 31;368(6470):425–432. doi: 10.1038/368425a0. [DOI] [PubMed] [Google Scholar]
- Robinson C. R., Liu Y., Thomson J. A., Sturtevant J. M., Sligar S. G. Energetics of heme binding to native and denatured states of cytochrome b562. Biochemistry. 1997 Dec 23;36(51):16141–16146. doi: 10.1021/bi971470h. [DOI] [PubMed] [Google Scholar]
- Rojas N. R., Kamtekar S., Simons C. T., McLean J. E., Vogel K. M., Spiro T. G., Farid R. S., Hecht M. H. De novo heme proteins from designed combinatorial libraries. Protein Sci. 1997 Dec;6(12):2512–2524. doi: 10.1002/pro.5560061204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenzweig A. C., Frederick C. A., Lippard S. J., Nordlund P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature. 1993 Dec 9;366(6455):537–543. doi: 10.1038/366537a0. [DOI] [PubMed] [Google Scholar]
- Schafmeister C. E., LaPorte S. L., Miercke L. J., Stroud R. M. A designed four helix bundle protein with native-like structure. Nat Struct Biol. 1997 Dec;4(12):1039–1046. doi: 10.1038/nsb1297-1039. [DOI] [PubMed] [Google Scholar]
- Sharp R. E., Moser C. C., Rabanal F., Dutton P. L. Design, synthesis, and characterization of a photoactivatable flavocytochrome molecular maquette. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10465–10470. doi: 10.1073/pnas.95.18.10465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shifman J. M., Moser C. C., Kalsbeck W. A., Bocian D. F., Dutton P. L. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes. Biochemistry. 1998 Nov 24;37(47):16815–16827. doi: 10.1021/bi9816857. [DOI] [PubMed] [Google Scholar]
- Stellwagen E. Haem exposure as the determinate of oxidation-reduction potential of haem proteins. Nature. 1978 Sep 7;275(5675):73–74. doi: 10.1038/275073a0. [DOI] [PubMed] [Google Scholar]
- Taylor C. P. The EPR of low spin heme complexes. Relation of the t2g hole model to the directional properties of the g tensor, and a new method for calculating the ligand field parameters. Biochim Biophys Acta. 1977 Mar 28;491(1):137–148. doi: 10.1016/0005-2795(77)90049-6. [DOI] [PubMed] [Google Scholar]
- Trumpower B. L. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem. 1990 Jul 15;265(20):11409–11412. [PubMed] [Google Scholar]
- Ward K. B., Hendrickson W. A., Klippenstein G. L. Quaternary and tertiary structure of haemerythrin. Nature. 1975 Oct 30;257(5529):818–821. doi: 10.1038/257818a0. [DOI] [PubMed] [Google Scholar]
- Xia D., Yu C. A., Kim H., Xia J. Z., Kachurin A. M., Zhang L., Yu L., Deisenhofer J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science. 1997 Jul 4;277(5322):60–66. doi: 10.1126/science.277.5322.60. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Huang L., Shulmeister V. M., Chi Y. I., Kim K. K., Hung L. W., Crofts A. R., Berry E. A., Kim S. H. Electron transfer by domain movement in cytochrome bc1. Nature. 1998 Apr 16;392(6677):677–684. doi: 10.1038/33612. [DOI] [PubMed] [Google Scholar]
- deMaré F., Kurtz D. M., Jr, Nordlund P. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nat Struct Biol. 1996 Jun;3(6):539–546. doi: 10.1038/nsb0696-539. [DOI] [PubMed] [Google Scholar]