Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Sep;8(9):1780–1788. doi: 10.1110/ps.8.9.1780

Ca2+-dependent activity of human DNase I and its hyperactive variants.

C Q Pan 1, R A Lazarus 1
PMCID: PMC2144401  PMID: 10493579

Abstract

We have recently constructed hyperactive human deoxyribonuclease I (DNase I) variants that digest double-stranded DNA more efficiently under physiological saline conditions by introducing positively charged amino acids at eight positions that can interact favorably with the negatively charged DNA phosphates. In this study, we present data from supercoiled DNA nicking, linear DNA digestion, and hyperchromicity assays that distinguish two classes of DNase I hyperactive variants based upon their activity dependence on Ca2+. Class A variants are highly dependent upon Ca2+, having up to 300-fold lower activity in the presence of Mg2+ alone compared to that in the presence of Mg2+ and Ca2+, and include Q9R, H44K, and T205K, in addition to wild-type DNase I. In contrast, the catalytic activity of Class B variants, which comprise the E13R, T14K, N74K, S75K, and N110R hyperactive variants, is relatively Ca2+ independent. A significant proportion of this difference in Ca2+-dependent activity can be attributed to one of the two structural calcium binding sites in DNase I. Compared to wild-type, the removal of Ca2+ binding site 2 by alanine replacements at Asp99, Asp107, and Glu112 decreased activity up to 26-fold in the presence of Mg2+ and Ca2+, but had no effect in the presence of Mg2+ alone. We propose that the rate-enhancing effect of Ca2+ binding at site 2 can be replaced by favorable electrostatic interactions created by proximal positively charged amino acid substitutions such as those found in the Class B variants, thus reducing the dependence on Ca2+.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell V. W., Jackson D. A. The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J Biol Chem. 1980 Apr 25;255(8):3726–3735. [PubMed] [Google Scholar]
  2. Dwyer M. A., Huang A. J., Pan C. Q., Lazarus R. A. Expression and characterization of a DNase I-Fc fusion enzyme. J Biol Chem. 1999 Apr 2;274(14):9738–9743. doi: 10.1074/jbc.274.14.9738. [DOI] [PubMed] [Google Scholar]
  3. Evans S. J., Shipstone E. J., Maughan W. N., Connolly B. A. Site-directed mutagenesis of phosphate-contacting amino acids of bovine pancreatic deoxyribonuclease I. Biochemistry. 1999 Mar 30;38(13):3902–3909. doi: 10.1021/bi9824893. [DOI] [PubMed] [Google Scholar]
  4. Fuchs H. J., Borowitz D. S., Christiansen D. H., Morris E. M., Nash M. L., Ramsey B. W., Rosenstein B. J., Smith A. L., Wohl M. E. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med. 1994 Sep 8;331(10):637–642. doi: 10.1056/NEJM199409083311003. [DOI] [PubMed] [Google Scholar]
  5. Jones S. J., Worrall A. F., Connolly B. A. Site-directed mutagenesis of the catalytic residues of bovine pancreatic deoxyribonuclease I. J Mol Biol. 1996 Dec 20;264(5):1154–1163. doi: 10.1006/jmbi.1996.0703. [DOI] [PubMed] [Google Scholar]
  6. KUNITZ M. Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol. 1950 Mar;33(4):349–362. doi: 10.1085/jgp.33.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  8. Lahm A., Suck D. DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex. J Mol Biol. 1991 Dec 5;222(3):645–667. doi: 10.1016/0022-2836(91)90502-w. [DOI] [PubMed] [Google Scholar]
  9. Macanovic M., Sinicropi D., Shak S., Baughman S., Thiru S., Lachmann P. J. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol. 1996 Nov;106(2):243–252. doi: 10.1046/j.1365-2249.1996.d01-839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Melgar E., Goldthwait D. A. Deoxyribonucleic acid nucleases. II. The effects of metals on the mechanism of action of deoxyribonuclease I. J Biol Chem. 1968 Sep 10;243(17):4409–4416. [PubMed] [Google Scholar]
  11. Oefner C., Suck D. Crystallographic refinement and structure of DNase I at 2 A resolution. J Mol Biol. 1986 Dec 5;192(3):605–632. doi: 10.1016/0022-2836(86)90280-9. [DOI] [PubMed] [Google Scholar]
  12. Pan C. Q., Dodge T. H., Baker D. L., Prince W. S., Sinicropi D. V., Lazarus R. A. Improved potency of hyperactive and actin-resistant human DNase I variants for treatment of cystic fibrosis and systemic lupus erythematosus. J Biol Chem. 1998 Jul 17;273(29):18374–18381. doi: 10.1074/jbc.273.29.18374. [DOI] [PubMed] [Google Scholar]
  13. Pan C. Q., Lazarus R. A. Engineering hyperactive variants of human deoxyribonuclease I by altering its functional mechanism. Biochemistry. 1997 Jun 3;36(22):6624–6632. doi: 10.1021/bi962960x. [DOI] [PubMed] [Google Scholar]
  14. Pan C. Q., Lazarus R. A. Hyperactivity of human DNase I variants. Dependence on the number of positively charged residues and concentration, length, and environment of DNA. J Biol Chem. 1998 May 8;273(19):11701–11708. doi: 10.1074/jbc.273.19.11701. [DOI] [PubMed] [Google Scholar]
  15. Pan C. Q., Ulmer J. S., Herzka A., Lazarus R. A. Mutational analysis of human DNase I at the DNA binding interface: implications for DNA recognition, catalysis, and metal ion dependence. Protein Sci. 1998 Mar;7(3):628–636. doi: 10.1002/pro.5560070312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Price P. A., Stein W. H., Moore S. Effect of divalent cations on the reduction and re-formation of the disulfide bonds of deoxyribonuclease. J Biol Chem. 1969 Feb 10;244(3):929–932. [PubMed] [Google Scholar]
  17. Price P. A. The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease. J Biol Chem. 1975 Mar 25;250(6):1981–1986. [PubMed] [Google Scholar]
  18. Ramsey B. W., Astley S. J., Aitken M. L., Burke W., Colin A. A., Dorkin H. L., Eisenberg J. D., Gibson R. L., Harwood I. R., Schidlow D. V. Efficacy and safety of short-term administration of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis. Am Rev Respir Dis. 1993 Jul;148(1):145–151. doi: 10.1164/ajrccm/148.1.145. [DOI] [PubMed] [Google Scholar]
  19. Ramsey B. W. Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med. 1996 Jul 18;335(3):179–188. doi: 10.1056/NEJM199607183350307. [DOI] [PubMed] [Google Scholar]
  20. Suck D. DNA recognition by DNase I. J Mol Recognit. 1994 Jun;7(2):65–70. doi: 10.1002/jmr.300070203. [DOI] [PubMed] [Google Scholar]
  21. Ulmer J. S., Herzka A., Toy K. J., Baker D. L., Dodge A. H., Sinicropi D., Shak S., Lazarus R. A. Engineering actin-resistant human DNase I for treatment of cystic fibrosis. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8225–8229. doi: 10.1073/pnas.93.16.8225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weston S. A., Lahm A., Suck D. X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution. J Mol Biol. 1992 Aug 20;226(4):1237–1256. doi: 10.1016/0022-2836(92)91064-v. [DOI] [PubMed] [Google Scholar]
  23. Weston S., Suck D. X-ray structures of two single-residue mutants of DNase I: H134Q and Y76A. Protein Eng. 1993 Jun;6(4):349–357. doi: 10.1093/protein/6.4.349. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES