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Abstract

a-Synuclein, a major constituent of Lewy bodies~LBs! in Parkinson’s disease~PD!, has been implicated to play a
critical role in synaptic events, such as neuronal plasticity during development, learning, and degeneration under
pathological conditions, although the physiological function ofa-synuclein has not yet been established. We here
present biochemical evidence that recombinanta-synuclein has a chaperone-like function against thermal and chemical
stress in vitro. In our experiments,a-synuclein protected glutathione S-transferase~GST! and aldolase from heat-
induced precipitation, anda-lactalbumin and bovine serum albumin from dithiothreitol~DTT!-induced precipitation
like other molecular chaperones. Moreover, preheating ofa-synuclein, which is believed to reorganize the molecular
surface ofa-synuclein, increased the chaperone-like activity. Interestingly, in organic solvents, which promotes the
formation of secondary structure,a-synuclein aggregated more easily than in its native condition, which eventually
might abrogate the chaperone-like function of the protein. In addition,a-synuclein was also rapidly and significantly
precipitated by heat in the presence of Zn21 in vitro, whereas it was not affected by the presence of Ca21 or Mg21.
Circular dichroism spectra confirmed thata-synuclein underwent conformational change in the presence of Zn21. Taken
together, our data suggest thata-synuclein could act as a molecular chaperone, and that the conformational change of
thea-synuclein could explain the aggregation kinetics ofa-synuclein, which may be related to the abolishment of the
chaperonic-like activity.
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Parkinson’s disease~PD!, a neurodegenerative disorder associated
with dopaminergic nerve cell loss, is characterized by the presence
of neuronal inclusion bodies and dystrophic neurites predomi-
nantly in the substantia nigra. A pathological hallmark of PD is the
presence of intracytoplasmic Lewy bodies~LBs!, which also ac-
cumulated in brains with dementia and multiple system atrophy.
The major filamentous component of Lewy bodies isa-synuclein,
a presynaptic protein of the central nervous system~Heintz &
Zoghbi, 1997; Baba et al., 1998; Clayton & George, 1998!. The
a-synuclein immunoreactivity to Lewy bodies and Lewy neurites
in patients with sporadic PD and dementia with LBs is already
known, although LBs have been shown to be immunoreactive also

for beta-amyloid precursor protein and ubiquitin C-terminal hy-
drolase~Leroy et al., 1998; Spillantini et al., 1998!. Moreover,
transgenic mice overexpressinga-synuclein develop inclusion bod-
ies and a loss of dopaminergic terminals, supporting the idea that
abnormal aggregation ofa-synuclein might play a central role in
PD ~Masliah et al., 2000!.

a-Synuclein comprises 140 amino acids in two domains, linked
via the NAC sequence~Fig. 1A!. The C-terminal domain is rather
acidic. The N-terminal domain, which is highly conserved between
species, comprises seven repeats of 11-amino-acid motif~residues
9–89!. Fast axonal transport of vesicle-bounda-synuclein is de-
pendent on the integrity of the first N-terminal four of the 11-
amino-acid repeats~Jensen et al., 1998!. a-Synuclein is unfolded
in its native state, perhaps explaining its ability to interact with
many other proteins or ligands~Weinreb et al., 1996; Kim, 1997!.
Interestingly,a-synuclein, with very little secondary structure in
aqueous solution, associates with small acidic phospholipid vesi-
cles and acquires increased level of secondary structure~Davidson
et al., 1998!.

The importance ofa-synuclein in human neurodegenerative dis-
ease was first proposed when a 35-amino-acid peptide correspond-
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ing to residues 61–95 ina-synuclein was purified from Alzheimer’s
disease senile plaques~Ueda et al., 1993!. Although the mecha-
nism by whicha-synuclein is intracellularly aggregated during
neurodegeneration in PD or related disorders is not yet fully un-
derstood, it has been reported thata-synuclein, as a whole or a
partially truncated molecule, was shown to be aggregated to form
amyloid-like fibrils that contain high percentages of beta-pleated
sheet structure~Takeda et al., 1998; Serpell et al., 2000!. Two
different point mutations~A53T and A30P! in a-synuclein gene on
human chromosome 4 have been identified with early onset inher-
ited form of PD~Polymeropoulos et al., 1997; Kruger et al., 1998!.
These mutations accelerate the aggregate formation in vitro, which
may explain the aggregation kinetics ofa-synuclein in the patho-
genesis of PD~Conway et al., 1998!. It has also been shown that

the in vitro aggregation ofa-synuclein is modulated by various
factors such as Ab, cytochromec, hydrogen peroxide, SDS, and
metal ions~Paik et al., 1998, 1999; Hashimoto et al., 1999!.

Structural features and the conformational change ofa-synuclein
led us to the hypothesis thata-synuclein may bind to hydrophobic
regions of partly unfolded proteins by stresses and act as a mo-
lecular chaperone. In addition, we hypothesized that perturbation
of a-synuclein structure by organic solvent, metal ions, and heat
could affect the chaperonic activity and aggregation kinetics of
a-synuclein. In this study, we showed that~1! a-synuclein can act
as a molecular chaperone in its native state in vitro, and~2! con-
formational change by organic solvent or zinc ion induces the
aggregation ofa-synuclein, while heat-incubateda-synuclein en-
hances the chaperone-like function. These results suggest that struc-

Fig. 1. A: Purified proteins ofa-synuclein anda-synuclein112 were separated on a 15% SDS polyacrylamide gel electrophoresis and
stained with Coomassie brilliant blue R-250. Lane 1,a-synuclein~14.4 kDa!; lane 2, synuclein112~11.4 kDa!. Molecular weights of
the size markers are shown at the left. Three distinct regions ofa-synuclein designated amphipathic region~N-terminus region!, NAC,
and acidic region~C-terminal regions! are shown in the bottom of the figure.B: Schematic elution profiles and elution volumes~Ve!
of a-synuclein anda-synuclein112 in size-exclusion chromatography were shown under various conditions;a-synuclein in MES buffer
~10.84 mL!, in 8 M urea~9.86 mL!, anda-synuclein112~12.08 mL!. Elution volumes of molecular weight standard proteins are also
marked above the figure~BSA, ovalbumin, carbonic anhydrase, and lysozyme!.
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tural change ofa-synuclein might explain the aggregation property
and loss of chaperone activity ofa-synuclein, which might be
related to the formation of Lewy body fibrils in Parkinson’s disease.

Results

Gel filtration chromatography

Figure 1A shows the SDS-PAGE analysis ofa-synuclein and
a-synuclein112 proteins. The recombinant proteins were purified
;95% homogenity as evident from the Coomassie blue-stained
SDS-PAGE gel. To characterize hydrodynamic properties ofa-
synuclein and its deletion mutant form at neutral pH, gel-filtration
chromatography was performed. The protein was loaded onto the
gel-filtration column and eluted as a single sharp peak correspond-
ing to relative molecular mass of 60 kDa fora-synuclein and
42 kDa for a-synuclein112 compared to molecular-size markers
~Fig. 1B!. The sizes ofa-synuclein anda-synuclein112 were ob-
served to be larger than the one predicted from amino acid se-
quences~14.4 and 11.4 kDa, respectively!. Our data are in agreement
with the previous reports thata-synuclein is predominantly mo-
nomeric and unstructured with large Stokes radius for its mono-
meric state~Kim, 1997; Conway et al., 2000!. Deletion of acidic
tail region ina-synuclein112 did not cause the compaction of its
unstructured nature in gel-filtration. Interestingly,a-synuclein seems
to be more unfolded in the presence of 8 M urea with larger stokes
radius than in physiological buffer solution, which implies some
tertiary interactions existing ina-synuclein are disrupted under
this condition. Deletion of 43 amino acids in C-terminus region did
not lead to an alteration in the unstructured nature of synuclein in
gel filtration chromatography and circular dichroism spectra~data
not shown!.

CD spectroscopy

To examine the effect of temperature and organic solvent on the
secondary structure ofa-synuclein, far-UV CD spectra were in-
vestigated~Fig. 2!. The far-UV CD spectra ofa-synuclein had a
characteristic minimum around 200 nm, which is indicative of high
proportion of random coil as much as 70%. At 1008C, a-synuclein
showed a reduced minimum around 200 nm. The CD spectrum of
preincubateda-synuclein reflected a possibility of structural reor-
ganization. We have also investigated the effect of organic solvent,
hexafluoroisopropanol~HFIP!, which is shown to induce second-
ary structure. As expected, the far-UV CD spectra ofa-synuclein
in this organic solvent showed ordered secondary structure with
a-helix andb-sheets. Interestingly, as shown in Figure 3, thermal
stress in 10% HFIP condition causes dramatic increase of aggre-
gation in both cases ofa-synuclein anda-synuclein 114. There-
fore, it is evident that the heat-induced aggregation level is greatly
increased with the conformational change ofa-synuclein induced
by HFIP.

Effects of metal ions

We have investigated the aggregation level ofa-synuclein in the
presence of various metal ions~Fig. 4A!. a-Synuclein was incu-
bated with different divalent metal ions at 20 mM MES~pH 6.5!,
and turbidity was measured at 360 nm. Mg21 and Ca21 were
observed to induce no significant aggregation. Only incubation

with Zn21 induced significant aggregation under these conditions.
The light-scattering data fora-synuclein indicated that there is no
aggregation in this concentration~10 mM !, but the addition of
Zn21 appeared to result in aggregation like the case of GroEL
~Brazil et al., 1998!. Interestingly, Zn21-induced turbidity was
abolished by the presence of the EDTA, metal ion chelator. The
protein BSA~0.1 mg0mL! did not aggregate in the presence of
Zn21 ~data not shown!, which suggestes that this effect of Zn21 on
a-synuclein reflects a specific interaction. Doubling the concen-
tration of a-synuclein with Zn21 increased the aggregation level
~Fig. 4B!. In addition, Zn21 caused structural reorganization of the

Fig. 2. Far-UV CD spectra ofa-synuclein under various conditions. CD
spectra ofa-synuclein at 208C ~solid line!, 1008C ~dotted line!, and
208C ~preincubated, dashed line! are shown, respectively. CD spectra of
a-synuclein in the presence of 10% HFIP at 208C are also shown in
solid-dotted line. Note that the negative minima around 200 nm of ran-
dom coil region is changed by temperature and organic solvent.

Fig. 3. Thermal aggregation ofa-synuclein was increased significantly in
the presence of organic solvent~10% HFIP!. a-Synuclein~10 mM ! was
aggregated more easily by heat when the organic solvent induces the sec-
ondary structure ofa-synuclein.a-Synuclein114 was also aggregated in
the presence of heat and organic solvents.
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a-synuclein in CD spectra~data not shown!. Therefore, Zn21 could
cause conformational change ofa-synuclein structure and leads to
the increase of aggregation like the case of organic solvent. This
finding is reminiscent of the behavior of Ab, which showed in-
creased aggregation through conformational change by organic
solvents and Zn21 ~Huang et al., 1997!.

Chaperone-like activity ofa-synuclein

We have investigated thata-synuclein could prevent the aggrega-
tion of a variety of unrelated proteins0enzymes caused by thermal
and chemical stress like small heat-shock proteins. Suppression of
the aggregation of nonnative conformations of substrate proteins by
a-synuclein is used to measure its chaperone-like activity in vitro.
The chaperone-like activity ofa-synuclein against heat- and DTT-
induced aggregation was investigated by the apparent absorbance
of light scattering. Figure 5 shows the kinetic traces of the apparent
light scattering of aldolase and glutathione S-transferase~GST! in

the presence and absence ofa-synuclein against heat treatment.
When solutions of substrate proteins, such as aldolase and GST, were
heated at 658C for 10 min, the solutions got turbid because of the
formation of large insoluble aggregates~Fig. 5A,B, curve 1!.
However,a-synuclein alone did not precipitate when heated at
658C for 30 min or treated with DTT. Comparison of curves 1 and
2 in Figure 5A indicates the capability ofa-synuclein to suppress
the aggregation of aldolase. In the presence ofa-synuclein~1:1 w0w
aldolase:a-synuclein!, aggregation was suppressed to as much as
50%. Doubling the concentration ofa-synuclein increased the sup-
pression of the aggregation. In Figure 5B, GST underwent exten-
sive aggregation within 5 min at 658C, shown by an increase in
absorbance at 360 nm. However, in the presence ofa-synuclein~1:1
w0w GST:a-synuclein!, aggregation was suppressed to as much as
60%. Increasing the concentration ofa-synuclein suppresses the
aggregation of GST like in the case of aldolase. Interestingly,
a-synuclein could supress the aggregation of GST more efficiently,
which might be resulted from the small molecular weight of GST
~29 kDa! compared to aldolase~150 kDa!. In addition, bovine se-

Fig. 4. A: Turbidometric analysis of metal induceda-synuclein aggrega-
tion. a-Synuclein were incubated with each metal ion~100 mM !. EDTA
~250 mM ! was added for chelation of Zn21. All samples were heated at
658C for 10 min.B: Light scattering ofa-synuclein were investigated in
the presence of zinc;a-synuclein 20mM ~open circle, dotted! or 10 mM
~filled circle, dashed line! were heated at 658C in the presence of 50mM
zinc. a-Synuclein without zinc~filled circle, solid line! was also heated at
658C.

Fig. 5. a-Synuclein suppress the thermal aggregation of aldolase and GST.
A: Aggregation curves of aldolase~0.2 mg0mL! in the absence ofa-synuclein
~filled circle!, aldolase0a-synuclein ~1:1 w0w, open circle!, aldolase0a-
synuclein~1:3 w0w, filled triangle!, and a-synuclein only~0.2 mg0mL,
open triangle!. B: Aggregation curves of GST~0.2 mg0mL! in the absence
of a-synuclein ~filled circle!, GST0a-synuclein ~1:1 w0w, open circle!,
GST0a-synuclein~1:3 w0w, filled triangle!, anda-synuclein only~0.2 mg0
mL, open triangle!.
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rum albumin~BSA! or lysozyme did not protect GST or aldolase
against thermal aggregation regardless of the amount of proteins used
~data not shown!.

Analysis of reaction mixtures by size-exclusion chromatogra-
phy indicated the formation of high molecular weight species
with a larger Stokes radius, which are composed ofa-synuclein
and substrate protein~data not shown!. These results indicates
that a-synuclein binds to stressed proteins with the formation of
high molecular weight complexes like the other molecular chap-
erones~Rao et al., 1993; Rajaraman et al., 1996!.

The kinetics of aggregation by disulfide bonds reduction were
monitored by measuring the apparent absorbance of light scat-
tering at 360 nm~Horwitz et al., 1998!. Figure 6A shows that

a-synuclein suppressed DTT-induced aggregation of BSA in a
concentration-dependent manner~curves 2 and 3!. a-Synuclein
also offered comparable protection against DTT-induced aggre-
gation of bovinea-lactalbumin~Fig. 6B, curves 1 and 2!. It is
evident from these experiments thata-synuclein suppresses the
DTT-induced as well as heat-induced precipitation. Interestingly,
preheateda-synuclein suppressed the aggregation process more
effectively compared to the nonheated one. For lysozyme as a
substrate, only preheateda-synuclein suppressed the aggregation
~Fig. 6C!. Structural reorganization observed in CD spectra
~Fig. 2! could be related to this enhanced molecular chaperone-
like activity. This finding is consistent with the behavior of other
known chaperones such asa-crystallin and tubulin, whose ac-
tivities are generally found to increase with the gain of temper-
ature ~Datta & Rao, 1999; Haslbeck et al., 1999!. It is also
known that a slight perturbation of its conformation by heat or
chaotropic agents results in an increase in its hydrophobicity or
reorganization of the surfaces and, therefore, its substrate bind-
ing capacity~Lindner et al., 1998!.

a-Synuclein does not protect enzyme from heat-induced
loss of activity

To investigate whethera-synuclein is also capable of protecting
enzymes from stress-induced loss of activity, we tested the enzyme
activity of GST before and after exposure to heat in the presence
or absence ofa-synuclein~Fig. 7!. After the exposure of GST at
658C for 10 min, the enzyme completely lost its activity. Interest-
ingly, a-synuclein had a negligible effect on the heat-induced loss
of function of GST, although addition ofa-synuclein suppresses
the aggregation. Therefore,a-synuclein could not protect enzymes
from the loss of its activity, although it has chaperone-like prop-
erties of protecting stressed proteins from precipitation. Previous
studies have shown that HSP25, clusterin, anda-crystallin also
protect proteins from heat-induced precipitation, but onlya-crystallin
is capable of protecting against enzyme inactivation~Carver et al.,
1994; Humphreys et al., 1999!.

Fig. 6. DTT-induced aggregation kinetics of BSA, bovinea-lactalbumin,
and lysozyme in the presence and absence ofa-synuclein. All samples were
treated with 20 mM DTT at 378C. ~A! Aggregation curves of BSA in the
absence ofa-synuclein~curve 1!, BSA0a-synuclein~1:0.25 w0w, curve 2!,
and BSA0a-synuclein~1:0.5 w0w, curve 3!. ~B! Aggregation curves ofa-
lactalbumin~0.5 mg0mL! in the absence ofa-synuclein~curve 1!, a-
lactalbumin0a-synuclein ~1:0.6 w0w, curve 2!, and a-lactalbumin0
preincubateda-synuclein ~1:0.6 w0w, curve 3!. For preincubation,
a-synuclein was preheated at 658C for 10 min and cooled to room temper-
ature before the measurement.~C!Aggregation curves of lysozyme~0.5 mg0
mL! in the absence and presence ofa-synuclein lysozyme0a-synuclein~w0w!
is 1:1 except the last column~1:2!. For preincubation,a-synuclein was pre-
heated at 658C for 10 min and cooled to room temperature.

Fig. 7. Enzyme activity of GST following incubation at 658C for 10 min.
GST with or withouta-synuclein was heated, and enzyme activity was
measured as an increase in absorbance at 350 nm. Each histogram repre-
sents the mean of three independent measurements, and the error bars
represent standard errors.
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Discussion

In many neurodegenerative diseases, filamentous lesions are ob-
served in the extracellular, intracytoplasmic, or nuclear regions. Each
lesion is mainly composed of insoluble fibrils of proteins such as
a-synuclein in PD, Ab in AD amyloid plaque, tau in nneurofibril-
lary tangles, and huntington in HD~Kaytor & Warren, 1999; Tro-
janowski & Lee, 1999!. An increasing number of evidence suggests
that filamentous aggregates resulting from abnormal protein–protein
interactions play a mechanistic role in the dysfunction and death of
neurons and0or glia in many neurodegenerative diseases~Goedert
et al., 1998; Wolozin & Behl, 2000!. Although filamentous
a-synuclein aggregates in PD play a significant role in the patho-
genesis of neurodegenerative disorders, the mechanism of fibrillo-
genesis and function ofa-synuclein have not yet been fully
addressed. We present here biochemical evidence suggesting that
a-synuclein have a chaperone-like function for proteins denatured
by thermal and chemical stress. This function is regulated by en-
vironmental factors~temperature, metal, organic solvent!, which
could induce the structural reorganization ofa-synuclein. There-
fore, structural transitions ofa-synuclein, which might be a key to-
ward the understanding of the aggregation ofa-synuclein, are related
to the chaperone-like function ofa-synucleinin vitro.

All molecular chaperones require a common step of binding
the partially or completely unfolded substrate and thereby pre-
venting the off-pathway reaction that leads to protein aggrega-
tion. A common feature of partly folded and unfolded polypeptides
induced by heat or disulfide bond reduction is the solvent expo-
sure of hydrophobic residues that are buried in its native struc-
ture. Several studies of molecular chaperones have revealed the
importance of hydrophobic residues in binding of substrate poly-
peptides~Ehrnsperger et al., 1997; Dobson & Karplus, 1999!.
Our data indicate thata-synuclein effectively protects GST and
aldolase from heat-induced precipitation, and bovinea-lactalbumin,
BSA, and lysozyme from DTT-induced precipitation. These ob-
servation suggest thata-synuclein has chaperone-like properties
that could prevent the aggregation of a number proteins that are
unrelated in structure or sequence, as has been recently reported
by Souza et al.~2000!. Size-exclusion chromatography showed
the formation of high molecular weight complex. Therefore, it is
tempting to think thata-synuclein binds to exposed hydrophobic
regions on stressed proteins to form high molecular weight com-
plexes and the formation of these complexes prevents the pre-
cipitation of the substrate proteins.

Conformational transitions ofa-synuclein may be closely linked
to the chaperone-like activity and aggregation ofa-synuclein in PD.
As shown in Figure 1, size-exclusion chromatography reveals that
a-synuclein has some ordered structure that could be disrupted in
8 M urea condition, althougha-synuclein has little secondary struc-
ture in a buffer condition. Interestingly, in organic solvent or in the
presence of Zn21, a-synuclein seems to have more ordered struc-
ture than its native state. In a 10% HFIP condition, which promotes
the formation ofa-helix, the molecular surface ofa-synuclein
changes and leads to aggregation easily by heat, which could be in-
terpreted as the abolishment of the chaperone-like function. More-
over,a-synuclein is rapidly and significantly precipitated by Zn21,
which could also change the secondary structure ofa-synuclein. In
this respect, it is possible that Zn21 act by shielding the negative
charge ona-synuclein, and consequently, abrogates the chaperone-
like activity. It has also been reported that interaction ofa-synuclein
with Cu210Fe31 results in the overproduction of free radicals that

are associated with PD as a causal factor in the death of cells~Hash-
imoto et al., 1999; Paik et al., 1999!. Therefore, organic solvent and
metal ions appears to act in a more general fashion by modulating
the hydrophobic surface ofa-synuclein, which eventually leads to
self-aggregation, and could abolish its binding to nonnative con-
formation of polypeptides. Preheating ofa-synuclein is character-
ized by a partial structural change of secondary structure in the CD
spectra~Fig. 2!. The conformational transition induced by heating
seems to be involved in enhancing the chaperone-like activity of
a-synuclein. Additionally, Hsp90 anda-crystalline undergoes a
temperature-dependent structural perturbation, which results in an
increase in its chaperone-like activity~Surewicz & Olesen, 1995;
Yonehara et al., 1996; Burgio et al., 2000!. It has been suggested
that these changes could be explained as the reorganization of the
hydrophobic surfaces and0or small structural perturbation of these
molecules~Raman & Rao, 1997; Chadli et al., 1999!. Interestingly,
a-synuclein was unable to protect heat-induced loss of activity of
GST ~Fig. 7!. Consistent with this observation, HSP25, clusterin,
anda-crystalline also protect proteins from thermally induced pre-
cipitation, but onlya-crystalline is capable of protecting against en-
zyme inactivation ~Horwitz, 1992; Hook & Harding, 1997;
Humphreys et al., 1999!. In this respect, it would be interesting to
see in more detail ifa-synuclein helps the recovery of other en-
zyme activity inactivated by heat treatment.

Like other chaperones,a-synuclein appears to prevent irrevers-
ible aggregation of proteins induced by thermal as well as nonther-
mal stress by providing molecular surfaces to the unfolding proteins.
Demonstration of chaperone-like activity ofa-synuclein has pro-
vided an opportunity to investigate the mechanistic and functional
aspects ofa-synuclein under stress conditions, with the possibility
thata-synuclein may have a function of interacting with aged or dam-
aged proteins. Our observation thata-synuclein can function as a
molecular chaperone may be significant in understanding the mech-
anism of fibrillogenesis in PD, although it is not clear at present
whethera-synuclein may assist the folding of other proteins in vivo.
It has been known that overexpression of molecular chaperones such
as sHSPs and clusterin protected cells from the cytotoxicity of tu-
mor necrosis factor~Humphreys et al., 1997; Michel et al., 1997;
Arrigo, 1998!. Multiple lines of evidence have been accumulated
thata-synuclein could act to protect cells from environmental stresses
~da Costa et al., 2000; Kanda et al., 2000!. Overexpression of
a-synuclein protects neuronal cells from apoptotic stimuli and PD-
related mutation and C-terminal truncation ofa-synuclein enhance
vulnerability to oxidative stress of hydrogen peroxide and MPTP.
Therefore, chaperone-like activity ofa-synuclein observed in vitro
could function as a cell survival factor in vivo. This study shows
that the chaperone-like activity ofa-synuclein seem to be abolished
upon structural perturbation or reorganization by Zn21 and organic
solvents, while preheating of the protein could enhance the
chaperone-like activity in vitro. Therefore,a-synuclein seems to have
molecular chaperone function, and the conformational change of
a-synuclein may be a way of modulating the binding of unfolded
polypeptide substrates.

Materials and methods

Materials

Bovine serum albumin~BSA!, bovinea-lactalbumin, IPTG, glu-
tathione, urea, and 1-chloro-2,4-dinitrobenzene were purchased from
Sigma~St. Louis, Missouri!. Aldolase was obtained from Amer-
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sham Pharmacia Biotech~Uppsala, Sweden!. Dithiothreitol~DTT!
was obtained from Boehringer Mannheim~Mannheim, Germany!.
Reagents used for SDS-PAGE were from Bio-Rad~Hercules, Cal-
ifornia!.All reagents used were of analytical grade. GST fromSchis-
tosoma japonicumwas prepared by the expression of pGEX-4T in
Escherichia coli.The recombinant protein was purified by GSH-
agarose affinity chromatography, as the manufacturer suggested. The
purities of the proteins were verified by SDS-PAGE, and protein con-
centrations were determined by using the Bio-Rad Bradford re-
agent~Hercules, California! or by absorbance measurement at
280 nm.

Methods

Protein preparation

The plasmids containing full-lengtha-synuclein and a-
synuclein112 gene were generous gifts from Dr. R. Jakes~MRC,
England! and Dr. W. Choi~Chongju University, Korea!, respec-
tively. a-Synuclein anda-synuclein114 was prepared as described
previously~Paik et al., 1998!. Fora-synuclein112, which lacks the
residues of 103–130 in the acidic tail, BL21~DE3!pLysS harboring
synuclein112 gene were grown in LB medium at 378C to anA600

of 1.0 and then grown for another 4 h after induction with 0.5 mM
IPTG. Cells were harvested by centrifugation at 7,0003 g for
10 min, resuspended in phosphate-buffered saline, and disrupted
by sonication. After removing cell debris, the supernatants were
subjected to heat treatment at 1008C for 20 min and were dialyzed
at 48C against 50 mM sodium acetate buffer, pH 4.6 for 16 h, with
buffer exchange at 3 and 12 h. Then they were loaded on a Mono
S-Sepharose column preequilibrated with 50 mM sodium acetate
buffer ~pH 4.6! and eluted with a linear gradient of 0–0.4 M NaCl
in the same buffer. The proteins were concentrated using Centricon
concentrators~Amicon, Beverly, Massachusetts! of molecular mass
cutoff 10 kDa. The protein was further purified using Superdex75
gel-filtration column equilibrated with phosphate-buffered saline,
pH 7.4. The protein was concentrated and stored at2208C before
use. Protein samples were centrifuged at 12,0003 g for 5 min
before all experiments and purities of the proteins were verified by
SDS-PAGE~Fig. 1!.

Size-exclusion chromatography

The Superdex 75 HR 10030 column~Pharmacia, Uppsala, Swe-
den! was equilibrated with phosphate buffered-saline~pH 7.4! or
10 mM MES~pH 6.5! containing 0.1 mM EDTA, 0.1 mM PMSF,
and 1 mMb-mercaptoethanol. Two hundred microliters of each
protein sample~50 mg! was loaded onto the column, and eluted
with a flow rate of 0.5 mL0min at room temperature. Molecular
sizes of thea-synuclein and synuclein112 proteins were evaluated
with reference to molecular mass standards. Standards were blue
dextran~2 MDa!, BSA ~66 kDa!, ovalbumin~45 kDa!, carbonic
anhydrase~29 kDa!, and RNnase A~14 kDa!. Same buffer with
8 M urea were used for the measurement of the elution profile of
a-synuclein in the presence of urea.

Circular dichroism spectroscopy

The CD spectra were measured using a JASCO-J715 spectro-
polarimeter~Jasco, Japan! equipped with a temperature control
system in a continuous mode. Far-UV CD measurements were
carried out over the wavelength range of 190 to 250 nm, with a
0.5 nm bandwidth, 1 s response time, and 10 nm0min scan speed

at 208C in a cuvette with a pathlength of 0.1 cm. For the CD
spectra at 1008C, the temperature was maintained using a thermo-
stated water bath and water-jacketed sample cells were used. Spec-
tra were smoothed using the operating software noise reduction
filter and represented the average of at least four scans corrected
for buffer absorbance.

a-Synuclein aggregation assay

To investigate the effects of organic solvents ona-synuclein
aggregation,a-synuclein ~20 mM ! or a-synuclein114~10 mM !
were dissolved in 10% 1,1,1,3,3,3-hexafluoro-2-propanol~HFIP!
~v0v!, 20 mM MES pH 6.5, and incubated at 658C for 10 min. The
turbidity was measured at 360 nm to determine the level of organic
solvent-induced aggregation. To investigate the effects of different
metal ions, 50mM of a-synuclein in 20 mM MES~pH 6.5! in-
cubated with or without metal ions~100mM ! at 658C for 10 min
and absorbances at 360 nm were recorded. Light scattering of
a-synuclein were also investigated in the presence of zinc ion
every 1 min at 658C to determine the level of aggregation.

Chaperone-like activity ofa-synuclein

Turbidity measurement as an assay for aggregation was performed
according to the established protocols with minor modifications
~Horwitz et al., 1998; Lee & Vierling, 1998!. Protein solutions
with or withouta-synuclein were mixed in cuvettes at room tem-
perature and then placed in the thermostatic cell holder, and the
apparent absorbance was monitored as a function of time. Individ-
ual protein solutions ofa-synuclein, aldolase~0.2 mg0mL!, GST
~0.2 mg0mL!, or mixtures ofa-synuclein with aldolase, GST at the
same final concentration were prepared in phosphate-buffered sa-
line ~PBS! and heated at 658C. The light scattering of the solution
at 360 or 400 nm was measured for total 20 min. For DTT-induced
reduction, protein solution ofa-synuclein, BSA~0.2 mg0mL!,
a-lactalbumin~0.5 mg0mL!, or lysozyme~0.5 mg0mL! and mix-
tures ofa-synuclein with BSAa-lactalbumin, or lysozyme at the
same final concentration, were prepared in 10 mM phosphate pH 7,4
and incubated at 378C with or without 20 mM DTT ~from a
100 mM stock solution!. For preheating,a-synuclein was heated at
658C for 10 min and cooled to room temperature for 1 h. Ther-
mally or DTT-induced aggregation of proteins was measured in a
Beckman spectrophotometer fitted with thermostatic cell holder
assembly with electric temperature control.

GST activity measurement

GST was prepared at a concentration of 200mg0mL in 50 mM
Na2HPO4, pH 7.0 and incubated with or withouta-synuclein
~100mg0mL! at room temperature. Mixtures were heated at 658C
for 10 min. GST was then diluted into substrate solution~1 mM
GSH, 2 mM 1-chloro-2,4-dinitrobenzene in 0.1 M phosphate pH 7.4!
to a final concentration of 10mg0mL and incubated at 378C for
10 min before measuring the absorbance at 350 nm. Enzyme ac-
tivity was measured as an increase in absorbance, corresponding to
the appearance of 1-S-glutathionyl-2,4-dinitrobenzene. The absor-
bance was measured on a Spectramax 250 microplate reader~Mo-
lecular Devices, Sunnyvale, California!.
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