Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Mar;9(3):512–524. doi: 10.1110/ps.9.3.512

Analysis of the dynamic properties of Bacillus circulans xylanase upon formation of a covalent glycosyl-enzyme intermediate.

G P Connelly 1, S G Withers 1, L P McIntosh 1
PMCID: PMC2144565  PMID: 10752613

Abstract

NMR spectroscopy was used to search for mechanistically significant differences in the local mobility of the main-chain amides of Bacillus circulans xylanase (BCX) in its native and catalytically competent covalent glycosyl-enzyme intermediate states. 15N T1, T2, and 15N[1H] NOE values were measured for approximately 120 out of 178 peptide groups in both the apo form of the protein and in BCX covalently modified at position Glu78 with a mechanism-based 2-deoxy-2-fluoro-beta-xylobioside inactivator. Employing the model-free formalism of Lipari and Szabo, the measured relaxation parameters were used to calculate a global correlation time (tau(m)) for the protein in each form (9.2 +/- 0.2 ns for apo-BCX; 9.8 +/- 0.3 ns for the modified protein), as well as individual order parameters for the main-chain NH bond vectors. Average values of the order parameters for the protein in the apo and complexed forms were S2 = 0.86 +/- 0.04 and S2 = 0.91 +/- 0.04, respectively. No correlation is observed between these order parameters and the secondary structure, solvent accessibility, or hydrogen bonding patterns of amides in either form of the protein. These results demonstrate that the backbone of BCX is well ordered in both states and that formation of the glycosyl-enzyme intermediate leads to little change, in any, in the dynamic properties of BCX on the time scales sampled by 15N-NMR relaxation measurements.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akke M., Skelton N. J., Kördel J., Palmer A. G., 3rd, Chazin W. J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993 Sep 21;32(37):9832–9844. doi: 10.1021/bi00088a039. [DOI] [PubMed] [Google Scholar]
  2. Brüschweiler R., Liao X., Wright P. E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science. 1995 May 12;268(5212):886–889. doi: 10.1126/science.7754375. [DOI] [PubMed] [Google Scholar]
  3. Burmeister W. P., Cottaz S., Driguez H., Iori R., Palmieri S., Henrissat B. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997 May 15;5(5):663–675. doi: 10.1016/s0969-2126(97)00221-9. [DOI] [PubMed] [Google Scholar]
  4. Clore G. M., Driscoll P. C., Wingfield P. T., Gronenborn A. M. Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 Aug 14;29(32):7387–7401. doi: 10.1021/bi00484a006. [DOI] [PubMed] [Google Scholar]
  5. Clubb R. T., Omichinski J. G., Sakaguchi K., Appella E., Gronenborn A. M., Clore G. M. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements. Protein Sci. 1995 May;4(5):855–862. doi: 10.1002/pro.5560040505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connelly G. P., McIntosh L. P. Characterization of a buried neutral histidine in Bacillus circulans xylanase: internal dynamics and interaction with a bound water molecule. Biochemistry. 1998 Feb 17;37(7):1810–1818. doi: 10.1021/bi972085v. [DOI] [PubMed] [Google Scholar]
  7. Davies G. J., Mackenzie L., Varrot A., Dauter M., Brzozowski A. M., Schülein M., Withers S. G. Snapshots along an enzymatic reaction coordinate: analysis of a retaining beta-glycoside hydrolase. Biochemistry. 1998 Aug 25;37(34):11707–11713. doi: 10.1021/bi981315i. [DOI] [PubMed] [Google Scholar]
  8. Epstein D. M., Benkovic S. J., Wright P. E. Dynamics of the dihydrofolate reductase-folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features. Biochemistry. 1995 Sep 5;34(35):11037–11048. doi: 10.1021/bi00035a009. [DOI] [PubMed] [Google Scholar]
  9. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  10. Gebler J., Gilkes N. R., Claeyssens M., Wilson D. B., Béguin P., Wakarchuk W. W., Kilburn D. G., Miller R. C., Jr, Warren R. A., Withers S. G. Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J Biol Chem. 1992 Jun 25;267(18):12559–12561. [PubMed] [Google Scholar]
  11. Joshi M. D., Hedberg A., McIntosh L. P. Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Protein Sci. 1997 Dec;6(12):2667–2670. doi: 10.1002/pro.5560061224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaptein R., Slijper M., Boelens R. Structure and dynamics of the lac repressor-operator complex as determined by NMR. Toxicol Lett. 1995 Dec;82-83:591–599. doi: 10.1016/0378-4274(95)03586-9. [DOI] [PubMed] [Google Scholar]
  13. Kay L. E., Muhandiram D. R., Wolf G., Shoelson S. E., Forman-Kay J. D. Correlation between binding and dynamics at SH2 domain interfaces. Nat Struct Biol. 1998 Feb;5(2):156–163. doi: 10.1038/nsb0298-156. [DOI] [PubMed] [Google Scholar]
  14. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  15. Krengel U., Dijkstra B. W. Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol Biol. 1996 Oct 18;263(1):70–78. doi: 10.1006/jmbi.1996.0556. [DOI] [PubMed] [Google Scholar]
  16. Lawson S. L., Wakarchuk W. W., Withers S. G. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity. Biochemistry. 1996 Aug 6;35(31):10110–10118. doi: 10.1021/bi960586v. [DOI] [PubMed] [Google Scholar]
  17. Lawson S. L., Wakarchuk W. W., Withers S. G. Positioning the acid/base catalyst in a glycosidase: studies with Bacillus circulans xylanase. Biochemistry. 1997 Feb 25;36(8):2257–2265. doi: 10.1021/bi9620215. [DOI] [PubMed] [Google Scholar]
  18. Lee L. K., Rance M., Chazin W. J., Palmer A. G., 3rd Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J Biomol NMR. 1997 Apr;9(3):287–298. doi: 10.1023/a:1018631009583. [DOI] [PubMed] [Google Scholar]
  19. Mandel A. M., Akke M., Palmer A. G., 3rd Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol. 1995 Feb 10;246(1):144–163. doi: 10.1006/jmbi.1994.0073. [DOI] [PubMed] [Google Scholar]
  20. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  21. McIntosh L. P., Hand G., Johnson P. E., Joshi M. D., Körner M., Plesniak L. A., Ziser L., Wakarchuk W. W., Withers S. G. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. Biochemistry. 1996 Aug 6;35(31):9958–9966. doi: 10.1021/bi9613234. [DOI] [PubMed] [Google Scholar]
  22. Miao S., Ziser L., Aebersold R., Withers S. G. Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spectrometry. Biochemistry. 1994 Jun 14;33(23):7027–7032. doi: 10.1021/bi00189a002. [DOI] [PubMed] [Google Scholar]
  23. Notenboom V., Birsan C., Warren R. A., Withers S. G., Rose D. R. Exploring the cellulose/xylan specificity of the beta-1,4-glycanase cex from Cellulomonas fimi through crystallography and mutation. Biochemistry. 1998 Apr 7;37(14):4751–4758. doi: 10.1021/bi9729211. [DOI] [PubMed] [Google Scholar]
  24. Olejniczak E. T., Zhou M. M., Fesik S. W. Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 phosphotyrosine binding domain upon binding to an interleukin 4 receptor phosphopeptide. Biochemistry. 1997 Apr 8;36(14):4118–4124. doi: 10.1021/bi963050i. [DOI] [PubMed] [Google Scholar]
  25. Peng J. W., Wagner G. Investigation of protein motions via relaxation measurements. Methods Enzymol. 1994;239:563–596. doi: 10.1016/s0076-6879(94)39022-3. [DOI] [PubMed] [Google Scholar]
  26. Peng J. W., Wagner G. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry. 1992 Sep 15;31(36):8571–8586. doi: 10.1021/bi00151a027. [DOI] [PubMed] [Google Scholar]
  27. Plesniak L. A., Connelly G. P., Wakarchuk W. W., McIntosh L. P. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange. Protein Sci. 1996 Nov;5(11):2319–2328. doi: 10.1002/pro.5560051118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Plesniak L. A., Wakarchuk W. W., McIntosh L. P. Secondary structure and NMR assignments of Bacillus circulans xylanase. Protein Sci. 1996 Jun;5(6):1118–1135. doi: 10.1002/pro.5560050614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rischel C., Madsen J. C., Andersen K. V., Poulsen F. M. Comparison of backbone dynamics of apo- and holo-acyl-coenzyme A binding protein using 15N relaxation measurements. Biochemistry. 1994 Nov 29;33(47):13997–14002. doi: 10.1021/bi00251a006. [DOI] [PubMed] [Google Scholar]
  30. Schurr J. M., Babcock H. P., Fujimoto B. S. A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization. J Magn Reson B. 1994 Nov;105(3):211–224. doi: 10.1006/jmrb.1994.1127. [DOI] [PubMed] [Google Scholar]
  31. Sidhu G., Withers S. G., Nguyen N. T., McIntosh L. P., Ziser L., Brayer G. D. Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry. 1999 Apr 27;38(17):5346–5354. doi: 10.1021/bi982946f. [DOI] [PubMed] [Google Scholar]
  32. Stivers J. T., Abeygunawardana C., Mildvan A. S. 15N NMR relaxation studies of free and inhibitor-bound 4-oxalocrotonate tautomerase: backbone dynamics and entropy changes of an enzyme upon inhibitor binding. Biochemistry. 1996 Dec 17;35(50):16036–16047. doi: 10.1021/bi961834q. [DOI] [PubMed] [Google Scholar]
  33. Street I. P., Kempton J. B., Withers S. G. Inactivation of a beta-glucosidase through the accumulation of a stable 2-deoxy-2-fluoro-alpha-D-glucopyranosyl-enzyme intermediate: a detailed investigation. Biochemistry. 1992 Oct 20;31(41):9970–9978. doi: 10.1021/bi00156a016. [DOI] [PubMed] [Google Scholar]
  34. Törrönen A., Harkki A., Rouvinen J. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 1994 Jun 1;13(11):2493–2501. doi: 10.1002/j.1460-2075.1994.tb06536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Törrönen A., Rouvinen J. Structural and functional properties of low molecular weight endo-1,4-beta-xylanases. J Biotechnol. 1997 Sep 16;57(1-3):137–149. doi: 10.1016/s0168-1656(97)00095-3. [DOI] [PubMed] [Google Scholar]
  36. Törrönen A., Rouvinen J. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry. 1995 Jan 24;34(3):847–856. doi: 10.1021/bi00003a019. [DOI] [PubMed] [Google Scholar]
  37. Wakarchuk W. W., Campbell R. L., Sung W. L., Davoodi J., Yaguchi M. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 1994 Mar;3(3):467–475. doi: 10.1002/pro.5560030312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wakarchuk W. W., Sung W. L., Campbell R. L., Cunningham A., Watson D. C., Yaguchi M. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 1994 Nov;7(11):1379–1386. doi: 10.1093/protein/7.11.1379. [DOI] [PubMed] [Google Scholar]
  39. White A., Rose D. R. Mechanism of catalysis by retaining beta-glycosyl hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):645–651. doi: 10.1016/s0959-440x(97)80073-5. [DOI] [PubMed] [Google Scholar]
  40. White A., Tull D., Johns K., Withers S. G., Rose D. R. Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. Nat Struct Biol. 1996 Feb;3(2):149–154. doi: 10.1038/nsb0296-149. [DOI] [PubMed] [Google Scholar]
  41. Yao X., Soden C., Jr, Summers M. F., Beckett D. Comparison of the backbone dynamics of the apo- and holo-carboxy-terminal domain of the biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Protein Sci. 1999 Feb;8(2):307–317. doi: 10.1110/ps.8.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zink T., Ross A., Lüers K., Cieslar C., Rudolph R., Holak T. A. Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy. Loop mobility in a four-helix-bundle protein. Biochemistry. 1994 Jul 19;33(28):8453–8463. doi: 10.1021/bi00194a009. [DOI] [PubMed] [Google Scholar]
  43. Ziser L., Setyawati I., Withers S. G. Syntheses and testing of substrates and mechanism-based inactivators for xylanases. Carbohydr Res. 1995 Sep 8;274:137–153. doi: 10.1016/0008-6215(95)00080-d. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES