Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):1011–1023. doi: 10.1110/ps.9.5.1011

Nonpolar contributions to conformational specificity in assemblies of designed short helical peptides.

C L Boon 1, A Chakrabartty 1
PMCID: PMC2144635  PMID: 10850811

Abstract

A series of designed short helical peptides was used to study the effect of nonpolar interactions on conformational specificity. The consensus sequence was designed to obtain short helices (17 residues) and to minimize the presence of interhelical polar interactions. Furthermore, the sequence contained a heptad repeat (abcdefg), where positions a and d were occupied by hydrophobic residues Leu, Ile, or Val, and positions e and g were occupied by Ala. The peptides were named according to the identities of the residues in the adeg positions, respectively. The peptides llaa, liaa, ilaa, iiaa, ivaa, viaa, lvaa, vlaa, and vvaa were synthesized, and their characterization revealed marked differences in specificity. An experimental methodology was developed to study the nine peptides and their pairwise mixtures. These peptides and their mixtures formed a vast array of structural states, which may be classified as follows: helical tetramers and pentamers, soluble and insoluble helical aggregates, insoluble unstructured aggregates, and soluble unstructured monomers. The peptide liaa formed stable helical pentamers, and iiaa and vlaa formed stable helical tetramers. Disulfide cross-linking experiments indicated the presence of an antiparallel helix alignment in the helical pentamers and tetramers. Rates of amide proton exchange of the tetrameric form of vlaa were 10-fold slower than the calculated exchange rate for unfolded vlaa. In other work, the control of specificity has been attributed to polar interactions, especially buried polar interactions; this work demonstrated that subtle changes in the configuration of nonpolar interactions resulted in a large variation in the extent of conformational specificity of assemblies of designed short helical peptides. Thus, nonpolar interactions can have a significant effect on the conformational specificity of oligomeric short helices.

Full Text

The Full Text of this article is available as a PDF (532.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armand P., Kirshenbaum K., Goldsmith R. A., Farr-Jones S., Barron A. E., Truong K. T., Dill K. A., Mierke D. F., Cohen F. E., Zuckermann R. N. NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4309–4314. doi: 10.1073/pnas.95.8.4309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandts J. F., Kaplan L. J. Derivative sspectroscopy applied to tyrosyl chromophores. Studies on ribonuclease, lima bean inhibitors, insulin, and pancreatic trypsin inhibitor. Biochemistry. 1973 May 8;12(10):2011–2024. doi: 10.1021/bi00734a027. [DOI] [PubMed] [Google Scholar]
  4. Chakrabartty A., Baldwin R. L. Stability of alpha-helices. Adv Protein Chem. 1995;46:141–176. [PubMed] [Google Scholar]
  5. Chakrabartty A., Kortemme T., Padmanabhan S., Baldwin R. L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry. 1993 Jun 1;32(21):5560–5565. doi: 10.1021/bi00072a010. [DOI] [PubMed] [Google Scholar]
  6. Cohen C., Parry D. A. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins. 1990;7(1):1–15. doi: 10.1002/prot.340070102. [DOI] [PubMed] [Google Scholar]
  7. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  9. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez L., Jr, Woolfson D. N., Alber T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol. 1996 Dec;3(12):1011–1018. doi: 10.1038/nsb1296-1011. [DOI] [PubMed] [Google Scholar]
  11. Handel T. M., Williams S. A., DeGrado W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science. 1993 Aug 13;261(5123):879–885. doi: 10.1126/science.8346440. [DOI] [PubMed] [Google Scholar]
  12. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  13. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  14. Kitakuni E., Kuroda Y., Oobatake M., Tanaka T., Nakamura H. Thermodynamic characterization of an artificially designed amphiphilic alpha-helical peptide containing periodic prolines: observations of high thermal stability and cold denaturation. Protein Sci. 1994 May;3(5):831–837. doi: 10.1002/pro.5560030512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kohn W. D., Kay C. M., Hodges R. S. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper. Protein Sci. 1995 Feb;4(2):237–250. doi: 10.1002/pro.5560040210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  17. Lovejoy B., Choe S., Cascio D., McRorie D. K., DeGrado W. F., Eisenberg D. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science. 1993 Feb 26;259(5099):1288–1293. doi: 10.1126/science.8446897. [DOI] [PubMed] [Google Scholar]
  18. Lumb K. J., Carr C. M., Kim P. S. Subdomain folding of the coiled coil leucine zipper from the bZIP transcriptional activator GCN4. Biochemistry. 1994 Jun 14;33(23):7361–7367. doi: 10.1021/bi00189a042. [DOI] [PubMed] [Google Scholar]
  19. Lumb K. J., Kim P. S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry. 1995 Jul 11;34(27):8642–8648. doi: 10.1021/bi00027a013. [DOI] [PubMed] [Google Scholar]
  20. Malashkevich V. N., Kammerer R. A., Efimov V. P., Schulthess T., Engel J. The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel? Science. 1996 Nov 1;274(5288):761–765. doi: 10.1126/science.274.5288.761. [DOI] [PubMed] [Google Scholar]
  21. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Monera O. D., Zhou N. E., Kay C. M., Hodges R. S. Comparison of antiparallel and parallel two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization. J Biol Chem. 1993 Sep 15;268(26):19218–19227. [PubMed] [Google Scholar]
  23. Munson M., Balasubramanian S., Fleming K. G., Nagi A. D., O'Brien R., Sturtevant J. M., Regan L. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Sci. 1996 Aug;5(8):1584–1593. doi: 10.1002/pro.5560050813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nautiyal S., Alber T. Crystal structure of a designed, thermostable, heterotrimeric coiled coil. Protein Sci. 1999 Jan;8(1):84–90. doi: 10.1110/ps.8.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nautiyal S., Woolfson D. N., King D. S., Alber T. A designed heterotrimeric coiled coil. Biochemistry. 1995 Sep 19;34(37):11645–11651. doi: 10.1021/bi00037a001. [DOI] [PubMed] [Google Scholar]
  26. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  27. O'Shea E. K., Lumb K. J., Kim P. S. Peptide 'Velcro': design of a heterodimeric coiled coil. Curr Biol. 1993 Oct 1;3(10):658–667. doi: 10.1016/0960-9822(93)90063-t. [DOI] [PubMed] [Google Scholar]
  28. O'Shea E. K., Rutkowski R., Stafford W. F., 3rd, Kim P. S. Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science. 1989 Aug 11;245(4918):646–648. doi: 10.1126/science.2503872. [DOI] [PubMed] [Google Scholar]
  29. Oakley M. G., Kim P. S. Protein dissection of the antiparallel coiled coil from Escherichia coli seryl tRNA synthetase. Biochemistry. 1997 Mar 4;36(9):2544–2549. doi: 10.1021/bi962391t. [DOI] [PubMed] [Google Scholar]
  30. Ogihara N. L., Weiss M. S., Degrado W. F., Eisenberg D. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci. 1997 Jan;6(1):80–88. doi: 10.1002/pro.5560060109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Opella S. J., Marassi F. M., Gesell J. J., Valente A. P., Kim Y., Oblatt-Montal M., Montal M. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol. 1999 Apr;6(4):374–379. doi: 10.1038/7610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Privé G. G., Anderson D. H., Wesson L., Cascio D., Eisenberg D. Packed protein bilayers in the 0.90 A resolution structure of a designed alpha helical bundle. Protein Sci. 1999 Jul;8(7):1400–1409. doi: 10.1110/ps.8.7.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  34. Schafmeister C. E., Miercke L. J., Stroud R. M. Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. Science. 1993 Oct 29;262(5134):734–738. doi: 10.1126/science.8235592. [DOI] [PubMed] [Google Scholar]
  35. Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
  36. Simmerman H. K., Kobayashi Y. M., Autry J. M., Jones L. R. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem. 1996 Mar 8;271(10):5941–5946. doi: 10.1074/jbc.271.10.5941. [DOI] [PubMed] [Google Scholar]
  37. Stein P. E., Boodhoo A., Tyrrell G. J., Brunton J. L., Read R. J. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature. 1992 Feb 20;355(6362):748–750. doi: 10.1038/355748a0. [DOI] [PubMed] [Google Scholar]
  38. Taylor K. S., Lou M. Z., Chin T. M., Yang N. C., Garavito R. M. A novel, multilayer structure of a helical peptide. Protein Sci. 1996 Mar;5(3):414–421. doi: 10.1002/pro.5560050302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walsh S. T., Cheng H., Bryson J. W., Roder H., DeGrado W. F. Solution structure and dynamics of a de novo designed three-helix bundle protein. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5486–5491. doi: 10.1073/pnas.96.10.5486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zeng X., Zhu H., Lashuel H. A., Hu J. C. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci. 1997 Oct;6(10):2218–2226. doi: 10.1002/pro.5560061016. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES