Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1177–1193. doi: 10.1110/ps.9.6.1177

The role of backbone conformational heat capacity in protein stability: temperature dependent dynamics of the B1 domain of Streptococcal protein G.

M J Seewald 1, K Pichumani 1, C Stowell 1, B V Tibbals 1, L Regan 1, M J Stone 1
PMCID: PMC2144655  PMID: 10892810

Abstract

The contributions of backbone NH group dynamics to the conformational heat capacity of the B1 domain of Streptococcal protein G have been estimated from the temperature dependence of 15N NMR-derived order parameters. Longitudinal (R1) and transverse (R2) relaxation rates, transverse cross-relaxation rates (eta(xy)), and steady state [1H]-15N nuclear Overhauser effects were measured at temperatures of 0, 10, 20, 30, 40, and 50 degrees C for 89-100% of the backbone secondary amide nitrogen nuclei in the B1 domain. The ratio R2/eta(xy) was used to identify nuclei for which conformational exchange makes a significant contribution to R2. Relaxation data were fit to the extended model-free dynamics formalism, incorporating an axially symmetric molecular rotational diffusion tensor. The temperature dependence of the order parameter (S2) was used to calculate the contribution of each NH group to conformational heat capacity (Cp) and a characteristic temperature (T*), representing the density of conformational energy states accessible to each NH group. The heat capacities of the secondary structure regions of the B1 domain are significantly higher than those of comparable regions of other proteins, whereas the heat capacities of less structured regions are similar to those in other proteins. The higher local heat capacities are estimated to contribute up to approximately 0.8 kJ/mol K to the total heat capacity of the B1 domain, without which the denaturation temperature would be approximately 9 degrees C lower (78 degrees C rather than 87 degrees C). Thus, variation of backbone conformational heat capacity of native proteins may be a novel mechanism that contributes to high temperature stabilization of proteins.

Full Text

The Full Text of this article is available as a PDF (836.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achari A., Hale S. P., Howard A. J., Clore G. M., Gronenborn A. M., Hardman K. D., Whitlow M. 1.67-A X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Biochemistry. 1992 Nov 3;31(43):10449–10457. doi: 10.1021/bi00158a006. [DOI] [PubMed] [Google Scholar]
  2. Akerström B., Brodin T., Reis K., Björck L. Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies. J Immunol. 1985 Oct;135(4):2589–2592. [PubMed] [Google Scholar]
  3. Akke M., Liu J., Cavanagh J., Erickson H. P., Palmer A. G., 3rd Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain. Nat Struct Biol. 1998 Jan;5(1):55–59. doi: 10.1038/nsb0198-55. [DOI] [PubMed] [Google Scholar]
  4. Akke M., Skelton N. J., Kördel J., Palmer A. G., 3rd, Chazin W. J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993 Sep 21;32(37):9832–9844. doi: 10.1021/bi00088a039. [DOI] [PubMed] [Google Scholar]
  5. Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
  6. Alexander P., Orban J., Bryan P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry. 1992 Aug 18;31(32):7243–7248. doi: 10.1021/bi00147a006. [DOI] [PubMed] [Google Scholar]
  7. Barbato G., Ikura M., Kay L. E., Pastor R. W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992 Jun 16;31(23):5269–5278. doi: 10.1021/bi00138a005. [DOI] [PubMed] [Google Scholar]
  8. Barchi J. J., Jr, Grasberger B., Gronenborn A. M., Clore G. M. Investigation of the backbone dynamics of the IgG-binding domain of streptococcal protein G by heteronuclear two-dimensional 1H-15N nuclear magnetic resonance spectroscopy. Protein Sci. 1994 Jan;3(1):15–21. doi: 10.1002/pro.5560030103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bhattacharya S., Falzone C. J., Lecomte J. T. Backbone dynamics of apocytochrome b5 in its native, partially folded state. Biochemistry. 1999 Feb 23;38(8):2577–2589. doi: 10.1021/bi982316d. [DOI] [PubMed] [Google Scholar]
  10. Björck L., Kronvall G. Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol. 1984 Aug;133(2):969–974. [PubMed] [Google Scholar]
  11. Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
  12. Bracken C., Carr P. A., Cavanagh J., Palmer A. G., 3rd Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J Mol Biol. 1999 Feb 5;285(5):2133–2146. doi: 10.1006/jmbi.1998.2429. [DOI] [PubMed] [Google Scholar]
  13. Clore G. M., Driscoll P. C., Wingfield P. T., Gronenborn A. M. Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 Aug 14;29(32):7387–7401. doi: 10.1021/bi00484a006. [DOI] [PubMed] [Google Scholar]
  14. Cowan D. A. Thermophilic proteins: stability and function in aqueous and organic solvents. Comp Biochem Physiol A Physiol. 1997 Nov;118(3):429–438. doi: 10.1016/s0300-9629(97)00004-2. [DOI] [PubMed] [Google Scholar]
  15. Dahiyat B. I., Mayo S. L. Probing the role of packing specificity in protein design. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10172–10177. doi: 10.1073/pnas.94.19.10172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Daniel R. M., Dines M., Petach H. H. The denaturation and degradation of stable enzymes at high temperatures. Biochem J. 1996 Jul 1;317(Pt 1):1–11. doi: 10.1042/bj3170001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Evenäs J., Forsén S., Malmendal A., Akke M. Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations. J Mol Biol. 1999 Jun 11;289(3):603–617. doi: 10.1006/jmbi.1999.2770. [DOI] [PubMed] [Google Scholar]
  18. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  19. Farrow N. A., Zhang O., Forman-Kay J. D., Kay L. E. Characterization of the backbone dynamics of folded and denatured states of an SH3 domain. Biochemistry. 1997 Mar 4;36(9):2390–2402. doi: 10.1021/bi962548h. [DOI] [PubMed] [Google Scholar]
  20. Farrow N. A., Zhang O., Szabo A., Torchia D. A., Kay L. E. Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR. 1995 Sep;6(2):153–162. doi: 10.1007/BF00211779. [DOI] [PubMed] [Google Scholar]
  21. Frank M. K., Clore G. M., Gronenborn A. M. Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal protein G by multidimensional heteronuclear NMR spectroscopy. Protein Sci. 1995 Dec;4(12):2605–2615. doi: 10.1002/pro.5560041218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
  23. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  24. Gronenborn A. M., Frank M. K., Clore G. M. Core mutants of the immunoglobulin binding domain of streptococcal protein G: stability and structural integrity. FEBS Lett. 1996 Dec 2;398(2-3):312–316. doi: 10.1016/s0014-5793(96)01262-8. [DOI] [PubMed] [Google Scholar]
  25. Gómez J., Hilser V. J., Xie D., Freire E. The heat capacity of proteins. Proteins. 1995 Aug;22(4):404–412. doi: 10.1002/prot.340220410. [DOI] [PubMed] [Google Scholar]
  26. Hollien J., Marqusee S. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H. Biochemistry. 1999 Mar 23;38(12):3831–3836. doi: 10.1021/bi982684h. [DOI] [PubMed] [Google Scholar]
  27. Jaenicke R. Glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: strategies of protein stabilization. FEMS Microbiol Rev. 1996 May;18(2-3):215–224. doi: 10.1111/j.1574-6976.1996.tb00238.x. [DOI] [PubMed] [Google Scholar]
  28. Jin C., Liao X. Backbone dynamics of a winged helix protein and its DNA complex at different temperatures: changes of internal motions in genesis upon binding to DNA. J Mol Biol. 1999 Sep 24;292(3):641–651. doi: 10.1006/jmbi.1999.3106. [DOI] [PubMed] [Google Scholar]
  29. Jin D., Andrec M., Montelione G. T., Levy R. M. Propagation of experimental uncertainties using the Lipari-Szabo model-free analysis of protein dynamics. J Biomol NMR. 1998 Nov;12(4):471–492. doi: 10.1023/a:1008313319334. [DOI] [PubMed] [Google Scholar]
  30. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  31. Kobayashi N., Honda S., Yoshii H., Uedaira H., Munekata E. Complement assembly of two fragments of the streptococcal protein G B1 domain in aqueous solution. FEBS Lett. 1995 Jun 12;366(2-3):99–103. doi: 10.1016/0014-5793(95)00503-2. [DOI] [PubMed] [Google Scholar]
  32. Kuszewski J., Clore G. M., Gronenborn A. M. Fast folding of a prototypic polypeptide: the immunoglobulin binding domain of streptococcal protein G. Protein Sci. 1994 Nov;3(11):1945–1952. doi: 10.1002/pro.5560031106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Li Z., Raychaudhuri S., Wand A. J. Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci. 1996 Dec;5(12):2647–2650. doi: 10.1002/pro.5560051228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J. 1980 Jun;30(3):489–506. doi: 10.1016/S0006-3495(80)85109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mandel A. M., Akke M., Palmer A. G., 3rd Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol. 1995 Feb 10;246(1):144–163. doi: 10.1006/jmbi.1994.0073. [DOI] [PubMed] [Google Scholar]
  36. Mandel A. M., Akke M., Palmer A. G., 3rd Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales. Biochemistry. 1996 Dec 17;35(50):16009–16023. doi: 10.1021/bi962089k. [DOI] [PubMed] [Google Scholar]
  37. Meekhof A. E., Freund S. M. Probing residual structure and backbone dynamics on the milli- to picosecond timescale in a urea-denatured fibronectin type III domain. J Mol Biol. 1999 Feb 19;286(2):579–592. doi: 10.1006/jmbi.1998.2479. [DOI] [PubMed] [Google Scholar]
  38. Milne J. S., Mayne L., Roder H., Wand A. J., Englander S. W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 1998 Mar;7(3):739–745. doi: 10.1002/pro.5560070323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  40. Minor D. L., Jr, Kim P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature. 1996 Apr 25;380(6576):730–734. doi: 10.1038/380730a0. [DOI] [PubMed] [Google Scholar]
  41. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  42. O'Neil K. T., Hoess R. H., Raleigh D. P., DeGrado W. F. Thermodynamic genetics of the folding of the B1 immunoglobulin-binding domain from streptococcal protein G. Proteins. 1995 Jan;21(1):11–21. doi: 10.1002/prot.340210103. [DOI] [PubMed] [Google Scholar]
  43. Orban J., Alexander P., Bryan P. Hydrogen-deuterium exchange in the free and immunoglobulin G-bound protein G B-domain. Biochemistry. 1994 May 17;33(19):5702–5710. doi: 10.1021/bi00185a006. [DOI] [PubMed] [Google Scholar]
  44. Orban J., Alexander P., Bryan P., Khare D. Assessment of stability differences in the protein G B1 and B2 domains from hydrogen-deuterium exchange: comparison with calorimetric data. Biochemistry. 1995 Nov 21;34(46):15291–15300. doi: 10.1021/bi00046a038. [DOI] [PubMed] [Google Scholar]
  45. Park S. H., O'Neil K. T., Roder H. An early intermediate in the folding reaction of the B1 domain of protein G contains a native-like core. Biochemistry. 1997 Nov 25;36(47):14277–14283. doi: 10.1021/bi971914+. [DOI] [PubMed] [Google Scholar]
  46. Peng J. W., Wagner G. Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry. 1995 Dec 26;34(51):16733–16752. doi: 10.1021/bi00051a023. [DOI] [PubMed] [Google Scholar]
  47. Rice D. W., Yip K. S., Stillman T. J., Britton K. L., Fuentes A., Connerton I., Pasquo A., Scandura R., Engel P. C. Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase. FEMS Microbiol Rev. 1996 May;18(2-3):105–117. doi: 10.1111/j.1574-6976.1996.tb00230.x. [DOI] [PubMed] [Google Scholar]
  48. Sheinerman F. B., Brooks C. L., 3rd Calculations on folding of segment B1 of streptococcal protein G. J Mol Biol. 1998 May 1;278(2):439–456. doi: 10.1006/jmbi.1998.1688. [DOI] [PubMed] [Google Scholar]
  49. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  50. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  51. Stivers J. T., Abeygunawardana C., Mildvan A. S. 15N NMR relaxation studies of free and inhibitor-bound 4-oxalocrotonate tautomerase: backbone dynamics and entropy changes of an enzyme upon inhibitor binding. Biochemistry. 1996 Dec 17;35(50):16036–16047. doi: 10.1021/bi961834q. [DOI] [PubMed] [Google Scholar]
  52. Stone M. J., Chandrasekhar K., Holmgren A., Wright P. E., Dyson H. J. Comparison of backbone and tryptophan side-chain dynamics of reduced and oxidized Escherichia coli thioredoxin using 15N NMR relaxation measurements. Biochemistry. 1993 Jan 19;32(2):426–435. doi: 10.1021/bi00053a007. [DOI] [PubMed] [Google Scholar]
  53. Stone M. J., Fairbrother W. J., Palmer A. G., 3rd, Reizer J., Saier M. H., Jr, Wright P. E. Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry. 1992 May 12;31(18):4394–4406. doi: 10.1021/bi00133a003. [DOI] [PubMed] [Google Scholar]
  54. Stone M. J., Ruf W., Miles D. J., Edgington T. S., Wright P. E. Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization. Biochem J. 1995 Sep 1;310(Pt 2):605–614. doi: 10.1042/bj3100605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Szyperski T., Luginbühl P., Otting G., Güntert P., Wüthrich K. Protein dynamics studied by rotating frame 15N spin relaxation times. J Biomol NMR. 1993 Mar;3(2):151–164. doi: 10.1007/BF00178259. [DOI] [PubMed] [Google Scholar]
  56. Wagner G., Wüthrich K. Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. J Mol Biol. 1979 May 5;130(1):31–37. doi: 10.1016/0022-2836(79)90550-3. [DOI] [PubMed] [Google Scholar]
  57. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  58. Yang D., Kay L. E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol. 1996 Oct 25;263(2):369–382. doi: 10.1006/jmbi.1996.0581. [DOI] [PubMed] [Google Scholar]
  59. Yang D., Mok Y. K., Forman-Kay J. D., Farrow N. A., Kay L. E. Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation. J Mol Biol. 1997 Oct 10;272(5):790–804. doi: 10.1006/jmbi.1997.1285. [DOI] [PubMed] [Google Scholar]
  60. Yu L., Zhu C. X., Tse-Dinh Y. C., Fesik S. W. Backbone dynamics of the C-terminal domain of Escherichia coli topoisomerase I in the absence and presence of single-stranded DNA. Biochemistry. 1996 Jul 30;35(30):9661–9666. doi: 10.1021/bi960507f. [DOI] [PubMed] [Google Scholar]
  61. Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]
  62. Zídek L., Novotny M. V., Stone M. J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol. 1999 Dec;6(12):1118–1121. doi: 10.1038/70057. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES