
Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 10026–10031, August 1998
Genetics

Self-identification of protein-coding regions in microbial genomes
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ABSTRACT A new method for predicting protein-coding
regions in microbial genomic DNA sequences is presented. It
uses an ab initio iterative Markov modeling procedure to
automatically perform the partition of genomic sequences into
three subsets shown to correspond to coding, coding on the
opposite strand, and noncoding segments. In contrast to
current methods, such as GENEMARK [Borodovsky, M. &
McIninch, J. D. (1993) Comput. Chem. 17, 123–133], no
training set or prior knowledge of the statistical properties of
the studied genome are required. This new method tolerates
error rates of 1–2% and can process unassembled sequences.
It is thus ideal for the analysis of genome survey andyor
fragmented sequence data from uncharacterized microorgan-
isms. The method was validated on 10 complete bacterial
genomes (from four major phylogenetic lineages). The results
show that protein-coding regions can be identified with an
accuracy of up to 90% with a totally automated and objective
procedure.

The complete genome sequencing of Haemophilus influenzae
(1) initiated a tremendous interest in bacterial genomics. At
the end of 1997, 11 complete bacterial genomes had been
published (1–11). In the meantime, the first eukaryote genome
had also been completed (12), allowing global genomic studies
between five major phylogenetic lineages (13). Venter’s group
developed the now-popular direct shotgun approach (1) for the
complete sequencing of megabase-sized genomes. An essential
feature of this strategy is that no prior knowledge of the
genome is required. As a consequence, most of the numerous
genomes (more than 40) targeted for sequencing in the near
future (see The Institute for Genomic Research microbial
database at: http:yywww.tigr.orgytdbymdbymdb.html) corre-
spond to relatively uncharacterized microorganism species. In
particular, the public databases do not contain any protein-
coding gene sequences for most of these organisms.

In contrast, all current computer methods for locating genes
require some prior knowledge of the sequence statistical
properties (such as codon usage, positional preference, etc.,
see review in ref. 14) that have to be estimated from previously
identified protein-coding genes of the microorganism. For
instance, GENEMARK (15, 16), the most popular program today,
requires a sizable training set for estimating the numerous
parameters of a nonhomogeneous seven-state Markov model
of up to order 4. Although a general method derived from basic
principles would have obvious advantages, training set- based
methods presently dominate the field of gene identification
(17). Those methods are inherently conservative. Once trained
and optimized on a set of “typical” genes, these programs tend
to be successful at only detecting more of the same. Further-
more, training set-dependent programs may also perpetuate
biases unknowingly introduced in the original data set. The
main goal of complete genome sequencing, i.e., an exhaustive

gene annotation eventually leading to the discovery of sur-
prising and atypical features, thus is not well served by this type
of approach. In addition, the fundamental interest in trying to
decipher the genomic information in an objective way is also
to identify the truly universal and biologically significant
signals, transcending the peculiarities of any given organism.
For the same reason, it is desirable to avoid the use of too many
adjustable parameters and empirical thresholds, a weakness of
current gene-recognition programs.

Typical bacterial genes correspond to ORFs spanning an
average of 950 nt. Because ORFs longer than 300 nt are very
unlikely to occur by chance (18), most coding regions can be
located within an assembled genomic sequence by simply
sieving on ORF size. However, there is an increasing demand
for a new method capable of identifying most coding regions
in the context of inexpensive genome survey projects [1- to
2-fold redundancy shotgun sequencing (19)]. The challenge
then becomes to analyze sequence data distributed between a
multitude of small islands of one or two individual gel readings
with a typical 1–2% error rate.

The original method presented here predicts coding regions
without learning species-specific features from an arbitrary
training set. Its accuracy is comparable to the popular program
GENEMARK (15). In addition, our method can work on totally
unassembled sequence data and tolerate a simulated error rate
of 1–2%. Finally, the method involves only two parameters (a
window size, w, and a Markov chain order, k), the optimal
values of which are fixed once and do not depend on the
bacterial genome being analyzed. The method has been suc-
cessfully tested on 10 complete genomes, including species
from the four major phylogenetic lineages (Gram-negative,
Gram-positive, cyanobacteria, archebacteria). Given the dif-
ferences (in size, composition, G1C content, etc.) in the
properties of those genomes, it is likely that the method will
work equally well on any of the bacteria to be studied in the
future.

METHODS

Homogeneous Markov Modeling. The procedure starts from
an initial data set consisting of all the genomic sequences
available for a given organism. It could be a complete and fully
assembled sequence, a number of large contigs, or the many
disjoined sequence fragments resulting from a low-redundancy
shotgun sequencing project. The driving principle of our
algorithm is to regroup similar sequences into the same
categories. However, unlike most clusteringypartition proce-
dures used in sequence analysis, our approach does not involve
pairwise comparisons. Instead, the sequences will be distrib-
uted between N classes on the basis of their best match to N
homogeneous Markov models. Markov chains often have been
used to model DNA sequences (see, for instance, refs. 20–23).
Given a word of length k (the order of the Markov chain), a
Markov transition matrix consists of all the probabilities for
any of the possible k words (4k of them) to be followed by oneThe publication costs of this article were defrayed in part by page charge
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of nucleotides A, C, G, or T. The probability for a specific DNA
sequence W of length L to be emitted by a given Markov
transition matrix M is given by:

P~WuM! 5 P~s0!z P
i5k

i5L21

P~niusi2k!, [1]

where si is the word of length k starting at position i in the
sequence W, and ni is the nucleotide occurring at position i.

Markov models traditionally are used in sequence analysis
for the purpose of mapping distinct (nonoverlapping), func-
tional domains (codingynoncoding regions, promoters, etc.).
In this context, several Markov transition matrices are used,
one for each of the domains to be recognized. Among N
competing Markov models, the problem is now to determine
which one is the most likely to have emitted a given input
sequence. This is done by inverting Eq. 1 using Bayes’ theorem:

P~MjuW! 5
P~WuMj!P~Mj!

O
r51,2,. . .,N

P~WuMr!P~Mr!
, [2]

where P(Mj) is the probability of the matrix Mj to correspond
to any sequence before input. In the following, the N classes
have been taken as a priori equiprobable; that is, P(Mj) 5 1yN.
We can now use Eq. 2 to classify (or partition) any new input
sequence into the best matching of the N functional categories.
For the specific purpose of identifying protein-coding regions
in bacterial genomic sequences, a natural number of nonover-
lapping classes is n 5 3, corresponding to sequence regions (i)
coding on the direct strand, (ii) coding on the complementary
strand (reverse coding), and (iii) noncoding sequences. Three
distinct, homogeneous Markov models then will be used (i.e.,
n 5 3 in Eq. 2) for which we now have to build three transition
matrices. It is usually at this stage that the notion of ‘‘training
sets’’ would come into play. Classically, sequences previously
known to belong to one of the three classes would be collected
in three training subsets, and the three Markov transition
matrices would be computed from their respective, hopefully
different, statistical properties. Here, we want to show that an
alternative procedure is possible, leading to a fully objective
way of analyzing bacterial genomes in the absence of any prior
functional (or database similarity) information. To avoid the
use of training sets, the task of annotating the sequence will be
treated as a more abstract, optimal partition problem. A
concept of ‘‘similarity’’ between objects is required to regroup
them into different classes. Here, two sequence segments will
be considered ‘‘similar’’ (denoted ‘‘'’’) and as belonging to the
same j class, if they are best recognized (on average, over a
minimal window length w) by the same transition matrix Mj:
W1 ' W2 if both P(MjuW1) and P(MjuW2) are maximal.

The Markov model Mj of the j class then will be computed
from the statistical features of the subset of j-type sequences.
Indeed, this definition is self-referential and, at first, does not
alleviate the need for three training sequence subsets corre-
sponding to the j (j 5 1, 2, 3) classes. However, we used a simple
iterative procedure to overcome this problem. The whole data
set of genomic sequence (assembled or not) first was randomly
cut into nonoverlapping pieces w nucleotides in length (with w
> 100, see below). These pieces then are randomly distributed
between three distinct subsets, from which three initial
Markov transition matrices are built. The genomic sequence
data then are scanned by using a sliding window of w nucle-
otides. Within each window, the most likely emitter (M1, M2,
or M3) was determined according to Eq. 2. The window is then
shifted over five positions, and the process is repeated. A
decision about the classification of the current sequence
segment occurs when two successive windows cease to be
associated with the same Mj transition matrix. If the same Mj
has been called for n (or more) successive windows (such as

5n $ w), the largest, locally j-consistent segment (from the
middle point of the first window to the middle point of the last
consistent one) is collected into the j data set. Otherwise, the
current sequence segment remains unclassified. Requiring the
same Markov transition matrix to be the best match over the
entire window length alleviates the need for an arbitrary
probability threshold. After completion of the analysis of the
whole genomic sequence data, three new Markov transition
matrices are built from each of the three data sets, and the
procedure is reiterated. Convergence is reached when the size
(and content) of each of the j data sets does not vary
significantly (,0.5%) from one iteration to the next.

This simple algorithm exhibited two essential features. First,
convergence was obtained quite rapidly, usually after 50
iterations or less (Fig. 1). Second, from any initial random
partitioning of the data, the procedure kept converging to the
same Markov transition matrices and j data set content. This
suggested that the three classes defined by the algorithms could
have a functional interpretation. To proceed from the abstract
three-way partition performed by the iterative algorithm to the
practical assignment of the three classes as ‘‘coding,’’ ‘‘reverse
coding,’’ or ‘‘noncoding’’ requires a supplementary step es-
tablishing the correct functional correspondence. A possible
approach might consist of searching for similarities between
known protein sequences and the content of the three data
sets. The data set corresponding to the noncoding sequences
should exhibit the fewest protein similarities, whereas the
orientation of the matches from the two other data sets will
indicate which one corresponds to the coding (direct strand
matches) or reverse-coding (opposite strand matches) regions.
The next section describes a better approach, in which the
functional assignment of the three classes of sequences is
performed without using prior information and is combined
with a significant refinement of the original partition.

Inhomogeneous Markov Model Refinement. The functional
attributes (coding, reverse coding, and noncoding) are deter-
mined as follows. For each of the three data sets obtained after
convergence of the homogeneous Markov modeling, the frac-
tion of sequences totally open in reading frames 1, 2, 3, and 21,
22, 23 is computed. The data set for which the fraction of
totally open sequences on the direct (respectively opposite)
strand is maximal then is equated to the ‘‘coding’’ (respectively
‘‘reverse coding’’) class. The remaining data set is equated to
the noncoding class. The assignment of functional classes thus
is done objectively, without using protein similarity. The only
information needed at this point is the proper genetic code to
apply.

Once the coding, reverse coding, and noncoding sequence
subsets are identified, they can be optimized according to a
theoretical framework well established by Borodovsky and
McIninch (15) and implemented in the popular GENEMARK
program (15, 16). Briefly, seven Markov transition matrices
are built, three for capturing the phase-dependent (in frame,
in frame 11, in frame 12) statistical regularities of coding
regions, three for capturing the phase-dependent statistical
regularities of reverse coding (also referred to as ‘‘shadow’’)
regions, and one for modeling noncoding regions. The con-
struction of these matrices from sets of examples has been
described previously in detail (15, 16). It is referred to as
‘‘inhomogeneous Markov modeling,’’ to emphasize that dif-
ferent transition matrices M1, M2, and M3 (or M21, M22, or
M23) have to be used in a proper phase-dependent context to
properly model the coding and reverse-coding regions.

The iterative procedure that we described above using
three homogeneous Markov transitions matrices can now be
extended as follows. From the data sets assigned to the
coding and reverse-coding classes we extracted the se-
quences containing a single totally opened ORF. Alterna-
tively, the presence of statistically significant ORFs (i.e.,
.300 nt) can be used. These unambiguous ORFs then were
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used to compute the starting set of transition matrices M1,
M2, and M3. Matrices M21, M22, and M23 were computed
similarly from unambiguous ORFs from the reverse-coding
class. The noncoding transition matrix M7 was computed
from all sequences of the noncoding class. These seven
matrices were then used to reanalyze the original genomic
data, using a window of w nucleotides, according to the
inhomogeneous (i.e., phase-dependent) Markov model pro-
cedure. The analysis was repeated after sliding the window
over six positions. For a sequence segment to be classified in
the j class (Mj being the most likely emitter, starting at
position 1), we required the Mj Markov model to be consis-
tently verified over n (or more) successive windows (now
chosen such as 6n $ w, for an easy implementation of the
phase-dependent Markov analysis). The locally j-consistent
segment then is collected into the j data set (e.g., coding
region in phase j, or noncoding region). As before, segments
failing the consistency test were left unclassified. The anal-
ysis of the input sequence then resumed with a new analysis
window shifted over six positions. Upon completion of the
genomic data scan, the data sets corresponding to the three
coding classes are used to compute the next set of M1, M2,
and M3 transition matrices. The data sets corresponding to
the three reverse-coding classes are used similarly to com-
pute the M21, M22, and M23 matrices. The noncoding
transition matrix also is actualized. As before, the iteration
is finally ended when the content of the seven data sets

becomes stable. Again, the convergence was fast (less than
50 iterations) for the 10 bacterial genomes tested (Table 2).

RESULTS

The Three-Class Homogeneous Markov Partition Identifies
Protein-Coding Regions. Table 1 summarizes the result of the
partition of the H. pylori (Gram-negative eubacteria, 1.67 Mb)
and M. jannaschii (anaerobic archebacteria, 1.67 Mb) genome
sequences using the ab initio homogeneous Markov modeling
(k 5 5, w 5 100) without further refinement. Upon conver-
gence, 82% and 84% of the total nucleotides of H. pylori and
M. jannaschii are respectively distributed between three data
sets (DB1, DB2, DB3) corresponding to the sequence seg-
ments with a consistent best match to the three Markov
transition matrices built by the procedure. The association
between a data set and a coding status is a priori unknown and
varies from one experiment to the next. The correlation
between the abstract partition in three classes and the coding,
reverse coding, and noncoding functional classes was com-
puted by reference to GenBank (24) annotations. In Table 1,
the iteration for H. pylori mostly collected coding segments
(95%) in the DB1 data sets and reverse-coding segments
(94%) in DB3. For M. jannaschii, the iteration shown collected
coding segments (93%) in DB3 and reverse-coding segments
(93%) in DB1. The cross-contamination between coding re-
gions in opposite orientation is very small. Starting from an
initial window size of 100 nt, the final average lengths of the

FIG. 1. Convergence of the iterative homogeneous Markov modeling. The numbers of nucleotides correctly assigned as ‘‘coding’’ or ‘‘reverse
coding’’ are plotted to follow the convergence of the iterative procedure. (A) Influence of the Markov chain order. (B) Influence of the window
size. (C) Influence of the simulated error rate. (D) Specificity of the recognition of coding (1) and reverse coding (o) segments for 10 genomes
of different G1C content. Mj, M. jannaschii; Mg, M. genitalium; Mp, M. pneumoniae; Hi, H. influenzae; Hp, H. pylori; Bs, B. subtilis; Mt, M.
thermoautotrophicum; Syn, Synechocystis sp.; Af, A. fulgidus; Ec, E. coli. The discrepancies between the recognition of coding and reverse-coding
regions in the Mg and Mp genomes indicate an actual strand asymmetry.
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segments of the codingyreverse-coding classes are 328y330 for
H. pylori and 410y516 for M. jannaschii. For both organisms,
the third and smallest data set, DB2, collected a mixture of
noncoding (i.e., unannotated), coding, and reverse-coding
segments. Thus, the correspondence between this third data
set and the noncoding class is weaker. Noncoding regions
consist of regulatory sequences mixed with true intergenic
regions and might be less statistically homogeneous. The
results shown in Table 1 are typical of all microbial genomes
we analyzed so far.

Inf luence of the Window Size and Markov Chain Order on
the Initial Sequence Partition. Our procedure for the spon-
taneous partition of the data set in coding, reverse-coding, and
noncoding sequences involves two parameters: the analysis
window size w, and the order (k in Eq. 1) of the three Markov
models to be built. Fig. 1 A shows the H. pylori convergence
behavior for k 5 3, k 5 4, and k 5 5. More coding nucleotides
are classified successfully as k increases. The convergence is
satisfactory for k $ 4, with k 5 5 resulting in a faster, more
symmetrical, and more accurate partition. Markov models of
order 5 are built from the frequencies of hexamers. The power
of hexamer statistics to discriminate between coding and
noncoding regions has been recognized previously (14, 25) and
is confirmed here. Larger (k $ 6) Markov model orders do not
result in significant improvement and may even cause conver-
gence problems by lack of sufficient data to populate all
transition matrix elements. The value k 5 5 was then retained
throughout this work. Another important parameter is the size
w of the analysis window over which a consistent best match to
one of the Markov models, Mj, is required for classification in
the j class. Fig. 1B shows the H. pylori convergence behavior for
w 5 50, 100, and 200. A window of 100 allows more coding
nucleotides to be classified successfully than a window of 50.
However, using a window of 200 produced an uneven recog-
nition between the coding and reverse-coding regions (this
pathological behavior originates from the over-yunderpredic-
tion of a class and also is encountered when using nonoptimal
Markov orders). A window size of 100 nt thus was retained
throughout this work.

Inf luence of Sequencing Errors. The iterative homogeneous
Markov modeling leads to an accurate detection of the pro-
tein-coding regions without explicitly involving the concept of
an ORF. It is thus suitable for the automated annotation of
sequence data in the context of a genome survey, where each
position is determined only once or twice on average (19),
precluding contigs much larger than individual runs (400–500
nt) to be assembled. However, our method will be practical
only if it can handle the typical sequencing error rate associ-
ated with this approach. Fig. 1C compares the H. pylori
convergence behavior of the method in the presence of 0, 1, 2,
and 5% simulated sequence errors (point mutations, inser-
tions, and deletions each amounting for a third of the total

rate). The method is clearly able to handle a realistic 2% error
rate without degradation in performances, whereas a rate of
5% induces the asymmetrical recognition pattern, indicative of
a failure of the procedure as already seen for other nonoptimal
parameter choices (Fig. 1 A and B).

Inf luence of the G1C Composition. Because it relies on the
existence of distinct hexamer vocabularies between coding and
noncoding regions, the success of our iterative homogeneous
Markov modeling procedure might be expected to depend on
some statistical characteristics, such as the G1C composition.
Fig. 1D shows the average specificity (predictedyannotated as
coding) achieved by our method for each of the 10 available
microbial genomes. A specificity above 90% is achieved for
largely different (32–51%) G1C genome contents. There also
is no obvious correlation between the size of the genome (or
its gene density) and the accuracy of the coding region
prediction. The mycoplasma genomes are atypical, because
they exhibit a marked difference (92 vs. 76%) in the recogni-
tion of coding regions in opposite orientations. These results
suggest a strand asymmetry that is already visible in the
number of coding nucleotides annotated in the database: a
strand difference of 30 and 20% for M. pneumoniae and M.
genitalium, respectively. These variations probably are not a
result of annotation errors because the numbers of putative
ORFs are also different: 274 vs. 204 and 203 vs. 152 for ORFs
spanning more than 600 nt in M. pneumoniae or M. genitalium,
respectively. Thus, we interpret our results as suggesting that
a significant fraction of the genes encoded on the low-coding
density strand have a distinct statistical make-up that is less
easily captured by homogeneous Markov models (albeit no
significant difference was found in codon usage). Fortunately,
the problem is corrected by the inhomogeneous Markov
refinement (Table 2).

Performances After Inhomogeneous Markov Modeling. Ta-
ble 2 summarizes the results obtained on 10 bacterial genomes
with the ab initio partition procedure used to seed the inho-
mogeneous Markov model refinement described in Methods.
The improvement over the simpler iterative homogeneous
Markov procedure is 2-fold. First, a larger fraction of the
genomic sequence data is classified (from 84 to 89% for M.
jannaschii, and from 82 to 93% for H. pylori). Second, the
prediction specificity also is increased (from 93 to 95% for M.
jannaschii, and from 94 to 96% for H. pylori). The best
specificity (98%) is found for Escherichia coli, probably the
most reliably annotated genome. The discrepancies between
the coding and reverse-coding regions previously noted for the
mycoplasma genomes (Fig. 1D) also are largely attenuated.

CONCLUSION

A General ab Initio Method Can Perform as Well as a
Species-Specific, Training Set-Dependent Method. For 10

Table 1. Performance of the iterative homogeneous Markov partition

Data sets GenBank annotation

Helicobacter pylori (1,667,867 nt)
(1) Coding (722,915) (2) Coding (780,576) Other (164,376)

DB1 (565,176) 537,242 (95%) 8710 (1.5%) 19,224 (3.5%)
DB2 (254,346) 50,294 (21.5%) 110,225 (43.5%) 93,827 (37%)
DB3 (544,572) 9,152 (2%) 513,606 (94%) 21,814 (4%)

Methanococcus jannaschii (1,664,977 nt)
DB1 (553,666) 6,997 (1%) 514,406 (93%) 32,263 (6%)
DB2 (187,380) 28,258 (15%) 57,650 (31%) 101,472 (54%)
DB3 (665,857) 619,818 (93%) 4,877 (1%) 41,162 (6%)

Upon convergence, sequence segments are collected into three automatically defined data sets: DB1,
DB2, and DB3. The sizes of these various data sets annotated as ‘‘coding’’ (1), ‘‘reverse coding’’ (2), or
‘‘other’’ in GenBank are indicated for H. pylori (top) and M. jannaschii (bottom). The numbers
corresponding to the cognate DB/annotation matches are in bold. A total of 1,364,094 nt (82%) and of
1,406,903 nt (84.5%) are classified (i.e., collected in DB 1–3) for H. pylori and M. jannaschii, respectively.
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bacterial genomes tested, covering four major lineage (Gram-
negative, Gram-positive, cyanobacteria, and archea), we have
shown that a totally objective recognition of coding regions is
possible. Furthermore, there is no significant difference in the
performance of our new ab initio iterative procedure and the
accuracy of GENEMARK trained on a specific E. coli gene subset
(15, 26). The convergence properties and the performance of
our procedure do not appear linked to phylogenetic, compo-
sitional, or size characteristics of the genomes tested. It thus is
likely that the method is generally applicable and will work
equally well for any new bacterial genome data becoming
available in the future. For the species tested so far, the coding

regions are recognized with an average specificity of 95%
(range: 90–98%) and an overall accuracy (the product of
sensitivity by specificity) of 87% (range: 82–90%). These
performances are estimated by reference to the database
annotations, which probably are not entirely correct. For E.
coli, the best-known and most reliably annotated genome, our
procedure specificity is 98% for a sensitivity of 91%; hence, an
overall false-negative rate (percentage of missed or incorrectly
recognized coding nucleotides) of 10.8% (provided the data-
base is error-free). On the other hand, the false-positive rate
(percentage of nucleotides not known to be coding but pre-
dicted as ‘‘coding’’ or ‘‘reverse coding’’) is 10%. Again, this rate

Table 2. Results of the refined partition procedure

Total predicted Coding Reverse coding Other

Haemophilus influenzae (1,830,140 nt)
1,651,409 nt, 90% 744,614 nt 775,845 nt 317,850 nt

C1 pred. (702,129 nt) 636,824 (91%) 1,197 64,108
C2 pred. (712,993 nt) 1,579 662,504 (93%) 48,910
No pred. (236,287 nt) 43,277 42,475 150,535

Methanococcus jannaschii (1,664,977 nt)
1,487,006 nt, 89% 759,425 nt 679,908 nt 225,644 nt

C1 pred. (699,314 nt) 661,740 (95%) 2,897 34,677
C2 pred. (620,763 nt) 6,173 587,600 (95%) 26,990
No pred. (166,929 nt) 19,057 31,841 116,031

Synechocystis PCC6803 (3,573,470 nt)
3,236,025 nt, 91% 1,621,700 nt 1,471,880 nt 479,890 nt

C1 pred. (1,324,169 nt) 1,279,612 (97%) 3,109 41,448
C2 pred. (1,217,840 nt) 5,604 1,178,788 (97%) 33,448
No pred. (694,016 nt) 191,933 175,121 326,962

Escherichia coli (4,638,858 nt)
4,214,577 nt, 91% 1,994,205 nt 2,084,634 nt 560,019 nt

C1 pred. (1,610,214 nt) 1,582,668 (98%) 2,313 25,233
C2 pred. (1,705,110 nt) 8,103 1,665,355 (98%) 31,652
No pred. (899,253 nt) 214,115 238,100 447,038

Helicobacter pylori (1,667,867 nt)
1,543,591 nt, 93% 722,915 nt 780,576 nt 164,376 nt

C1 pred. (655,117 nt) 634,753 (97%) 658 19,706
C2 pred. (690,480 nt) 2,135 663,511 (96%) 24,834
No pred. (197,994 nt) 34,574 57,019 106,401

Mycoplasma pneumoniae (816,394 nt)
754,571 nt, 92% 299,312 nt 414,027 nt 103,055 nt

C1 pred. (313,976 nt) 284,212 (91%) 4,267 25,497
C2 pred. (407,335 nt) 3,862 377,941 (93%) 25,532
No pred. (33,260 nt) 1,317 15,027 16,916

Mycoplasma genitalium (580,073 nt)
557,245 nt, 96% 285,729 nt 226,875 nt 73,180 nt

C1 pred. (284,455 nt) 266,667 (94%) 2,709 15,079
C2 pred. (241,256 nt) 4,328 215,916 (90%) 21,012
No pred. (21,534 nt) 2,665 18 18,851

Bacillus subtilis (4,214,814 nt)
3,683,449 nt, 87% 1,797,237 nt 1,877,565 nt 540,012 nt

C1 pred. (1,491,612 nt) 1,438,578 (96%) 1,748 51,286
C2 pred. (1,495,245 nt) 6,276 1,447,961 (97%) 41,008
No pred. (696,592 nt) 127,671 209,008 359,833

Archeoglobus fulgidus (2,178,400 nt)
2,001,668 nt, 92% 1,008,654 nt 1,010,811 nt 158,935 nt

C1 pred. (878,849 nt) 838,321 (95%) 5,242 35,286
C2 pred. (907,581 nt) 14,113 870,252 (96%) 23,216
No pred. (215,238 nt) 62,801 54,280 98,157

Methanobacterium thermoautotrophicum (1,751,377 nt)
1,636,136 nt, 93% 777,122 nt 810,068 nt 164,187 nt

C1 pred. (690,437 nt) 671,485 (97%) 5,608 13,344
C2 pred. (697,590 nt) 2,351 675,861 (97%) 19,378
No pred. (248,109 nt) 49,280 84,271 114,558

Classified genome sequence segments are collected in three automatically defined data sets: C1
(predicted coding), C2 (predicted reverse coding), and No (predicted noncoding). The number of
nucleotides in these various data sets annotated in Genbank as ‘‘coding,’’ ‘‘reverse coding,’’ or ‘‘other’’
are indicated for 10 species.
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assumes that all coding nucleotides are annotated correctly in
the database. Some ORFs, for instance, might extend 59 to the
actual translation initiator codon. Interestingly, the agreement
between our predictions and the E. coli genome annotations
improved with time: between January 16, 1997 and September
12, 1997, we gained 1% of the nucleotides predicted as
‘‘coding’’ or ‘‘noncoding.’’ Finally, we noticed that most of the
coding regions remaining undetected by our method are from
genes with a low codon usage bias [class III genes (27)].
Fortunately, those genes represent a small proportion of the E.
coli genome (about 10%).

Preliminary Results with Less Compact Genomes. The
method presented here is primarily intended for the analysis of
new bacterial genomes. Its extension to the analysis of less
compact genomes is being studied. We verified, for instance,
that the homogeneous iterative Markov modeling converged
when applied to the yeast genomic sequence. Our ab initio
procedure recognizes coding regions with a specificity of about
80% and a sensitivity of about 68%. Those rates are clearly
lower estimates given that GenBank annotations for the yeast
genome are far from being complete and accurate. The
three-class homogeneous Markov modeling also converged
when applied to human genomic sequences, albeit with quite
different results. In this case, two of the three self-defined
classes collected the most frequent repeats: Alu and Line-1
sequences. The recognition of genes in complex genomes thus
might be possible after adapting the iterative procedure for the
presence of repeats that could be masked out in successive
steps. Alternatively, a larger number of classes could be
imposed on the iterative Markov modeling procedure. The
curious convergence properties of this algorithm need to be
studied in more detail. For instance, what happens when the
number of classes does not correspond to a ‘‘natural’’ partition
scheme for the input data? For bacterial sequences, the use of
only two classes (instead of three) significantly decreases the
specificity of the recognition process although codingyreverse
coding categories still dominate the final partition. On the
other hand, imposing four classes may result in two scenarios:
one of the dominant classes (coding or reverse coding) be-
comes distributed between two data sets of roughly equal sizes,
or, alternatively, one of the data sets eventually shrinks to a
small number of nucleotides.

The iterative partition procedure presented here is unlike
other ab initio genome analysis methods proposed so far (3, 28,
29). However, it is reminiscent of the Gibbs sampling approach
(30) in the sense that it combines a mathematical model of the
data with a randomized optimization procedure. The algo-
rithm selects sequence segments according to their conditional
probabilities, then uses the resulting partition to update those
probabilities. In our case, the convergence is driven by the
maximization of the number of sequence segments locally
consistent with N coevolving Markov models. The fast and
accurate convergence observed with bacterial genome se-
quences when using Markov models of order 5 confirms that
the hexamerydicodon bias (14, 25) is the essential character-
istic exhibited by protein-coding regions.
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