Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1956 Mar 20;39(4):567–583. doi: 10.1085/jgp.39.4.567

PROTEIN SYNTHESIS IN THE PERFUSED RAT LIVER

David Jensen 1, Harold Tarver 1
PMCID: PMC2147548  PMID: 13295555

Abstract

1. When the rat livers are perfused under the conditions of these experiments with rat blood diluted with saline, the livers remain capable of removing colloidal chromic phosphate normally for 4 hours or more; that is, the reticuloendothelial system continues to function normally. 2. Good rates of bile flow continue, generally for 4 hours. 3. The livers incorporate radioactivity from the amino acids methionine, lysine, and histidine at rapid rates for 1 or 2 hours. Thereafter the rates fall. 4. The specific activity of the free lysine and histidine in the perfusate falls rapidly during the experiments (to 25 or 35 per cent of its original value at 10 minutes). 5. The fall in rate of incorporation of radioactivity is attributable to the fall in amino acid specific activity. 6. Addition of a complete amino acid mixture to the perfusate does not appear to have any stimulatory effect on incorporation of radioactivity from labelled amino acids. 7. With lysine, on the assumption that incorporation is due to new protein formation, there is a rate of synthesis equivalent to 230 mg. of plasma protein per 100 gm. of rat per day. This result is in agreement with turnover data obtained from rats in vivo. 8. The results emphasize once again the importance of precursor specific activity in the interpretation of metabolic experiments with labelled amino acids.

Full Text

The Full Text of this article is available as a PDF (921.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAUER R. W., LEONG G. F., HOLLOWAY R. J. Mechanics of bile secretion; effect of perfusion pressure and temperature on bile flow and bile secretion pressure. Am J Physiol. 1954 Apr;177(1):103–112. doi: 10.1152/ajplegacy.1954.177.1.103. [DOI] [PubMed] [Google Scholar]
  2. BRAUER R. W., LEONG G. F., PESSOTTI R. L. Vasomotor activity in the isolated perfused rat liver. Am J Physiol. 1953 Aug;174(2):304–312. doi: 10.1152/ajplegacy.1953.174.2.304. [DOI] [PubMed] [Google Scholar]
  3. BRAUER R. W., PESSOTTI R. L., PIZZOLATO P. Isolated rat liver preparation; bile production and other basic properties. Proc Soc Exp Biol Med. 1951 Oct;78(1):174–181. doi: 10.3181/00379727-78-19012. [DOI] [PubMed] [Google Scholar]
  4. Epps H. M. Studies on bacterial amino-acid decarboxylases: 4. l(-)-histidine decarboxylase from Cl. welchii Type A. Biochem J. 1945;39(1):42–46. doi: 10.1042/bj0390042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FARBER E., KIT S., GREENBERG D. M. Tracer studies on the metabolism of the Gardner lymphosarcoma. I. The uptake of radioactive glycine into tumor protein. Cancer Res. 1951 Jul;11(7):490–494. [PubMed] [Google Scholar]
  6. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  7. GREEN H., ANKER H. S. Kinetics of amino acid incorporation into serum proteins. J Gen Physiol. 1955 Jan 20;38(3):283–293. doi: 10.1085/jgp.38.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HENDERSON L. M., SCHURR P. E., ELVEHJEM C. A. The influence of fasting and nitrogen deprivation on the concentration of free amino acids in rat plasma. J Biol Chem. 1949 Feb;177(2):815–823. [PubMed] [Google Scholar]
  9. LEVINE M., TARVER H. On the synthesis and some applications of serine-beta-C14. J Biol Chem. 1950 Jun;184(2):427–436. [PubMed] [Google Scholar]
  10. MILLER L. L., BALE W. F. Synthesis of all plasma protein fractions except gamma globulins by the liver; the use of zone electrophoresis and lysine-epsilon-C14 to define the plasma proteins synthesized by the isolated perfused liver. J Exp Med. 1954 Feb;99(2):125–132. doi: 10.1084/jem.99.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MILLER L. L., BLY C. G., WATSON M. L., BALE W. F. The dominant role of the liver in plasma protein synthesis; a direct study of the isolated perfused rat liver with the aid of lysine-epsilon-C14. J Exp Med. 1951 Nov;94(5):431–453. doi: 10.1084/jem.94.5.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SOLOMON J. D., JOHNSON C. A., SHEFFNER A. L., BERGEIM O. The determination of free and total amino acids in rat tissues. J Biol Chem. 1951 Apr;189(2):629–635. [PubMed] [Google Scholar]
  13. STEINBOCK H. L., TARVER H. Plasma protein. V. The effect of the protein content of the diet on turnover. J Biol Chem. 1954 Jul;209(1):127–132. [PubMed] [Google Scholar]
  14. TARVER H., TABACHNICK M., CANELLAKIS E. S., FRASER D., BARKER H. A. Biosynthesis of C14-labeled protein and amino acids with Rhodosprillum rubrum. Arch Biochem Biophys. 1952 Nov;41(1):1–8. doi: 10.1016/0003-9861(52)90497-9. [DOI] [PubMed] [Google Scholar]
  15. WISS O. Untersuchungen über die freien Aminosäuren im Blute bei verschiedener Ernährung; die essentiellen Aminosäuren. Helv Chim Acta. 1948 Dec 1;31(7):2148–2158. doi: 10.1002/hlca.19480310736. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES