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ABSTRACT

Complex quantitative traits of plants as measured on collections of genotypes across multiple
environments are the outcome of processes that depend in intricate ways on genotype and environment
simultaneously. For a better understanding of the genetic architecture of such traits as observed across
environments, genotype-by-environment interaction should be modeled with statistical models that use
explicit information on genotypes and environments. The modeling approach we propose explains
genotype-by-environment interaction by differential quantitative trait locus (QTL) expression in relation to
environmental variables. We analyzed grain yield and grain moisture for an experimental data set composed
of 976 F5 maize testcross progenies evaluated across 12 environments in the U.S. corn belt during 1994 and
1995. The strategy we used was based on mixed models and started with a phenotypic analysis of multi-
environment data, modeling genotype-by-environment interactions and associated genetic correlations
between environments, while taking into account intraenvironmental error structures. The phenotypic
mixed models were then extended to QTL models via the incorporation of marker information as genotypic
covariables. A majority of the detected QTL showed significant QTL-by-environment interactions (QEI).
The QEI were further analyzed by including environmental covariates into the mixed model. Most QEI could
be understood as differential QTL expression conditional on longitude or year, both consequences of
temperature differences during critical stages of the growth.

THE incidence of genotype-by-environment inter-
actions (GEI) for quantitative traits has important

implications for any attempts to understand the genetic
architecture of these traits by mapping quantitative trait
loci (QTL) and also for the effectiveness of attempts to
improve these traits by both conventional and marker-
assisted selection (MAS) breeding strategies. The lit-
erature on GEI and QTL-by-environment interactions
(QEI) for quantitative traits in maize is ambiguous, with
evidence in favor (Moreau et al. 2004) and against
(Ledeaux et al. 2006) their importance. The diversity of
the results for the importance of QEI for quantitative
traits in crop plants observed in the literature strongly
suggests that explicit testing for their presence, mag-
nitude, and form is a critical step in any attempt to un-
derstand the genetic architecture of these traits. Further,
theoretical considerations of the impact of different

forms of QEI on the outcomes of MAS in plant breed-
ing (Podlich et al. 2004; Cooper et al. 2002, 2005,
2006) motivate the development of methods for ex-
plicitly studying the importance of QEI as a component
of the genetic architecture of quantitative traits.

When QEI occurs and environmental covariables de-
rived from geographical and weather information are
available, QTL effects across environments can be tested
for dependence on particular environmental covari-
ables (Crossa et al. 1999; Malosetti et al. 2004; Vargas

et al. 2006). More generally, the phenotypic behavior can
be modeled in the form of QTL-dependent response
curves to the environmental characterizations (Hammer

et al. 2006; Malosetti et al. 2006; Van Eeuwijk et al.
2007). These response curves are expected to have non-
linear forms, but limited environmental information
will typically allow only linear approximations to these
curves.

In this article, we develop a mixed-model framework
that can be used to explicitly test for the presence of QEI
and investigate its structure for quantitative traits in
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multiple-environment trials (MET). Our strategy for the
analysis of MET is a bottom-up approach, starting with a
phenotypic analysis per trial, using no further genotypic
and environmental information. This preliminary step
serves to select a model for the intraenvironment error
structure for each trial, for later use in the MET analysis.
We start the MET analysis at the phenotypic level with a
genotype-by-environment analysis, with the aim to model
genetic variances for each environment and genetic
correlations between environments. In the next step we
search for QTL main and QEI effects, by including
genotypic covariables in the model that represent the
marker information. In the final step of our analysis, we
include both genotypic and environmental covariables,
with the intention to model QTL responses on specific
environmental covariables. It is especially this last step
that distinguishes our mixed-model QTL approach to
MET data from other, comparable mixed-model pro-
posals (Piepho 2000, 2005; Verbyla et al. 2003).

Fora serious study ofQEI large populations are needed.
Therefore, we applied our mixed-model analysis to a large
maize experiment, for two quantitative traits, grain mois-
ture and grain yield. The experiment was designed as a
MET, with a biparental cross consisting of almost 1000 F5

testcrosses, evaluated in several locations across the
U.S. corn belt in 1994 and 1995. This data set was ana-
lyzed previously by Openshaw and Frascaroli (1997),
Melchinger et al. (2004), and Schön et al. (2004). How-
ever, there are major differences between these previous
approaches and our methodology. We used a mixed-model
approach in which we modeled genetic correlations
between environments and allowed for trial-specific error
structures in the phenotypic and genetic model for the
MET data. Furthermore, we incorporated explicit envi-
ronmental information, such as weather conditions and
geographical information, in our analysis.

MATERIALS AND METHODS

We briefly summarize the main features of the data, and for
further details we refer to descriptions in Openshaw and
Frascaroli (1997) and Schön et al. (2004).

Plant materials: Two elite maize inbred lines, subsequently
referred to as A and B, were used as parents. The two parents
belonged to the same heterotic group and were chosen be-
cause of their eliteness and because the coefficient of coances-
try was relatively low, namely 0.21 (Openshaw and Frascaroli

1997). F2 plants from the cross A 3 B were selfed to produce 990
independently derived F5 (F4:F5) lines. Testcross seed was
produced by crossing to an unrelated inbred tester line from a
complementary heterotic pool. Check inbreds including pa-
rents A and B, as well as the F1 between A and B, were also crossed
to the inbred tester. All plant materials used in this study are
proprietary to Pioneer Hi-Bred International.

Field experiments: Yield trial data on the testcrosses were
obtained from 17 environments located in the U.S. corn belt,
with 6 locations in 1994 and 11 locations in 1995. We removed
five of the environments due to low observed heritabilities.
The reduced data set analyzed in this article consists of 5
locations in 1994 and 7 locations in 1995 (see Table 1). In each
of the environments the experimental design consisted of 18
incomplete blocks with 60 entries each. Each incomplete
block contained a random sample of testcrosses of 55 F5 lines,
augmented by the two parents A and B, their F1, and two
checks. The same block grouping of the lines was applied in all
environments with a different randomization of the blocks
and lines within the blocks. Thus, within each trial there were
randomized multiple replicates of the parent, the F1, and two
check testcross entries, referred to collectively as repeated
checks. The within-trial replication of these check entries
enabled modeling of the intraenvironmental trial error
variances. Trials were performed with one replication of each
of the F5 testcross progeny per environment.

Data were recorded and analyzed for grain yield in mega-
grams per hectare, adjusted to 155 g kg�1 grain moisture, and
grain moisture in grams per kilogram at harvest.

Environmental classification: A modified CERES-maize
model (Löffler et al. 2005) was used to characterize the en-
vironments, using the input data of nearby weather stations.
Averagemaximum(TMXA)andminimum(TMNA)temperatures

TABLE 1

The 12 environments used in the MET analysis

Environment Location Year Irrigation Latitude Longitude

AD94 Johnston, Iowa 1994 No 41.68 �93.71
CI95 Champaign, Illinois 1995 No 40.11 �88.43
GC95 Garden City, Kansas 1995 Yes 37.83 �100.86
MR95 Marion, Iowa 1995 No 42.10 �91.62
NP94 North Platte, Nebraska 1994 Yes 41.10 �100.79
NP95 North Platte, Nebraska 1995 Yes 41.10 �100.79
PR95 Princeton, Illinois 1995 No 41.44 �89.48
SV94 Shelbyville, Illinois 1994 No 39.72 �89.10
SV95 Shelbyville, Illinois 1995 No 39.72 �89.10
WN94 Windfall, Indiana 1994 No 40.33 �85.84
YA95 Princeton, Indiana 1995 No 38.11 �87.78
YK94 York, Nebraska 1994 Yes 40.85 �97.53

All these environments were located in the U.S. corn belt and evaluated in 1994 and 1995. The first column
gives the name of the environment (corresponding to each location, year combination) that is used in the text
and the figures. The irrigation column indicates whether or not there was irrigation at a particular location.
Finally, the geographical positions of the trials are defined in the latitude and longitude columns.
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and water stress (WS) were calculated for the following four
developmental periods simulated by CERES-maize: (1) planting–
V7 (seven leaf collars visible), (2) V7–R1 (silks visible outside
the husks), (3) R1–R3 (kernels’ inner fluid milky white due to
development of starch), and (4) R3–R6 (physiological matu-
rity). For further details about the growth stages of maize we
refer to the maize page of Iowa State University (http://
maize.agron.iastate.edu). In the analysis of the MET data we
calculated the QTL responses to the following environmental
covariates: year (1994/1995), latitude, longitude, TMNAd,
TMXAd, and WSd, where d ¼ 1, . . . , 4 indicates the develop-
ment periods as defined above.

Linkage map: A linkage map was constructed from 172
restriction fragment length polymorphism (RLFP) markers
produced for 976 of the 990 analyzed F4 plants.

Construction of genetic predictors: Genetic predictors, or
regressors, for the additive genetic QTL effects were con-
structed for a grid of evaluation points, q, along the genome
(q ¼ 1, . . . , Q). These genetic predictors were introduced as
explanatory variables in the mixed models (see below). The
genetic predictor for individual i and evaluation point q is
denoted by xiq : At positions with a fully informative marker the
genetic predictors for the additive QTL effect had the value
xiq ¼ �1 when both alleles stemmed from the first parent (A),
while they had the value xiq ¼ 1 when both alleles stemmed
from the second parent (B). For heterozygous individuals we
had xiq ¼ 0 More generally, for an individual i and evaluation
point q we had

xiq ¼ �PðA jMiÞ1 PðB jMiÞ; ð1Þ

meaning that xiq is the expected value of the explanatory
variable for the additive QTL effect at position q, given all the
marker information for individual i, the latter denoted by Mi

(Haley and Knott 1992; Martı́nez and Curnow 1992;
Lynch and Walsh 1998). The QTL probabilities, conditional
on all the marker data, PðA jMiÞ and PðB jMiÞ;were calculated
by a hidden Markov chain method (Lander and Green 1987;
Jiang and Zeng 1997).

Genetic predictors were calculated at all the marker
positions and at an additional grid of points with a maximum
step size of 2.5 cM, resulting in Q ¼ 820 evaluation points
along the genome.

Single-environment phenotypic analysis for yield: For the
trait yield we started our analysis of the MET data with a
phenotypic analysis of the individual environments. Obvious
outliers were removed, that is, the values that we could identity
as representing faulty data, for example, if there was a clear
indication of mixing up seed between neighboring plots.

For the mathematical description of the model for the data,
with the data containing both repeated checks and F5

individuals in each trial, we use a notation similar to that of
Eckermann et al. (2001) and Verbyla et al. (2003). Let y

ir
denote the phenotype of the rth replicate observation on
the ith genotype (i ¼ 1; . . . ; n), where the underline indicates a
random variable. The statistical model is given by

y
ir
¼ m 1 Gi 1 eir ; ð2Þ

where m is the general mean, Gi represents the genetic effect
of genotype i expressed as a deviation from the general mean,
and eir represents nongenetic effect r for genotype i. The
genotypes can be separated into two groups, n ¼ ng 1 nc;
where ng is the number of testcross lines derived from the cross
between parents A and B (i ¼ 1; . . . ; ng), and nc is the number
of check entries (i ¼ ng 1 1; . . . ; ng 1 nc). The model for Gi

reads

Gi ¼
g

i
i ¼ 1; . . . ; ng

ci i ¼ ng 1 1; . . . ; ng 1 nc;

�
ð3Þ

where g
i
� N ð0; s2

gÞ is a random variable for the genetic effect
of line i derived from the parental cross, and ci represents
a fixed effect for check i. Although the check entries are not
relevant to the detection of QTL, these entries are important
in providing information on the nongenetic variation that may
be present (Verbyla et al. 2003).

We started the trial analysis with the following model for the
nongenetic term eir ;

eir ¼ bkðir Þ1 h
ir
; ð4Þ

where bkðir Þ � N ð0; s2
bÞ is the effect of incomplete block k,

appropriate for the replicate r observation on genotype i. The
term h

ir
� N ð0; s2Þ represents a residual error term. Next, we

added random row and columns effects, denoted by r ir and cir ;
to the model for eir ;

eir ¼ bkðir Þ1 r ir 1 cir 1 h
ir
; ð5Þ

and used these extra terms in later analyses if these effects were
found significant. In contrast to the block effects, the row and
column effects did not follow from randomization theory: in
the field design, row and columns did not represent a re-
striction on the allocation of genotypes to experimental plots.
Instead, inclusion of random row and column effects should
be interpreted as an attempt to control local variation along
the lines discussed in Gilmour et al. (1997) and Cullis et al.
(1998, 2006).

Preliminary investigations showed linear and quadratic
relationships between yield and stalk count across locations.
Therefore, linear and quadratic terms for stalk count were
included in the model for eir ; where these terms were
significant. The model with all the random and fixed effects
for eir reads

eir ¼ u1f1 1 u2f2 1 bkðir Þ1 r ir 1 cir 1 h
ir
; ð6Þ

where u1 is the centered covariate for stalk count with
parameter f1; and u2 is the centered covariate for squared
stalk count with parameter f2: We included stalk count as an
extra explanatory variable because it gives a measure for the
environmental quality of the plots. For each environment,
nonsignificant terms in this full model were omitted.

Multi-environment phenotypic and QTL analysis for yield:
Our mixed-model strategy consisted of three steps, which we
first describe in words. In the first step, a phenotypic mixed
model was fitted to genotype-by-environment data, where the
aim was to identify a variance–covariance (VCOV) model with
the possibility of heterogeneity of genetic variances across
individual environments and heterogeneity of genetic corre-
lations between pairs of environments. At this stage, no marker
information was included in the model, nor were environ-
mental characterizations. In the second step of our procedure,
we performed a repeated genome scan for the detection of
environment-specific QTL effects. The mixed model that we
used to test for environment-specific QTL contained marker-
related information in the fixed part of the model, combined
with the VCOV structure between environments identified in
the previous phenotypic analysis. The marker-related infor-
mation entered the model in the form of genetic predictors,
linear functions of QTL genotype probabilities given flanking
marker genotypes, and chromosome position. A first genome
scan for QTL corresponded to simple interval mapping
(Lander and Botstein 1989), in which a putative QTL is
moved along the genome and at each position a test for
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environment-specific QTL is performed. In a second scan, the
genetic predictors of identified QTL of the first scan were used
as cofactors. This second scan was performed by multi-
environment composite interval mapping. Jiang and Zeng

(1997) proposed a comparable procedure in a mixture model
context. In the final step of our procedure, for the identified
QTL positions in the genome scan of step two, QTL expres-
sion across environments is regressed on environmental
covariables in an attempt to identify the driving environmental
forces behind QEI.

We now describe our mixed-model strategy in a more
formal way, starting with the first step. Let y

ijr
denote the phe-

notype of the rth replicate observation on the ith genotype
(i ¼ 1; . . . ; n) in environment j ( j ¼ 1; . . . ; J ). The statistical
model is given by

y
ijr
¼ m 1 Ej 1 Gij 1 eijr ; ð7Þ

where m is the general mean, Ej is the environmental main
effect expressed as a deviation from the general mean, Gij

represents the genetic effect of genotype i at environment j,
and eijr is a nongenetic effect. Using a vector–matrix notation,
the nongenetic variation within an environment j can be
further decomposed as

ej ¼ Xj bj 1 Zb;j ub;j 1 Z r;j ur;j 1 Zc;juc;j 1 h
j
; ð8Þ

where ej is a vector with elements eijr ; Xj is the design matrix
for fixed effects bj ; to be defined shortly; Zb;j ; Zr ;j ; and Zc;j are
the design matrices for the random blocks, rows, and columns
effects ub;j � N ð0; I s2

b;jÞ; ur;j � N ð0; I s2
r;jÞ; and uc;j � N ð0;

I s2
c;jÞ; and h

j
� N ð0; I s2

j Þ is a residual error term. For
the trait yield the number of fixed and random effects de-
pended on a model selection process per environment. If a
random block, row, or column effect was not selected in the
single-environment analysis, we put the corresponding vari-
ance component equal to zero in the METanalysis. Stalk count
and squared stalk count were used as candidates for fixed
effects. For the trait moisture we used only incomplete blocks
as a random effect to account for nongenetic variation within
the environments.

The model for Gij ; in the absence of genetic predictors, is
given by

Gij ¼
g

ij
i ¼ 1; . . . ; ng

cij i ¼ ng 1 1; . . . ; ng 1 nc;

�
ð9Þ

where g
ij

is a random variable for the genetic effect of line i
derived from the parental cross in environment j, and
cij represents a fixed effect for check i in environment j. We
assume that the vectors g

i
¼ ðg

i1
; . . . ; g

iJ
Þ have a multivariate

normal distribution with zero mean and a VCOV matrix G:
g

i
� N ð0; GÞ: In this article we analyzed and compared seven

models for the VCOV matrix G (Table 2). The simplest model
is homogeneous (residual) variation (ID), for which there are
no genetic correlations between environments and for which
the genetic variances are homogeneous across the environ-
ments. These assumptions are rarely realistic. For the well-
known compound symmetry (CS) model, the genetic cova-
riances between environments are modeled by an extra
parameter s2

G:The heterogeneous (residual) genetic variation
(DG) model allows for heterogeneous genetic variances (s2

Gj
)

but assumes there are no genetic correlations between en-
vironments. The uniform covariance, heterogeneous variance
(UCH) model is an extension of model DG with a common
covariance parameter s2

G; assumed uniform between all pairs
of environments. Again, the latter assumption is usually not
realistic, and model UCH can be improved by using a first-
order or a second-order factor analytic (FA1 or FA2, re-
spectively) model (Piepho 1997, 1998; Smith et al. 2001).
The most flexible model is to choose the VCOV matrix G
unstructured (UN) model, with a total number of J ð J 1 1Þ=2
parameters. More details are given in Table 2. We used the
Bayesian information criterion (BIC) (Hastie et al. 2001;
Broman and Speed 2002) to select the optimal model, i.e., the
model that gives the right balance between fit to the data and
model complexity,

BIC ¼ �2 ln LMAX 1 lnðN ÞnPAR; ð10Þ

where LMAX is the maximum (residual) likelihood, N is the
total number of observations, and nPAR is the number of
parameters in the VCOV matrix G (Table 4; Piepho 2000).

In the following step of the analysis of the MET data, a
putative QTL is moved along the genome. This corresponds to
the simple-interval-mapping (SIM) approach developed by
Lander and Botstein (1989) in a mixture model framework.
The model for the genotypic effect of the F5 lines becomes
Gij ¼ xiqajq 1 g

ij
; where ajq is the environment-specific effect

of the additive genetic predictor at evaluation point q. The
complete model for the individuals derived from the bi-
parental cross reads

y
ijr
¼ m 1 Ej 1 xiqajq 1 g

ij
1 eijr ði ¼ 1; . . . ; ngÞ; ð11Þ

where we use the VCOV matrix for g
ij

that was selected in the
previous phenotypic modeling step. Under the null hypoth-
esis, i.e., assuming that the putative QTL has no effect at all
across environments, we have H0: a1q¼ a2q¼ . . .¼ aJq¼ 0. The
Wald test (Verbeke and Molenberghs 2000) can be used to
test for the fixed terms in mixed models. Under the null
hypothesis, the Wald test statistic has an approximate x2

d ;
where d is the number of degrees of freedom. The degrees of

TABLE 2

Models for the VCOV structure

Model varðg
ij
Þ covðg

ij
; g

ij*
Þ nPAR Description

ID s2
GE 0 1 Identical (residual) genetic variation

CS s2
G 1 s2

GE s2
G 2 Compound symmetry

DG s2
GEj

0 J Heterogeneous (residual) genetic variation
UCH s2

G 1 s2
GEj

s2
G J 1 1 Uniform covariance, heterogeneous variance

FA1 l2
1j 1 s2

GEj
l1j l1j* 2J First-order factor analytic model

FA2 l2
1j 1 l2

2j 1 s2
GEj

l1j l1j* 1 l2j l2j* 3J�1 Second-order factor analytic model (l21 ¼ 0)

UN s2
Gj

s2
j ;j* J ð J 1 1Þ=2 Unstructured model

For a further explanation see text.
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freedom are equal to the difference in the number of
parameters between the null and the alternative hypothesis,
which means in this case that it is equal to the number of
environments, d ¼ J.

For completeness, we also performed a test for QTL main
effects along the genome, in which case the model reads

y
ijr
¼ m 1 Ej 1 xiqaq 1 g

ij
1 eijr ði ¼ 1; . . . ; ngÞ; ð12Þ

where aq is the QTL main effect.
Now, significant peaks in the QTL profile produced by

model (11) are selected, with successive QTL being separated
from each other by at least 30 cM. The genetic predictors
corresponding to the selected QTL positions are subsequently
used as cofactors, to correct for genetic background effects,
while a putative QTL is moved along the genome. This method
is a multi-environment case of the composite-interval-mapping
(CIM) approach by Zeng (1994) and the multiple-QTL-mapping
(MQM) approach by Jansen and Stam (1994), using mixed
models instead of mixture models. The model for the
genotypic effects of the F5 lines reads

Gij ¼ xiq ajq 1
X
c2C

xicajc 1 g
ij
; ð13Þ

where C is the set of cofactors used to model QTL on other
chromosomes. The complete model is given by

y
ijr
¼ m 1 Ej 1 xiqajq 1

X
c2C

xicajc 1 g
ij

1 eijr ði ¼ 1; . . . ; ngÞ:

ð14Þ

Subsequently, the significant peaks of the profile produced
by (14) are selected as QTL, with again successive QTL on the
same chromosome being separated by at least 30 cM. The
selected QTL obtained from the CIM scan are denoted by S.
Environment-specific QTL effects are estimated from the
model:

y
ijr
¼ m 1 Ej 1

X
c2S

xicajc 1 g
ij

1 eijr ði ¼ 1; . . . ; ngÞ: ð15Þ

In the next step we determine which QTL have a significant
QTL 3 E effect, by splitting the environment-specific QTL
effects into two parts, namely main effects for each QTL (ac)
and environment-specific deviations from the main effects
(djc):

y
ijr
¼ m 1 Ej 1

X
c2S

xicðac 1 djcÞ1 g
ij

1 eijr ði ¼ 1; . . . ; ngÞ:

ð16Þ

We test for the significance of the deviations djc by using a Wald
test.

Finally, we calculate QTL responses to environmental
covariables. For each QTL with a significant QTL 3 E effect
and for each environmental covariable we use

Gij ¼ xiqða 1 bzj 1 djÞ1
X

c2S;c 6¼q

xicajc 1 g
ij
ði ¼ 1; . . . ; ngÞ;

ð17Þ

where zj is the value of an environmental covariable in
environment j, a is a QTL main effect, b is the slope parameter,
which expresses the response of the selected QTL to the
environmental covariable, and dj is a residual environment-
specific QTL effect.

Genomewide significance threshold: In this article we use a
Bonferonni correction (e.g., Lynch and Walsh 1998) for the
Q ¼ 820 evaluation points along the genome. For a 5%
genomewide significance threshold we obtain T ¼ 4.2 for the
�log10 of the P-values. Instead of using a genomewide
significance threshold we also considered using the idea of
false discovery rate (FDR) control, introduced by Benjamini

and Hochberg (1995). However, Chen and Storey (2006)
showed that FDR suffers from several problems when applied
to linkage analysis, and therefore we decided to use a simple
Bonferonni correction.

Software: For the calculation of the genetic predictors we
implemented the hidden Markov model methodology in
C11. These genetic predictors can also be calculated using
software packages like Grafgen (Servin et al. 2002) and R/QTL
(Broman et al. 2003). For the statistical analysis we used
Genstat (Payne et al. 2006).

RESULTS

Single environment analysis: We analyzed the pheno-
typic data per environment (trial), to select appropriate
models for the error structure. The models for the error
structures were retained in the later MET analyses. Ini-
tially only the obvious outliers were removed, that is, the
values that we could identify as representing faulty data.
Additionally, a number of plots had extremely low stand
counts; as plots with very low stands do not contain
reliable yield data, these plots were omitted.

For grain moisture we used only incomplete block
effects (see materials and methods) in the models for
the single trials, since the spatial variation within en-
vironments was relatively low. For yield we used a more
elaborate approach: we compared several models, start-
ing with a model with only (incomplete) block effects.
Block effects were used for all the environments. Next,
postblocking effects, rows and columns, were added to
the model when significant. Table 3 shows that in all

TABLE 3

Selected environments used in the QTL 3 E analyses and the
spatial models for yield for each environment

Environment
Stalk
count

Stalk count
squared Row Column

AD94 x x x
CI95 x x x x
GC95 x x
MR95 x x
NP94 x x
NP95 x
PR95 x x
SV94 x x
SV95 x x x
WN94 x x
YA95 x x
YK94 x x

x’s indicate that the model term in the column heading was
included in the within-trial error model for that specific trial.
For the definition of the environments see Table 1.
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environments, except NP94, columns were included in
the final model. Row effects were included in four of the
environments. In the next step quadratic regressions on
stalk count were added to the model, because pre-
liminary investigations of stalk count indicated signifi-
cant relationships between stalk count and yield. Linear
and quadratic effects for stalk count were added to the
model only when significant. Linear effects for stalk
count were used in nine environments, and the qua-
dratic effects were used in three environments.

We have checked for the necessity of including first-
order autoregressive (AR1) processes on rows and col-
umns, but found that effects corresponding to AR1
processes were small. Such processes were therefore
omitted from further analyses. Fitting of autoregressive
processes increased computation times substantially in
the multiple-environment analyses. In addition, conver-
gence problems occurred with these models.

Multi-environment analysis: First, we compared
VCOV structures for the modeling of genetic correla-
tions between environments (Table 4) for both yield
and moisture. The models were compared using BIC. As
can be seen in Equation 10, lower BIC values indicate a
better balance between model complexity and model
fit. The results are summarized in Table 4.

For moisture, exclusion of genetic correlations from
the model produced very high BIC values (Table 2). BIC
decreased substantially if we used a (heterogeneous)
compound symmetry model. The BIC decreased fur-
ther for a factor analytic model. FA2 was selected as the
optimal model.

For yield, the difference between BIC values for the
different models was less pronounced. Three models,
those without genetic correlations and the unstructured
model, with a different correlation coefficient for each
pair of environments, were inferior to the other four.
The best model in terms of BIC was model CS, the
compound symmetry model. However, the differences

were small and we decided to select the FA1 model,
because it is more flexible in modeling different genetic
correlations between environments.

QTL genome scans: First, we discuss the main fea-
tures of the genome scan, and then we discuss QTL
positions and QTL effects in more detail. The CIM
genome scans for moisture and yield are given in Figures
1 and 2, respectively. In the analysis we only used co-
factors on other chromosomes, so this means that co-
factors on the chromosome with the putative QTL were
excluded from the model.

The top sections of Figures 1 and 2 show the P-values
of tests for QTL main effects and for environment-
specific QTL effects. The bottom sections show heat
maps along the genome for each environment, where
red means that the A allele had a significant positive
effect, and blue means that the B allele had a significant
positive effect in that environment. An effect was called
significant when the P-value was below the significance
level a ¼ 0:05: The P-values were determined from
squared z-ratios, with z-ratios being calculated as esti-
mates divided by standard errors.

The analysis for moisture shows that the �log10

(P-values) were very high, pointing to a very strong sig-
nal along the whole of the genome (Figure 1). Further,
it can be seen that there were strong QEI effects. Most of
the interactions were noncrossovers; i.e., the effects had
the same sign in each environment. Examples of cross-
over interactions were found on chromosomes 1, 4, 5, 7,
and 8. On chromosome 10 there was a QTL with a
strong main effect. For this QTL the allele from parent
A had significantly higher moisture values than the
allele from parent B. Chromosome 1 shows three types
of QTL: the first QTL had a strong main effect, the
second QTL showed changes in magnitude across the
environments, and the third QTL exhibited strong
crossover interactions. A large year effect was present
for QTL on the second part of chromosome 9; only in
1995 did the alleles from parent A have a significantly
higher moisture value.

The genome scan for yield is given in Figure 2. The
QTL on chromosome 10 had a strong main effect,
where the A allele resulted in higher yields. Other QTL
with a relatively strong main effect were found on
chromosomes 6, 8, and 9. There were also several QTL
with strong QEI interactions; examples can be found on
chromosome 4 and 7. The heat maps show that there
were chromosome regions with strong year effects. One
example can be found on chromosome 7, where the
allele from parent A had a positive effect only in 1994.
Another example of a segment with a year effect was
located on the second part of chromosome 8, where
parent B had a positive effect only in 1995.

QTL positions and effect: QTL positions were
estimated on the basis of the genome profile given in
Figures 1 and 2, where we further assumed that the
minimum distance between significant QTL should be

TABLE 4

Comparison of the VCOV models for yield and moisture

Model NPAR BIC yld BIC mst Deviance yld Deviance mst

ID 1 785.5 6888.7 776.0 6879.2
CS 2 277.5 1459.7 258.6 1440.8
DG 12 872.3 6768.9 758.7 6655.3
UCH 13 364.7 1533.2 241.6 1410.1
FA1 24 389.2 645.9 161.9 418.7
FA2 35 418.8 495.3 87.3 163.8
UN 78 738.6 738.6 0.0 0.0

The first column refers to the particular model, NPAR is the
number of parameters, and BIC yld and BIC mst give the BIC
for yield and moisture, respectively. The last two columns give
the deviances for yield and moisture. Both BIC and deviance
are given relative to the most complex model, the unstruc-
tured (UN) model.
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at least 30 cM. In this large population with strong
signals along the whole genome for both grain moisture
and grain yield, it is difficult to decide what should be
considered a single QTL effect. One of the possible
reasons that we found such strong QTL main and QEI
effects is that many QTL, both directly and indirectly,
were involved in the complex traits yield and moisture.

The QTL positions and effects for grain moisture and
grain yield are summarized in Tables 5 and 6, respec-
tively. The given estimated effects are the estimates for
the B allele. Suppose the estimated allele effect for B at
a particular QTL position is a, then the estimated allele
effect for A should be�a, and the estimated phenotypic
difference between two individuals differing at only this
particular QTL position amounts to 2a.

For moisture 20 QTL were detected (Table 5). The
most consistent QTL effects across environments were
found on chromosome 1 at�54 cM and on chromosome
10 at �53 cM. Crossover effects, with both significant
positive and significant negative effects, were found on
chromosomes 1 (�218 cM), 2 (�156 cM), 4 (�9 cM,
�110 cM), 5 (�152 cM), 6(�128 cM), and 7(�54 cM). A
year effect was observed for the QTL on chromosome 9
at �107 cM. Some of the estimated QTL effects at the
location North Platte in 1995 (NP95) were quite dif-
ferent from those at other locations, which can also be
observed in Figure 1. For example, the QTL effects for
this environment are opposite in sign to the other lo-

cations with a significant effect for the QTL on chromo-
some 4 (�9 cM, �110 cM), the second QTL on
chromosome 5 (�152 cM), and the second QTL on
chromosome 6 (�128 cM).

For yield we detected in total 11 QTL or chromosome
segments with a strong signal (Table 6). There were two
QTL with strong main effects, one on chromosome 9
(�119 cM) with a positive effect and one on chromo-
some 10 (�57 cM) with a negative effect. Significant
crossover interactions were found for 6 QTL. A year
effect was observed for the QTL on chromosome 8
(�127 cM). The strongest QTL effects were found for
the irrigated environments NP94, YK94, GC95, and
NP95 (see Table 1 for definitions of environments).

Environmental covariates: A further decomposition
of the QTL with significant QEI effects was obtained by
introducing environmental covariates as explanatory
variables. Before we describe the QTL responses to
environmental covariables, we investigate the relations
between the environmental covariables and the trials.
Figure 3 shows a biplot for the environments and the
environmental covariates following a principal compo-
nents analysis on the standardized environmental co-
variates. The representation in the plane of covariates
was generally good as most of them were located close to
or on the unit circle typical of perfect representation
(Gabriel 1971). The vertical axis represents a year con-
trast, and the horizontal axis is related to longitude. The

Figure 1.—Genome scan for mois-
ture. (Top) The P-values for the test
for main effects (blue) and the test for
environment-specific effects (green) are
shown. The red horizontal line is the
5% genomewide significance threshold.
The green horizontal lines in the bottom
section indicate significant environment-
specificeffects.(Bottom)Theenvironment-
specific QTL effects are shown. Blue
(red) indicates that parent A (B) has sig-
nificantly higher moisture values. For the
VCOV structure we used the second-
order factor analytic model.
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year 1995 had higher average minimum and maximum
temperature in the reproductive stages 3 and 4 (TMNA3,
TMNA4, TMXA3, TMXA4) than the year 1994. Longi-
tude had a highly positive correlation with both water
stress and minimum temperature in the second stage

(WS2, TMNA2) and was negatively correlated with
irrigation.

The QTL responses for moisture are given in Table 7.
Most QTL had a strong response to temperature and
water stress in the reproductive stage (stages 3 and 4).

Figure 2.—Genome scan for yield.
(Top) The P-values for the test for main
effects (blue) and the test for environ-
ment-specific effects (green) are shown.
The red horizontal line is the 5% ge-
nomewide significance threshold. The
green horizontal lines in the bottom
section indicate significant environment-
specific effects. (Bottom) The environment-
specific QTL effects are shown. Blue
(red) indicates that parent A (B) has sig-
nificantly higher yield values. For the
VCOV structure we used the first-order
factor analytic model.

TABLE 5

Environment-specific QTL effects for moisture

Chromosome no.

Environment
name

Position
(cM):

1 1 1 2 2 2 3 3 4 4 5 5 6 6 7 8 8 9 9 10
54 113 218 41 81 156 86 200 9 110 21 152 5 128 54 122 208 4 107 53

AD94 50 �49 10 �6 26 �15 �10 20 �1 18 �26 �32 �25 24 10 11 5 �13 8 �14
NP94 27 �30 14 �11 14 1 �8 13 �4 9 �16 �13 �14 �1 �10 �5 6 �11 �2 �20
SV94 39 �41 12 �10 16 �4 �21 17 �9 8 �22 �23 �13 14 �4 19 10 �12 1 �17
WN94 44 �45 15 �10 15 �11 �13 22 �12 12 �27 �18 �18 7 �20 14 8 �16 2 �24
YK94 19 �12 2 �6 7 6 �3 9 �1 5 �7 �9 �7 5 �5 �1 3 �7 �1 �13
CI95 34 �26 5 �10 20 5 �15 12 �10 14 �17 �26 �9 11 9 14 5 �11 �19 �21
GC95 38 �22 7 �7 2 8 �23 4 �3 7 �29 �23 �8 �1 1 0 6 �7 �10 �15
MR95 32 �18 7 �10 8 �1 �6 1 �4 4 �4 �14 �9 0 0 6 6 �7 �7 �14
NP95 36 �23 22 �17 14 �9 �8 17 7 �9 �19 16 �12 �15 0 �2 17 �12 �12 �16
PR95 24 �23 �5 �14 20 0 �7 11 �15 8 �16 �14 �19 �1 2 26 2 �7 �6 �11
SV95 33 �36 �11 �14 17 6 �2 0 �5 15 �25 �33 �5 15 18 10 9 �12 �16 �15
YA95 28 �15 1 �16 10 14 �6 4 �19 10 �23 �17 �21 6 �7 16 3 �8 �15 �23

The effects given are multiplied by a factor of 100. Negative QTL effects mean that the A allele gives higher moisture values than
the B allele, and positive QTL effects mean that the B allele gives higher moisture values. The italic (underlined) values are sig-
nificant negative (positive) QTL effects. For the VCOV structure we used the second-order factor analytic model.
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These environmental covariates were positively (TMXA3,
TMXA4, TMNA3, TMNA4) or negatively (WS3) corre-
lated with year (Figure 3). QTL on chromosomes 4 and
8 responded to longitude, which was related to dif-
ferences in climate and management practices: in the
western parts of the U.S. corn belt differences between
mean daily minimum and maximum temperatures are
higher, while rainfall is lower than in the eastern parts
(National Climatic Data Center, http://gis.ncdc.noaa.gov).
Because of the higher likelihood of drought stress, the

environments in the western parts of the U.S. corn belt
are more likely to be irrigated (Table 1).

The QTL responses for yield are given in Table 8.
Most of the QTL responses can be explained in terms of
spatial (longitude, latitude) and temporal (year) effects.
The QTL on chromosome 5 at �86 cM had the highest
response to TMXA3, but this environmental covariate
had a high positive correlation with year (Figure 3). The
QTL on chromosome 1 at�25 cM had a strong response
to longitude, which can also be seen in Table 6: only the
environments in the western part of the U.S. corn belt
(NP94, NP95, GC95) had positive effects.

DISCUSSION

Statistical models: In this article we used mixed
models to analyze the data, because of their flexibility
and the possibility of modeling genetic correlations
between environments and error structure within envi-
ronments. Within this mixed-model framework choices
have to be made; in particular, we have to choose which
terms should be considered random and which ones
fixed. Here, we assumed the genotypes to be random and
environments, the QTL main effects, and environment-
specific QTL effects to be fixed. The same type of model
was also used by Malosetti et al. (2004). Piepho (2000)
assumed random environments, fixed QTL main effects,
and random effects for environment-specific deviations
from the QTL main effects. Verbyla et al. (2003) did not
include a separate parameter for QTL main effects and
assumed that the environment-specific effects were
random. The discussion on whether to take particular

TABLE 6

Environment-specific QTL effects for yield in kg ha�1

Chromosome no.

1 1 1 3 4 5 6 7 8 9 10Environment
name

Position
(cM): 25 121 250 59 41 86 73 96 127 119 57

AD94 28.6 �101.3 �11.2 �42.1 �69.4 �73.0 �40.7 �107.8 �1.3 86.8 �183.8
NP94 96.7 �40.6 79.0 �87.4 111.4 �26.9 �138.0 �87.7 �12.2 109.0 �108.2
SV94 �26.6 �58.7 �41.2 �67.2 25.3 �35.8 �73.8 �143.8 43.9 147.0 �0.4
WN94 �6.3 17.0 �10.9 �1.5 100.8 �113.2 �58.2 �101.3 26.2 169.9 �62.2
YK94 81.8 84.6 �194.1 69.5 208.4 �150.6 �158.0 �168.2 �197.5 225.6 �181.2
CI95 �37.0 56.2 9.2 �65.6 �23.2 �20.5 �48.0 31.2 62.8 �33.5 �83.6
GC95 99.5 �60.5 71.2 �69.1 98.3 70.9 �294.8 �61.9 17.1 110.0 �44.9
MR95 7.2 �8.9 79.3 �54.6 �16.0 �60.1 �6.8 76.6 121.3 84.3 �130.8
NP95 160.3 �2.0 70.2 �44.9 105.4 115.6 �158.3 �10.8 145.6 68.4 �85.4
PR95 �1.2 �76.1 �49.3 �102.5 �133.5 �62.7 �47.8 �7.5 163.5 82.1 �151.9
SV95 �25.9 26.2 12.3 �30.9 �22.8 �56.2 34.7 7.9 37.0 36.2 �53.4
YA95 �33.0 2.6 �70.2 �109.9 �21.0 �84.2 �63.6 �45.7 125.1 35.0 �73.3

Negative QTL effects point to superiority of the A allele, and positive QTL effects point to superiority of the B allele. The italic
(underlined) values are significant negative (positive) QTL effects. For the VCOV structure we used the second-order factor an-
alytic model.

Figure 3.—Biplot for environmental classification data. The
circles are the environments, with 1994 in blue and1995 in light
green. The environmental covariates are indicated by squares.
For a further description of the environments and the environ-
mental covariates see materials and methods and Table 1.
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terms as fixed or random often reinforces dogmatic
stands. We prefer a pragmatic attitude for this question.
Thus, we also analyzed the present data set with a model
assuming random effects for the QTL effects, upon
which we found similar profiles for the genome scans
and identified very comparable QTL, showing that our
analysis, for this data set at least, is robust with regard to
the choice of fixed or random QTL effects. Maybe the
most important difference between a random- and a
fixed-effect model for environment-specific QTL effects
or deviations from the QTL main effect is that the
estimates in a random-effect model are shrunken,
making us less optimistic and more realistic about their
impact in marker-assisted selection applications.

Instead of the mixed-models methodology, other
statistical techniques would have been possible too, at
least in principle. An elegant method would be a Bayes-
ian approach. Within a Bayesian framework, several
approaches have been developed for QTL analysis. One
example of such a Bayesian method is a multiple-QTL
approach. QTL are added or removed from the model
by using a reversible-jump Markov chain Monte Carlo
method; see, e.g., Sorensen and Gianola (2002) for an
overview. Another example of a Bayesian method in-
cludes all the markers of the entire genome, where each
marker effect has its own variance parameter, which in

turn has its own prior distribution so that the variance
can be estimated from the data (Meuwissen et al.
2001; Xu 2003; Ter Braak et al. 2005). These Bayesian
methods have the advantage that they automatically
select QTL or cofactors (in terms of our methodology)
and give a credibility interval for the positions of the
QTL. Possible disadvantages of these methods, when
applied to the data set discussed in this article, are the
computation time and problems related to the conver-
gence of the Markov chain. Another point, which can be
seen both as an advantage and as a disadvantage of a
Bayesian analysis, is that we need to choose prior dis-
tributions for the parameters.

Another alternative for a mixed-model approach is
penalized regression (Boer et al. 2002; Zhang and Xu

2005) and the use of regularization paths (e.g., Hastie

et al. 2001; Friedman and Popescu 2004). Penalized
regression is strongly related to the mixed-model ap-
proach. In mixed models, the ratios of the variance
components can be regarded as penalties, where strong
penalties result in small ratios of variance components.
Penalized regression is an example of the broader class
of regularization path methods, in which a set of
candidate models is defined by a path through the space
of parameter values, starting from the simplest model
where the parameter values are shrunk to zero and

TABLE 7

QTL responses for moisture

Chromosome Position (cM) First Second �log10(P) a b

1 113 WS3 WS1 4.2 �27.18 �36.20
1 218 TMNA4 TMNA3 2.8 6.33 �1.90
3 200 TMXA4 TMNA4 3.7 9.23 �2.39
4 9 Longitude TMXA3 3.8 �6.66 �0.99
6 5 TMXA2 WS1 3.2 �11.57 4.76
6 128 WS3 WS1 3.0 5.39 28.69
8 122 Longitude WS1 6.3 8.68 1.46
8 208 TMXA3 TMNA2 3.0 5.35 1.53
9 107 TMXA4 Year 5.9 �5.58 �2.93

First and second refer to the two environmental covariates that gave the best explanation for the Q 3 E effect.
The P-value, QTL main effect a, and slope parameter b are given for the first covariate.

TABLE 8

QTL responses for yield

Chromosome Position (cM) First Second �log10(P) a b

1 25 Longitude TMNA2 11.7 0.46 �0.17
4 41 Longitude WS2 1.5 0.44 0.15
5 86 TMXA3 TMNA2 6.6 �0.65 0.49
6 73 Longitude WS2 3.6 �1.35 0.19
7 96 Year TMNA4 5.9 �0.75 0.95
9 119 Year TMNA4 2.6 1.47 �0.69
10 57 Latitude TMXA2 2.7 �1.48 �0.46

First and second refer to the two environmental covariates that gave the best explanation for the Q 3 E effect.
The P-value, QTL main effect a, and slope parameter b are given for the first covariate.
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ending at the most complex model, where there is no
shrinkage of the parameters. The goal is to find an op-
timal point along this path, for example, by using cross-
validation (Friedman and Popescu 2004). We think that
the idea of regularization paths can form an interesting
bridge between mixed-model methods and Bayesian
techniques. However, these regularization path tech-
niques have to be further developed for QTL analysis
both in single-environment and in multiple-environment
situations.

QTL analysis in MET: We found that QEI effects were
important for both grain yield and grain moisture and
that most of the QEI effects could be decomposed as
QTL responses to spatial and temporal environmental
covariables. The temporal effects were related to differ-
ences in weather conditions between years. The spatial
(longitude, latitude) effects were related to differences
in climate, soil type, and management practices, partic-
ularly the use of irrigation. A number of the QTL re-
sponses to spatial and temporal variations very probably
reflect responses to temperature effects and in some
cases associated water-stress effects.

Also in other METs evidence for QTL responses to
temperature has been found. In a METof tropical maize
consisting of 211 F3:4 lines tested in eight environments,
QTL responses to both maximum and minimum tem-
perature during flowering time were reported (Crossa

et al. 1999; Vargas et al. 2006). In wheat QEI effects were
explained by the temperature during pre-anthesis growth
(Campbell et al. 2004). In barley QEI effects for yield
could be described as QTL expression in relation to the
magnitude of the temperature during heading (Malosetti

et al. 2004). In all these cases the environmental variable
temperature in a critical stage of the development of the
crop could explain the QEI effects, but this still is not
proof that there is a causal relationship between QTL
response and the environmental variable, because many
environmental covariables are correlated in a complex
way, and not all environmental variables are observed.

In this article we analyzed a biparental cross, in which
the two parents were elite inbreds from a heterotic group
developed during the course of a long-term commercial
breeding program (Openshaw and Frascaroli 1997).
Since we found several QTL sensitivities to environmen-
tal covariables in this experiment, it can be expected that
also in other crosses, with two or more parents with high
genetic diversity, QEI interactions will play an important
role. Furthermore, it is important to note that the QTL
main effects and QEI effects are observed in a given
genetic background. Simulation results show that epi-
static interactions between QTL and the genetic back-
ground in combination with QEI are expected to be
important for the outcomes of MAS (Podlich et al. 2004;
Cooper et al. 2005).

Our mixed-model analyses resulted in the detection
of many QTL, both for grain moisture and for grain
yield, which is consistent with earlier analyses (Openshaw

and Frascaroli 1997; Melchinger et al. 2004; Schön

et al. 2004). However, it is difficult to compare the results
in much detail, because in these earlier analyses no
information about the positions of the QTL for grain
yield and grain moisture was given. An important dif-
ference with these earlier analyses is that we also found
strong evidence for QEI interactions, and, even more
important, we found that most of these QEI interactions
could be explained in terms of QTL responses to en-
vironmental covariates. In the U.S. corn belt, one of the
most productive maize regions of the world, and an im-
portant target population of environments, both spatial
and temporal environmental variations were strongly
related to QTL expression. On the basis of their analyses
of the current data, in relation to power of QTL de-
tection and estimation of QTL effects, Schön et al.
(2004) advised to increase the population size rather
than the number of test environments, unless plot
heritabilities are very low. We qualify that conclusion.
We think that the statistical model used by Schön et al.
(2004), being a kind of regression model with simple
assumptions on error structure and no genetic correla-
tions between environments, was not flexible enough to
cope with all the complexities of the present data set,
and therefore the environmental dependency of QTL
expression received insufficient attention. Thus, Schön

et al. (2004) concentrated exclusively on QTL main
effects and treated environments as exchangeable. In
the light of our findings on the omnipresence of struc-
tured QEI in the current data, we would not subscribe to
the view that an increase in population size is more
important than an increase in the number of test en-
vironments. Even when one wants to focus on main-
effect QTL expression, it is still worthwhile to collect
information across enough test environments for mod-
eling QEI, because the quantification of the error at-
tached to the main-effect QTL estimate will be improved
by explicit modeling of the QEI. So, we would not opt for
the choice of just a few test environments to favor a larger
population. Beyond population sizes of 500 there prob-
ably is not very much to gain and it would then be wise to
consider a fuller sampling of the target population of
environments.

Biological models for predicting gene-to-phenotype
associations: We used linear mixed models to analyze
the data and searched for linear QTL responses to en-
vironmental covariates. Upon the collection of addi-
tional genotypic information in the form of measurements
describing plant development or information relating to
gene and metabolic expression, a next step in modeling
could be the fitting of statistical models containing
increased biological realism. Such models would imme-
diately become nonlinear (Ma et al. 2002; Malosetti

et al. 2006; Van Eeuwijk et al. 2007). Of course, from a
biological point of view, nonlinear QTL models are still
simplified representations of the interacting biological
and environmental components of the dynamic plant
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system (Hammer et al. 2006), but for most applied pre-
diction purposes, like marker-assisted breeding, such
nonlinear models would represent an improvement
over the present linear models. Another promising ap-
proach would be to combine mathematical models,
using differential equations to model plant growth and
gene expressions in time (Welch et al. 2005), with
advanced statistical methods.

We thank the associate editor and two anonymous referees for
constructive comments on the manuscript and Marco Bink, Marcos
Malosetti, and Howie Smith for helpful discussions.
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