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ABSTRACT

Simulation is an invaluable tool for investigating the effects of various population genetics modeling
assumptions on resulting patterns of genetic diversity, and for assessing the performance of statistical
techniques, for example those designed to detect and measure the genomic effects of selection. It is also
used to investigate the effectiveness of various design options for genetic association studies. Backward-in-
time simulation methods are computationally efficient and have become widely used since their
introduction in the 1980s. The forward-in-time approach has substantial advantages in terms of accuracy
and modeling flexibility, but at greater computational cost. We have developed flexible and efficient
simulation software and a rescaling technique to aid computational efficiency that together allow the
simulation of sequence-level data over large genomic regions in entire diploid populations under various
scenarios for demography, mutation, selection, and recombination, the latter including hotspots and
gene conversion. Our forward evolution of genomic regions (FREGENE) software is freely available from
www.ebi.ac.uk/projects/BARGEN together with an ancillary program to generate phenotype labels, either
binary or quantitative. In this article we discuss limitations of coalescent-based simulation, introduce the
rescaling technique that makes large-scale forward-in-time simulation feasible, and demonstrate the utility
of various features of FREGENE, many not previously available.

SIMULATION of population genomic data is crucial
for validating the analyses of many evolutionary and

population genetics studies, and for assessing designs
of genomewide association studies. As genotyping and
resequencing technologies advance, it is important to
simulate at the sequence level over large genomic re-
gions, and under realistic models that include the ef-
fects of selection, both directional and balancing, and
of gene conversion and crossover hotspots. The size of
the region simulated will often need to be large, so that
any boundary effects are minimized and to permit
investigation of the long-range effects of multiple sites
under different selection regimes on patterns of genetic
variation such as linkage disequilibrium (LD).

There already exists a range of software tools for
performing population genetic simulations. The devel-
opment of coalescent methods in the 1980s and 1990s
allowed researchers to trace only the observed sample
backward in time, ignoring other members of the pop-

ulation. The resulting computational efficiency has
led to coalescent-based approaches becoming widely
used, implemented for example in MS (Hudson 2002),
SELSIM (Spencer and Coop 2004), CoaSim (Mailund

et al. 2005), and FastCoal (Marjoram and Wall 2006).
However, coalescent methods have important limita-
tions, and we argue here for a complementary role for
forward-in-time approaches.

The first major limitation, both theoretical and prac-
tical, of coalescent methods, is in modeling large amounts
of recombination. The coalescent with recombination
is defined (Hudson 1983; Griffiths and Marjoram

1997) in terms of the limit as population size grows to
infinity of a discrete-time Wright–Fisher model. Even
without recombination, the coalescent process differs
notably from the Wright–Fisher model for small pop-
ulation sizes (Fu 2006). With recombination, however,
this discrepancy becomes much more marked because
chromosomes that are ancestral to the observed sam-
ple are always assumed to recombine with nonancestral
chromosomes. Working backward in time from the
present, the number of chromosomes carrying ances-
tral material can increase rapidly in the presence of
high recombination, before eventually reducing to one.
Thus a fundamental assumption underpinning the coa-
lescent with recombination is questionable even for
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moderately large population sizes, and appears unten-
able for small populations and for populations un-
dergoing severe bottlenecks. The practical difficulty is
that methods for simulating from the coalescent with
recombination, such as CoaSim and MS, are only fea-
sible for relatively small amounts of crossover and gene
conversion, corresponding to at most a few megabases.
FastCoal is, as the name suggests, fast, and can simulate
very large genomic regions, but this is achieved by ex-
ploiting an approximation to the coalescent with re-
combination, and FastCoal does not incorporate gene
conversion.

The second major limitation of coalescent approaches
is that the repertoire of selection scenarios that they can
accommodate is limited. Selsim does incorporate a gen-
eral diploid selection model, but is limited to a single
locus under selection, relatively small sample sizes and
genomic regions, constant population size, and uniform
recombination rate.

Forward-in-time approaches are extremely flexible;
almost any population genetic model can be simulated
subject to computational requirements. Even with the
storage and processing power of today’s computers this
remains a serious limitation, because the entire pop-
ulation must be tracked forward in time. However, we
illustrate below time-rescaling techniques that, together
with efficient coding, make ‘‘brute force’’ forward-in-time
methods feasible. Some forward-in-time population ge-
netics simulation software is already available, for exam-
ple FPG (Hey 2004) and simuPOP (Peng and Kimmel

2005). FPG is limited to 1000 sequences with each se-
quence restricted to 32 polymorphic sites. SimuPOP is
implemented in Python; simple evolutionary models
can be run interactively using a Python shell, while more
complex models require user-written macros.

Our forward-in-time software forward evolution of
genomicregions (FREGENE)providesadvantagesofmod-
eling flexibility and computational efficiency over exist-
ing simulation software. FREGENE accommodates
selection, both directional and balancing, affecting mul-
tiple sites so that the joint effect of different selection
regimes can be investigated. It allows both crossovers
and gene conversion (we use ‘‘recombination’’ to refer
collectively to both these processes) including hotspots.
FREGENE allows selfing, and incorporates growth and
decline of population sizes, and population subdivision
with migration. These can be combined to devise com-
plex demographic scenarios. For example, FREGENE
can be used to mimic global human genetic history,
similar to the approach of Schaffner et al. (2005), in-
cluding major features such as continental population
structure with migration and bottlenecks. SimuPOP is
also highly flexible, but FREGENE, because of its ef-
ficient coding in C11, required less than half the
computational time for comparable models in our
simulations, and the maximum feasible genomic region
was about four times larger.

FREGENE is useful for the investigation of patterns of
genomic variation under various selection regimes (see
e.g., Charlesworth 2006). In addition, it is useful for
investigating the properties of statistical methods to
detect loci subject to selection (Nielsen et al. 2005;
Voight et al. 2006), and fine-scale estimation of re-
combination rates (Crawford et al. 2004; McVean et al.
2004; Myers et al. 2005; Carvajal-Rodriguez et al.
2006), in particular the sensitivities of such estimates to
other evolutionary factors. Perhaps most importantly,
it allows both these phenomena to be studied jointly,
which is important because the signal of recombination
in polymorphism data can be confounded by selection,
and vice versa.

The FREGENE package can also generate phenotype
labels for the final generation of individuals, under a
range of disease models that can include multiple causal
variants. This facilitates the use of FREGENE to test
statistical analysis strategies for genetic association
studies, using either resequencing data or SNP geno-
types and it has already been used for this purpose
(Minichiello and Durbin 2006). Although simulation
of entire human genomes in large populations remains
infeasible, 10-Mb chromosomes in a population of
10,000 diploid individuals can be simulated within 2
days using a standard desktop work station (.2 GB
RAM) and approximated in ,1 hour using 10-fold
rescaling, described below. Thus, direct simulation of
the genetic history of population isolates that are of
particular interest in gene mapping (Varilo and
Peltonen 2004) is feasible, as is a good approximation
of many aspects of global human genetic variation
(Jobling et al. 2004). Further, a genomic interval of 10
Mb suffices for accurate extrapolation to genomewide
studies, so that false discovery rates (Storey and
Tibshirani 2003) and statistical significance thresholds
can be investigated under various design options.

METHODS

The evolutionary models implemented are aimed at
flexibility and simplicity, while maintaining computa-
tional efficiency.

Evolutionary models: In FREGENE, a population of
N individuals, each consisting of a pair of homologous
sequences, evolves over discrete, nonoverlapping gen-
erations according to the Wright–Fisher model. The
starting sequences are assigned by the user; they may all
be empty lists, or the final state from a previous run of
FREGENE.

Each sequence is represented as a list of sites at which
the minor allele is present—we track the minor rather
than the derived allele to minimize memory usage and
computation time. This is achieved by periodically (below
every 100 unscaled generations) checking the popula-
tion allele frequencies. If a minor allele has become the
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major allele at a site, the allele labels are ‘‘swapped’’
(swapping eliminates the site from sequences that pre-
viously included it, and includes it in sequences that
previously did not). The swap status (derived or ances-
tral) of each minor allele is recorded so the identity of
the derived allele is always known. The entire life history
of all selected alleles can be tracked, allowing detailed
study of the behavior of selected variants (Figure 1).

Mutation: FREGENE implements a two-allele, finite-
sites mutation model, with mutation events occurring
independently and at constant rate. It would be feasible
to program a four-allele mutation model, corresponding
to the four DNA bases, but our diallelic model provides
a computationally efficient approximation that is accu-
rate when mutations are rare and also when trans-
versions are much less likely than transitions.

At each mutation event, a sequence and a site are
chosen at random and the site is added to the minor
allele list for that sequence, unless it is already there in
which case it is removed. The latter case corresponds to
a ‘‘back mutation,’’ in which a derived allele mutates
back to the ancestral type. All ‘‘double hit’’ polymorphic
sites can be recorded, whether they correspond to a
back mutation or to a new mutation arising on an
ancestral allele at a polymorphic site. Double-hit sites
can confuse naive estimators of recombination rate and
their rate is affected by the rescaling technique de-
scribed below.

Reproduction, selection, and recombination: Each se-
quence in a new generation is obtained from the two
sequences of a parent, following recombination events
that may include both crossovers and gene conversions.
The two parents of an individual are chosen at random
(selfing can be switched on, otherwise the parents are
distinct), with probability proportional to fitness W,
calculated as

W ¼ 1 1
X

j

xj ; ð1Þ

where the summation is over nonneutral SNPs and

xj ¼
0 if the individual is an ancestral homozygote at site j
sh if heterozygote
s if derived homozygote:

8<
:

Recall that FREGENE records minor alleles for each
sequence, so implementing Equation 1 requires check-
ing the list of sites at which the derived allele is not the
minor allele.

For computational efficiency we do not currently
implement sexual dimorphism, but this would be
straightforward. Also, in common with the standard
Wright–Fisher model, each offspring arises from an
independent mating so that full siblings rarely arise.

Recombination in FREGENE is specified by a C11

object that is readily modified or replaced to implement
alternative models. The recombination models currently

offered within FREGENE include uniform, a constant-
intensity hotspot model, and varying-intensity hotspots
within a hierarchical structure that models recombina-
tion rate heterogeneity at different genomic scales. The
user can specify that the pattern of hotspots applies both
to crossovers and to gene conversions or only to cross-
overs while the gene conversion rate is uniform. See the
FREGENE web site for further details.

When mutation generates a novel allele, it is neutral
with probability pN. Otherwise selection coefficients s
and h are each chosen from a mixture of two Gaussian
(normal) distributions with means and variances as-
signed by the user. If 0 , h , 1, then positive (s . 0)
or negative (s , 0) directional selection arise. If h , 0 or
h . 1 then balancing selection can arise such that both
alleles tend to be maintained at stable frequencies. For
large population sizes, there is an equilibrium popula-
tion proportion of the derived allele at

p ¼ h

2h � 1
; ð2Þ

irrespective of the value of s, but when sh , 0 the
equilibrium is unstable and is rarely realized. Even a
stable equilibrium will eventually be destroyed, either by
drift or by a positively selected allele arising at a tightly
linked site.

Population size: The population size can be constant,
or it can grow or decline exponentially. More complex
demographic scenarios, involving for example bottle-
necks, or periods of stasis between bouts of growth, or
population splits or merges, can be implemented via
multiple successive runs, the output of each being used
as input for the subsequent run with new demographic
parameters.

Simulation of a very large population, for example
the current worldwide human population, may be con-
strained by computer memory to short genomic inter-
vals. However, typical human effective population sizes
are readily accommodated, and large populations can
be approximated using rescaling, as described below.

Subdivided populations with migration: FREGENE im-
plements a symmetric island model, in which there is
a common migration rate m in each direction and be-
tween each pair of islands. Different population sizes
can be specified for each island, but if exponential
growth is specified, the same growth rate applies to each
island. If the population sizes are constant in a symmet-
ric island model, users may specify instead of m the
corresponding equilibrium value of Fst.

Migration of sequences occurs after pairing but before
reproduction; each pair of sequences used to generate
new sequences in an island is chosen locally with prob-
ability 1 – m, otherwise the source island is chosen
uniformly from all the islands in the simulation. Since
the local island can be chosen in the latter case, the
effective migration rate is m(1 � 1/k).
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Simulation size and run length: Users will typically
wish to run FREGENE for the minimum time necessary
to achieve approximate equilibrium, if there is one for
the specified model, or more generally so that the initial
conditions are ‘‘forgotten’’ with high probability. This
occurs if, at almost every site, the entire final generation
traces back to a unique sequence in the founding gen-
eration of the simulation. For a standard Wright–Fisher
model of a constant-size, panmictic population under
neutrality, the time since the most recent common an-
cestor at a site has a known distribution (Neuhauser

2007), and 10N and 12N generations suffice to ensure
that the final generation will trace to a unique founder
sequence at, respectively, almost 98 and .99% of sites in
a large genomic interval. This will typically be adequate
when the mutation rate is low; most of the remaining
sites will trace back to two or three founders and, if the
simulation were extrapolated backward in time, these
would typically reach a common ancestor with no inter-
vening mutation. Figure 2 illustrates that the equilib-
rium homozygosity under neutrality is reached well
within 10N generations.

Rescaling approximations for computational efficiency:
The diffusion theory of population genetics (Ewens

2004) is founded on the principle that, for a wide range
of models, populations of any (large) size are approx-
imately equivalent—for example, allele frequencies and
LD statistics have approximately the same distribution—
provided that time is scaled by (effective) population
size. Under this scaling, rate parameters such as mu-
tation (m) and recombination rates (Rc and Rg, for
crossover and gene conversion), and also the selection
coefficient s, are expressed as products with N. For
example, the proportion of sequence pairs that have the
same allele at a site, averaged over sites, is F ¼ 1/(1 1

4Nm). Further, t generations is equivalent to t/N scaled
time units. Thus, if it is desired to simulate over t gen-
erations a population with parameter values N, m, Rc, Rg,
and s, then a simulation using instead N/l, lm, lRc, lRg,
and ls, evolved for t/l generations, for some l . 1, will
generate approximately the desired allele frequency
distribution and patterns of LD.

Rescaling permits a dramatic reduction in computing
time. For example, we found that simulation under
neutrality of 10-Mb chromosomes in 10,000 individuals
required nearly 2 days without rescaling, but ,1 hr us-
ing 10-fold rescaling (l¼ 10). This decrease is achieved
because the number of generations is reduced by a fac-
tor of l, and in each generation the number of indi-
viduals to be simulated is similarly reduced. Thus,
rescaling could reduce the overall computing time by
a factor of up to l2. In practice, because some aspects of
the computation do not scale with l, the achieved speed
reduction is less than l2, particularly for l large: we
found that with l ¼ 5, 10, and 20 the computation time
was reduced by factors of 20, 64, and 180, respectively.
Run times for models involving balancing selection can

be longer, while directional selection typically reduces
run time compared with a neutral simulation. In either
case, the relative time saving from rescaling is similar to
that under neutrality.

Simple rescaling leaves fewer individuals in the final
generation, but this can be avoided while retaining most
of the computational gain by starting the simulation with
l?1, but gradually approaching l¼ 1 as the simulation
proceeds. For example, using l¼ 104/(103 1 g), where g
is the generation number, for the first 9000 generations,
and then continuing with l ¼ 1 for a further 11,000
generations, allowed us to simulate 10,000 pairs of
10-Mb chromosomes to near equilibrium in �10 hr.

One cost of rescaling is that double-hit sites become
more frequent, which may be important for some ap-
plications such as the estimation of recombination
rates, although double-hit sites are typically rare and a
higher rate will often be unproblematic. If the user is
concerned about double-hit sites, a possible solution is
to replace N with N/l but leave all the rate parameters
unchanged and instead increase the genome length
(number of sites) by l. The mutation rate per site and
hence the double-hit rate are unchanged; each site is
less likely to be polymorphic but, because of the larger
number of sites, the expected total number of poly-
morphic sites is unchanged. Alternatively, since double-
hit sites are flagged in FREGENE, it may be appropriate
to remove a proportion of 1 – 1/l double-hit sites from
the output.

Storage requirements: For every copy of the minor allele
at every SNP, an integer is required to store its genomic
location. At equilibrium in a standard Wright–Fisher
model, the total storage requirement (integers) for N
diploid individuals is about 11N 2m. For N ¼ 10,000 and
m ¼ 2.3 3 10�8, the expected number of integers stored
per site is �25. In practice, we found that �205 MB of
RAM were required per megabase of sequence with N¼
10,000 but only 27 MB/Mb when approximated using
rescaling with l ¼ 10.

RESULTS

We simulated 10,000 individuals over a 3-Mb genomic
region, using recombination and mutation models rep-
resentative of those observed in humans (Table 1).
Three selection scenarios were implemented: (a) neu-
trality; (b) predominantly directional selection, both
positive and negative; and (c) predominantly balancing
selection. The literature on realistic values for selection
coefficients at typical human loci is sparse, and we chose
illustrative rather than realistic values. We used scaling
with l ¼ 10, so that only 30,000 FREGENE generations
were required to mimic 300,000 actual generations, but
as a check, simulations a and b were replicated without
scaling (l ¼ 1) for 150,000 generations. For the scaled
simulations, the generation counts reported below refer
to unscaled equivalents.
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Figure 1 shows the trajectories of selected alleles that
reach fixation. The majority of positively selected alleles
(top) proceed rapidly to fixation, but two with small s
values took more than 5000 (unscaled) generations.
The two negatively selected variants reaching fixation
both show a period of rapid increase in frequency
corresponding to hitchhiking with a nearby positively
selected allele. A small number of variants with s , 0 also
reach fixation under the balancing selection model
(bottom). For the parameters chosen here, the allele
frequencies remain highly variable in the vicinity of the
equilibrium value, so that some quasi-stable loci do
reach fixation within this simulation.

Figure 2 shows the evolution of homozygozity for the
three simulation scenarios, and also for the two unscaled
replicates which, as expected, show a similar evolution
to their scaled counterparts. The vertical dotted lines
refer to simulation b; these correspond to the fixation of
a positively selected allele, which usually generates a
rapid local increase in homozygosity. The balancing
simulation c has still not reached equilibrium after
300,000 generations; new balancing polymorphisms are
arising more rapidly than they are being lost leading to a
decline of homozygosity that is only gradually attenuating.

Figure 3 illustrates the capacity of Tajima’s D (Tajima

1989) to detect a signature of selection (Carlson et al.
2005). Negative values of D indicate an excess of rare
variants that may be due to positive selection, while the
excess of common variants signaled by D . 0 may flag
balancing selection. The definition of D implies that
Var(D)¼ 1 under a simple neutral model, and jDj. 2 is
usually interpreted as significant at level 0.05. Only one
site reached fixation within the final 3000 generations
of the directional simulation, generating the smallest,
but only barely significant, D value. For the balancing
simulation, stable polymorphisms sometimes generate a
positive peak in Tajima’s D but only once did this peak

exceed 2. Note that our simulation includes some
directionally selected alleles, which may (realistically)
complicate the signal from Tajima’s D relative to a
simpler simulation.

TABLE 1

Parameter values for the simulation models

Target value
Scaled value

l ¼ 10

No. chromosomes, N 20,000 2000
No. generations 300,000 30,000
Mutation rate, m 2.3 3 10�8 2.3 3 10�7

Crossover rate, Rc 1.1 3 10�8 1.1 3 10�7

Gene conversion rate, Rg 1.2 3 10�8 1.2 3 10�7

Directional selection
Selection coefficient s � 0:1 3Nð0:005; 0:0252Þ1 0:9 3Nð�0:01; 0:0052Þ
Dominance coefficient h ¼ 0.5

Balancing selection
Selection coefficient s � 0:1 3Nð0:005; 0:052Þ1 0:9 3Nð�0:01; 0:0052Þ
Dominance coefficient h � Nð2:0; 1:02Þ

The top section applies to all simulations. For both nonneutral models, the proportion of the genome under
selection is 5 3 10�4 (i.e., PN ¼ 0.9995). Nðm;s2Þ denotes the Gaussian (normal) distribution with mean m and
standard deviation s.

Figure 1.—Trajectories of selected variants that reached
fixation in simulation studies (Table 1). Red curves corre-
spond to negatively selected alleles (s , 0).
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DISCUSSION

High-throughput genotyping and resequencing tech-
nologies are revolutionizing population genetics, by
providing data to study processes such as recombination

and selection at high resolution on large genomic scales.
Computationally efficient simulation tools that can
explore complex demographic and selection scenarios
over large genomic regions will be invaluable in making
full use of these data. We have illustrated (Figure 1) how
FREGENE can permit detailed tracking of selected
variants, for example hitchhiking of negatively selected
variants. We have also illustrated the utility of our FRE-
GENE software to explore the behavior of a selection-
monitoring statistic, Tajima’s D, under complex selection
scenarios, which has not been available to previous authors
using this statistic.

Genomewide association studies using dense SNP
maps are now a reality, and whole genome resequencing
is beginning to emerge, so that researchers will want to
evaluate its costs relative to its potential benefits, and for
this a sophisticated simulation tool is required that can
generate test data sets for evaluating different genotyp-
ing technologies and study designs. FREGENE has
already been used for assessing an analysis tool for dense
SNP-based studies, and it can also be used with rese-
quencing data. For either data type, it will be particularly
useful for the study of population isolates. The possibil-
ity of including selection in such simulations greatly
enhances their realism. Recently, forward simulations
have been used to investigate patterns of complex disease
under different scenarios (Peng and Kimmel 2007; Peng

et al. 2007). These authors use either a single locus under
selection or a few unlinked loci, and the same loci affect
penetrance. Use of FREGENE would allow the effects of
interactions among many sites under selection to be
incorporated, most of these not related to the penetrance
for a specific phenotype. Although the final frequency of
a selected variant cannot be predicted, the simulation of
large genomic regions using FREGENE can allow many
possibilities for selected variants in the final generation.

Forward simulators are memory and cpu intensive,
but we have introduced here a rescaling technique that

Figure 2.—Per-site homozygosity over
generations for simulations described in
Table 1. The dashed horizontal line shows
the theoretical equilibrium value for the
neutral simulations. Vertical dotted lines
indicate the generations at which, in the
scaled directional simulation, selected sites
with s . 0.05 went to fixation.

Figure 3.—Tajima’s D in 50-kb windows after 300,000 gen-
erations (top) and 150,000 generations (bottom). The verti-
cal dotted line (top) indicates the location of the unique
site under positive selection that went to fixation within the
final 3000 generations. The vertical dashed lines (bottom) in-
dicate selected sites that were polymorphic throughout the
preceding 10,000 generations.

1730 C. J. Hoggart et al.



reduces the number of generations required for a sim-
ulation. With this technique, we believe that FREGENE
will prove a valuable tool both for those developing
methods to detect genomewide associations, and those
exploring population genetic hypotheses. Source code,
executables, and documentation are available from
http://www.ebi.ac.uk/projects/BARGEN.
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