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Multiple genes, gene-by-gene interactions, and gene-by-environ-
ment interactions are believed to underlie most complex diseases.
However, such interactions are difficult to identify. Although there
have been recent successes in identifying genetic variants for
complex diseases, it still remains difficult to identify gene–gene
and gene–environment interactions. To overcome this difficulty,
we propose a forest-based approach and a concept of variable
importance. The proposed approach is demonstrated by simulation
study for its validity and illustrated by a real data analysis for its
use. Analyses of both real data and simulated data based on
published genetic models show the effectiveness of our approach.
For example, our analysis of a published data set on age-related
macular degeneration (AMD) not only confirmed a known genetic
variant (P value � 2E-6) for AMD, but also revealed an unreported
haplotype surrounding single-nucleotide polymorphism (SNP)
rs10272438 on chromosome 7 that was significantly associated
with AMD (P value � 0.0024). These significance levels are obtained
after the consideration for a large number of SNPs. Thus, the
importance of this work is twofold: it proposes a powerful and
flexible method to identify high-risk haplotypes and their interac-
tions and reveals a potentially protective variant for AMD.

age-related macular degeneration � genomewide association �
haplotype � single-nucleotide polymorphism � tree and forest methods

I t is generally accepted that the etiology of most complex
diseases involves genetic and environmental factors and the

interactions among them. Association study is a more powerful
approach than linkage analysis when ultradense markers are
genotyped. Recently, there have been landmark successes from
association studies that identified genetic variants underlying a
few complex traits, including age-related macular degeneration
[AMD (MIM nos. 603075, 610149, 610698, and 153800)] (1–5),
inflammatory bowel disease (MIM nos. 26600 and 191390) (6),
cardiac repolarization (7), and Alzheimer disease (MIM no.
104300) (8). In this study, we will propose an approach for
genomewide association study to identifying susceptible haplo-
types and their interactions.

Epistasis is a mechanism in which the effect of the genotype
in a particular locus might depend on the genotype of other loci
(9). In several genetic studies, considering interactions among
genes has proven to be useful in identifying susceptible loci for
various scenarios (10, 11). Despite the belief that epistasis likely
plays an important role in the development of complex diseases,
identifying gene–gene interactions is challenging. A major cause
lies in the large number of potential interactions and the
resulting tests, because we generally do not know a priori which
genes may be engaged in epistasis. A practical approach is to test
candidate epistatic effects after a genomewide scanning reveals
genes with main effects (12). However, some authors noted that
if a trait is caused by several loci interacting epistatically rather
than additively, then there are many situations where the main-
effect-based methods may have relatively little power to detect
any of those loci (13, 14). Thus, it is critical and challenging to
develop powerful analytic approaches that can detect interac-
tions and main effects.

Recently, Zhao et al. (15) introduced a test for interaction
between two unlinked loci by defining the interaction as the
deviance of penetrance for a haplotype at two loci from the
product of the marginal penetrance of the individual alleles that
span the haplotype. It is important to note, however, that
haplotypes cannot be determined with certainty in the com-
monly available high-throughput genotype platforms such as
Affymetrix GeneChip Array and Illumina BeadArray. Becker et
al. (16) used maximum likelihood to estimate haplotype fre-
quency. They then tested a global hypothesis that none of the
considered single-nucleotide polymorphism (SNP) combina-
tions showed an association with the disease. With a large
number of markers such as SNPs and haplotypes, it is not an easy
task to identify which haplotypes should be considered for
interaction testing. Marchini et al. (17) examined the power of
three strategies for analyzing gene–gene interactions in genome-
wide association studies: Strategy I, locus-by-locus search re-
quiring at least one locus meeting the significant criterion;
strategy II, search over all pairs of loci; and strategy III, a
two-stage strategy in which all loci meeting some low threshold
in a single-locus search are subsequently examined for a signif-
icant full model fit. Marchini et al. (17) suggested that strategy
III is the most powerful choice in most cases. Musani et al. (18)
presented a more comprehensive review of methods and issues
for epistatic analysis.

Most of the efforts focused on interactions of two unlinked
regions. By using the recursive partitioning technique, Zhang
and Bonney (19) introduced the tree-based approach to genetic
association analysis that can be used to explore gene–gene (as
well as gene–environment) interactions systematically based on
the available markers. Since then, the recursive partitioning
technique and other machine-learning methods have been ex-
amined and applied in a number of genetic studies (20–23). All
of those reports, however, evaluated the interactions among the
given markers. To detect haplotypes and interactions among
them, we must acknowledge the fact that haplotypes are not
given and must be inferred in frequencies based on SNPs. In
addition, we need to consider the uncertainties in the estimated
haplotypes for association studies. To overcome this problem, we
propose to use the forest-based approach to accommodate the
haplotype uncertainties and variable importance to sort out
significant haplotypes and their interactions in genomewide
case-control association studies. In the special case when we are
interested in single SNP-based analysis, our approach is similar
to that of Zhang and Bonney (19) and Bureau et al. (24).

System and Methods
As described earlier, we propose a method that detects the
disease-related haplotypes, some of which may act on their own,
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whereas others may interact with each other in manifesting their
effects.

Estimated Haplotype Frequencies. With the current high-
throughput genotyping platforms, the haplotype information is
not directly observed. What we can observe are the SNP
genotypes. Many methods for haplotype reconstructions have
been developed (25–30). We use a haplotype reconstruction
program, called SNPHAP (31), to obtain haplotype frequencies
for each individual. SNPHAP is a program that estimates
haplotype frequencies for unrelated individuals. This program
implements an expectation-maximization (EM) algorithm to
calculate the maximum likelihood estimate of haplotype fre-
quencies based on genotype data whose phase is unknown.

Recursive Partitioning. Suppose we have n subjects with feature
information (haplotypes) and their disease status or class label.
Recursive partitioning is an approach to build a classifier that
predicts the class membership based on the feature information.
According to this information, it divides an entire study sample
into smaller and smaller subgroups, called nodes, from one
feature at a time in an attempt to achieve the maximum
homogeneity of the subgroups in terms of the disease distribu-
tion as measured by entropy, for example. The entropy of node
t is defined as it � �pt log(pt) � (1 � pt)log(1 � pt), where t is
the proportion of the individuals in node t having the disease.
The recursive partitioning process begins with the entire sample,
namely, the root node. For clarity, let us assume for the moment
that haplotypes could be observed for all individuals. We can
divide the root node into two daughter nodes according to the
haplotypes that one individual may or may not have. Such a split
is decided after we evaluate all possible splits of the root node
by using all haplotypes. We then select the one that yields the
lowest weighted entropy of the two daughter nodes. The weight
is proportional to the number of subjects in the daughter node,
and specifically, the weighted entropy for node t with daughter
nodes tL and tR is defined as i(t) � p(tL)i(tL) � p(tR)i(tR), where
i(tL) and p(tL) are the entropy of node tL and the proportion of
subjects in node tL, respectively. i(tR) and p(tR) are defined
analogously for node tR. After the root node is divided, the same
splitting process can be recursively applied to the daughters to
continue the division. The root node is at the first layer of the
tree, its two daughter nodes are at the second layer, the third
layer consists of the daughter nodes of the nodes in the second
layer, and so on. The final size and layer of the tree will be
specified later. We refer to Breiman et al. (32) and Zhang and
Singer (33) for details. In the description above, we assumed that
haplotypes could be observed for all individuals, which is of
course not the case. We resolve this problem by constructing a
forest as described below.

Forest. Because haplotypes can only be estimated by frequencies,
for haplotypes in a given region, we suppose that there are K
possible haplotypes H1, . . . , HK with frequencies q1, . . . , qK,
respectively. The key idea is to expand our data randomly and in
proportion to the frequencies q1, . . . , qK. For illustration, sup-
pose we have two combinations of haplotypes, say (H1, H2) and
(H3, H4), conform with the genotypes of the observed genotype
for an individual and these two combinations are equally likely.
We can expand one data set with the unphased genotype into
two phased data sets with the first having two haploids (H1, H2)
and the second having (H3, H4). Such a random expansion
applies to all individuals and all regions. As a result, one
unphased data set would expand to a large number of phased
data sets reflecting the uncertainties of the haplotypes. Choosing
an exact number of the phased data sets is usually a straight-
forward trial-and-error process. For example, if we begin by
expanding an unphased data set into 100 phased data sets, we

expect that a haplotype with the frequency of 0.1 or greater
appears 10 times on average across all of the expanded data sets.
Then, by doubling the number of the phased data sets a few
times, we can evaluate whether the number of the phased data
sets affects the result, namely, suggesting different genomic
regions. For example, we used 100 data sets for the AMD study
(3). For each data set after the expansion, we can construct a tree
by using the recursive partitioning technique as presented above.
A forest is formed after a tree is grown for every expansion data
set. Because of the overfitting problem in the traditional tree
framework (34), we chose to grow a maximum of seven layers in
each tree. Furthermore, a tree of seven layers can accommodate
many seven-way interactions and hence can represent a large and
complex model. A data set with thousands of study subjects will
usually not be powered to make inference on a larger model than
a seven-layer tree.

The next immediate and essential question is: how do we
identify genes and gene–gene interactions that contribute sig-
nificantly to the disease risk? To answer this question we are
required to make inference from the forest. The hypothesis is
that, if certain genes and gene–gene interactions indeed underlie
the disease etiology, they must manifest their contributions in
the forest in patterns beyond chance. Mathematically, we use
variable importance to help us identify significant patterns of
genes and gene–gene interactions in the forest in association
with the disease.

Importance of a Haplotype. There are many possible ways to
quantify the importance of a haplotype in its association with the
disease. In the following, we propose one of such measures,
which is inversely proportional to the depth of a node for which
a haplotype is used to split the node. The rationale is that a
variable of importance tends to appear near the top of a tree.

First, for a haplotype h in a chromosome region G, we assess
its ‘‘importance’’ in each tree, T, of the constructed forest f. Let
�T� be the number of nodes in T. Then the ‘‘importance’’ of the
haplotype h in tree T is defined as

VT�h� � �
t�T,t is split by h

2�LtGt

where Lt is the depth of node t and Gt is the �2 independence test
statistic of node t. Then, the average of ‘‘importance,’’

Vf�h� �
1
�f� �

T�f

VT�h�,

over all of the �f� trees in the forest f serves as the importance
measure of haplotype h.

Algorithm. We now summarize all steps in identifying haplotypes
and haplotype–haplotype interactions. Visit http://c2s2.yale.
edu/software/HapForest for software implementation.

1. Apply the recursive classification tree program (19) by using
the individual SNPs as features and the disease status as the
outcome.

2. Construct haplotype blocks containing the SNPs identified in
step 1 using Hapview (35).

3. Use SNPHAP (31) to estimate the haplotype frequencies in
the haplotype blocks identified in step 2.

4. A new data set is constructed from the original data set by
assigning phased haplotypes in all regions (or genes) randomly
according to the haplotype frequencies inferred in step 3.

5. Apply the recursive classification tree program to construct
tree T by using the data set constructed in step 4.

6. Evaluate the importance, VT(h), of any haplotype h for tree T.

19200 � www.pnas.org�cgi�doi�10.1073�pnas.0709868104 Chen et al.



7. Repeat steps 4–6 a number of times and obtain the average
importance measure.

Significance Level. To assess the significance of a haplotype in its
association with the disease, we begin with the original data set
and permute the disease status among all subjects a prespecified
number (e.g., 100) of times. This permutation generates the data
under the null hypothesis of no association between the geno-
types and the disease at genomewide level. Then, for each
permuted data set, we construct a forest and then calculate the
importance of a haplotype as we have done by using the original
data set. This enables us to generate the distribution of the
maximum importance measures for haplotypes not associated
with the disease over the entire genome, which can be used to
assess the significance of the importance measure of haplotypes
in the original data set. It is important to note that this procedure
adjusts the significance level for genomewide multiple tests,
because the null distribution is derived from the genomewide
data. Thus, the commonly used significance level of 0.05 is an
appropriate threshold for significance. When we have multiple
haplotypes, we evaluate their significance levels simultaneously
through the same permutation process.

Results
Simulation Design and Power Comparison. Even though our method
does not have limitations on the number of regions or the
number of SNPs in a region, to compare the power of our method
with the method of Becker et al. (16), we restricted our attention
to two genomic regions, each of which has three SNPs. As
specified in Tables 1 and 2 we used the 12 two-locus interaction
models described by Knapp et al. (36) and Becker et al. (16) and
two additive models with background penetrance (Ad-1 and
Ad-2). In our simulation study, we assume that each locus is
diallelic and two regions are unlinked. The studied models
include models of epistatis (Ep-1 to EP-6 and S-3), models of
heterogeneity (Het-1 to Het-3 and S1 to S2), and models with

additive effect (Add-1 to Add-2). Main effects are absent in
models Ep-1 through Ep-3 and Ep-5. We refer to Knapp et al.
(36) for more discussions of these models.

As in Becker et al. (16), we carried out our simulation studies
with 300 cases and 300 controls to assess the power. Specifically,
we considered two unlinked regions, each with three SNPs and
all eight possible haplotypes. We considered three scenarios: (i)
neither region is in linkage disequilibrium (LD) with the disease
allele(s), (ii) only one region is in LD with the disease allele
(D� � 0.5), and (iii) both regions are in LD with the disease allele
(D� � 0.5). The first two are designed to examine the capability
of our method to exclude false-positive SNPs or regions. We used
the same code as in Becker et al. (16) to simulate the LD pattern.

The null hypothesis, as stated by Becker et al. (16), is that none
of the SNPs in the two regions is associated with the disease,
whether they are tested as a single SNP, in combination with
other SNPs in the same region, or as interactions across the two
regions.

Ideally, simulations with the whole genome data as in the
AMD data would be more useful. However, we restrict our
attention to two regions for two reasons. First, as stated above,
we would like to compare our results with Becker et al. (16)
under the same genetic models. Second, a thorough simulation
with the entire genome is computationally intensive.

The power and false-positive rates are shown in Tables 3 and
4. The power is computed when at least one region is in LD with
the disease allele as follows. When both regions are in LD with
the disease allele (scenario iii), we considered a loose definition
of power, �1 � P (identify at least one correct haplotype), and
a strict definition of power �2 � P (identify both haplotypes
correctly). When only one region is in LD with the disease allele
(scenario ii), the power is defined as �3 � P (identify the correct
haplotype). The false-positive rate (FP1) is calculated as FP1 �
P (identify at least one wrong haplotype).

In Table 3, the power values and false-positive rates are
reported for 14 two-locus disease models under scenario iii. All
of these disease models include interaction effects between the
two regions, revealing the power of our method to identify the
correct haplotype. Table 4 displays the power values and false-
positive rates under scenario ii. Again, our approach has great
power in identifying the correct high-risk haplotype (except
genetic model S-2).

We should note that approaches have been proposed to test
two specified regions, unlike ours that search for high-risk
regions without specifying where they are a priori. For compar-
ison purposes, we compared the power of our approach with

Table 1. The penetrance table for the two-locus model

Region 2

0 1 2
Region 1 0 f00 f01 f02

1 f10 f11 f12

2 f20 f21 f22

fij is the penetrance of the genotype carrying i and j copies of the disease
haplotype at regions 1 and 2, respectively.

Table 2. Description of two-locus segregation models

Model f22 f21 f20 f12 f11 f10 f02 f01 f00 f P1 P2

Ep-1 f f 0 f f 0 0 0 0 0.707 0.210 0.210
Ep-2 f f 0 0 0 0 0 0 0 0.778 0.600 0.199
Ep-3 f 0 0 0 0 0 0 0 0 0.900 0.577 0.577
Ep-4 f f 0 f 0 0 f 0 0 0.911 0.372 0.243
Ep-5 f f 0 f 0 0 0 0 0 0.799 0.349 0.349
Ep-6 0 f f f 0 0 f 0 0 1.000 0.190 0.190
Het-1 g g f g g g f f 0 0.495 0.053 0.053
Het-2 g g f f f 0 f f 0 0.660 0.279 0.040
Het-3 g f f f 0 0 f 0 0 1.000 0.194 0.194
S-1 f f f f f g f f 0 0.522 0.052 0.052
S-2 1 1 1 f f 0 f f 0 0.574 0.228 0.045
S-3 1 1 f 1 f 0 f 0 0 0.512 0.194 0.194
Ad-1 f f 0.04 f 0.304 0.02 0.01 0.01 0.01 0.799 0.349 0.349
Ad-2 f f 0.15 f 0.324 0.10 0.05 0.05 0.05 0.799 0.349 0.349

g � 2f � f 2. pi is the frequency of the disease allele at locus i. fij is defined in Table 1.
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Becker’s method, called FAMHAP (16), which tests the LD of
two unlinked and a priori regions with the disease allele.

Compared with the result obtained from FAMHAP, the
power of our approach is compatible in identifying at least one
region. In all models considered, both approaches are able to
identify at least one region with power close to 1.00. However,
our approach is much more powerful than the FAMHAP
method in identifying the interactions of haplotypes or the
combination of SNPs from two unlinked regions. For example,
in the Ep-2 model, the power of our proposed approach is 0.84,
whereas FAMHAP failed to identify the two regions (with the
power �0.001). In most models, our proposed approach main-
tained its power �0.8 in identifying the two true haplotypes
while FAMHAP often failed.

Table 4 indicates that our approach tends to have �5%
false-positive rate, whereas the false-positive rate for FAMHAP

is 	5%. Although neither region is in LD with the disease
allele(s) (scenario i), our approach had 1% false-positive rate.

Significant Genes for Age-Related Macular Degeneration
Age-related macular degeneration is the most common cause of
vision loss in the elderly. Many researchers have devoted much
effort to uncover the genetic mechanism of this complex disease.
More information can be found in Daiger (37) and Marx (38).
To test our method, we analyzed the data from a published
case-control study (3). This data set contains 96 MD cases and
50 controls and has more than 100,000 SNPs for each individual.

While using more than 100,000 SNPs from each individual, we
first ran the RTREE program (19) by treating each SNP as one
covariate, which identified single markers potentially associated
with AMD. For example, RTREE selected rs1329428 on chro-
mosome 1 and rs10272438 on chromosome 7 as two top splits.

We then used the Hapview (35) to construct the LD blocks
containing those two SNPs. We derived two haplotype blocks:
one including 6 SNPs for rs1329428 (region 1) and another
including 11 SNPs for rs10272438 (region 2). Region 1 consisted
of rs2019727, rs10489456, rs3753396, rs380390, rs2284664, and
rs1329428, and region 2 consisted of rs4723261, rs764127,
rs10486519, rs964707, rs10254116, rs10486521, rs10272438,
rs10486523, rs10486524, rs10486525, and rs1420150.

To assess the importance of these haplotypes, we generated
5,000 unphased data sets through permutation. Each of those
data sets was randomly expanded into 100 phased data sets
according to the estimated haplotype frequencies. The total
running time for this data set was �24 h on a 3.2-GHz processor.
We found that the most significant haplotype was ACTCCG in
region 1 (P value � 2E-6). This finding is identical to the result
reported by Klein et al. (3), which has found the same haplotype
as the highest risk. These authors further validated that this
polymorphism is in a region of Complement Factor H [CFH
(MIM no. 134370)] and is linked to AMD. We also identified an
AMD disease-related haplotpye, TCTGGACGACA, in region 2
(P value � 0.0024), which is not reported to be AMD related.

Fig. 1 represents the trends in frequency of AMD as a function
of the expected number of these haplotypes. This figure confirms
the role of CFH, and also suggests that the haplotype TCTG-
GACGACA in region 2 might be protective against the MD
disease. This second region is located in the Bardet–Biedl
syndrome 9 [BBS9 (MIM no. 607968)] gene, which is annotated
as visual perception in gene ontology, although the function of
this gene is not well understood.

Discussion
To identify haplotypes in LD with disease alleles, we proposed
a forest-based method that is based on a proven statistical
technique, recursive partitioning (33). This technology is known
to be flexible in dealing with missing data in the predictors, to

Table 3. Empirical power and false-positive rate when two
unlinked regions are in LD with disease alleles

Forest FAMHAP*

Model Power† Power‡ FPR§ Power¶ Power�

Ep-1 0.995 0.695 0.035 1.000 0.010
Ep-2 1.000 0.840 0.015 1.000 0.000
Ep-3 1.000 1.000 0.002 1.000 0.000
Ep-4 1.000 0.838 0.008 1.000 0.000
Ep-5 1.000 0.982 0.017 1.000 0.000
Ep-6 1.000 1.000 0.000 1.000 0.002
Het-1 0.977 0.363 0.040 1.000 0.163
Het-2 1.000 0.795 0.007 1.000 0.050
Het-3 1.000 1.000 0.000 1.000 0.002
S-1 0.967 0.347 0.037 0.998 0.213
S-2 0.995 0.013 0.035 0.998 0.002
S-3 1.000 0.895 0.013 1.000 0.003
Ad-1 0.993 0.560 0.028 0.998 0.027
Ad-2 0.970 0.187 0.033 0.995 0.158

*False-positive rate is not available.
†� 1 � P (identify at least one correct haplotype).
‡� 2 � P (identify both haplotypes correctly)
§False-positive rate.
¶� 4 � P (identify at least a SNP in one region).
�� 5 � P (identify at least a SNP in each of the two regions).

Table 4. Empirical power and false-positive rate when only one
of the two unlinked regions is in LD with disease alleles

Forest FAMHAP

Model Power
False-positive

rate Power*
False-positive

rate†

Ep-1 0.973 0.032 0.998 0.088
Ep-2 1.000 0.002 0.998 0.018
Ep-3 1.000 0.003 1.000 0.003
Ep-4 0.980 0.008 0.975 0.183
Ep-5 1.000 0.005 0.998 0.015
Ep-6 0.998 0.007 0.997 0.093
Het-1 0.887 0.060 0.968 0.232
Het-2 0.998 0.002 0.998 0.118
Het-3 1.000 0.002 0.998 0.080
S-1 0.883 0.047 0.968 0.250
S-2 0.143 0.053 0.128 0.078
S-3 0.992 0.013 0.997 0.083
Ad-1 0.970 0.020 0.955 0.175
Ad-2 0.782 0.058 0.880 0.270

*�6 � P (identify at least a SNP in the region in LD with disease alleles).
†FP2 � P (identify at least a SNP in a neutral region).

Fig. 1. The frequencies of AMD cases and controls are plotted against the
expected numbers of susceptibility haplotypes. Haplotype 1 is in a region of CFH
on chromosome 1, and haplotype 2 is in the BBS9 gene on chromosome 7.
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achieve variable selection and model selection simultaneously,
and to avoid the colinearity problem (this could be a serious
problem for genomewide data). To accommodate the uncer-
tainties in the haplotype inference (as a result of genotyping
errors and missing genotypes), we propose to randomly expand
the number of data sets to reflect the haplotype distribution. To
evaluate the importance of putative haplotypes, we proposed an
importance measure. Our basic idea is analogous to a gold-
mining process in which we shake the dirt and allow the gold to
surface, and then we verify whether it is gold.

Our method can successfully identify both haplotypes with
main effects and/or interactions of disease-associated haplo-
types. We have demonstrated the utility of our approach through
simulated data and illustrated its use by a real data study. Our
approach is of particular appeal because it does not make any a
priori assumption and yields a significance level that accommo-
dates multiple tests. Although in the AMD data set, the two
identified haplotypes do not appear to interact with each other,
the models we used in the simulation study include interaction
effects. Some of the simulated models have main effects, but in
four of the simulated models, main effects are absent. This is
designed to assess the specificity of our proposed method. Thus,
our proposed method is designed to work when there is lack of
evidence for epistasis (e.g., the AMD data set), when there is
absence of main effects, or when there are presence of both
haplotype heterogeneity and epistasis.

We used a permutation procedure to estimate the significance
level. The computation time is reasonable for a real data set, but
can be intensive for simulation studies. Methods for expediting
the computation will be useful. In the simulation study, we

simplified our task by focusing on the haplotypes in two different
chromosomes for the comparison purpose with an existing
method as well as the computational concern. Despite the
restriction, our current simulation serves the purpose of evalu-
ating the performance of our proposed method relative to an
existing method. Nonetheless, it will be a worthy project to
accelerate the computation and further scrutinize our proposed
method.

False discovery is a major concern in disease gene identifica-
tion. Through simulation studies, we demonstrated that the
false-positive rate of our method is well under control and that
the method can successfully distinguish disease-associated re-
gions from neutral regions. Our reanalysis of the AMD data not
only confirmed a landmark finding in genomewide association
studies, but also revealed a protective variant in the BBS9 gene,
for which the existing literature suggests a potential role in visual
perception. We should caution that the sample size in the AMD
data set is relatively small, and hence the role of the BBS9 gene
warrants further investigation.

We used SNPHAP (31) to find haplotype frequencies, but
other alternative methods (28, 29, 39) can also be used. Although
we focused on case-control studies, our approach can be directly
extended to family-based or related individuals by using pro-
grams that derive haplotype frequencies for family-based data
(40) for estimating haplotype frequencies from family-based
individuals.
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