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Increasing evidence suggests that attention can concurrently select
multiple locations; yet it is not clear whether this ability relies on
continuous allocation of attention to the different targets (a
‘‘parallel’’ strategy) or whether attention switches rapidly be-
tween the targets (a periodic ‘‘sampling’’ strategy). Here, we
propose a method to distinguish between these two alternatives.
The human psychometric function for detection of a single target
as a function of its duration can be used to predict the correspond-
ing function for two or more attended targets. Importantly, the
predicted curves differ, depending on whether a parallel or sam-
pling strategy is assumed. For a challenging detection task, we
found that human performance was best reflected by a sampling
model, indicating that multiple items of interest were processed in
series at a rate of approximately seven items per second. Surpris-
ingly, the data suggested that attention operated in this periodic
regime, even when it was focused on a single target. That is,
attention might rely on an intrinsically periodic process.

oscillation � parallel vs. serial

Selective attention denotes the ability to enhance processing of
a particular location or object. In recent years a number of

studies have suggested that multiple locations can be concurrently
attended (1–6). In most of these cases, however, it is difficult to
distinguish a true (i.e., sustained) division of the attentional spot-
light, from a strategy in which a single attentional focus would
switch rapidly between the different targets. Indeed, both strategies
could explain the occurrence of classic ‘‘set size effects’’ (i.e.,
decreases of performance with increasing number of attended
items) either because attention is a limited resource (‘‘parallel’’
strategy), or because the effective time that attention samples each
object decreases when several objects must be attended (‘‘sampling’’
strategy). With respect to visual search tasks, in which a single target
must be detected among a variable number of elements, this debate
has divided the community for quite some time, with no accepted
conclusion [Sternberg S (1973) in Annual Meeting of the Psy-
chonomics Society in St. Louis, MO, and refs. 8–14]. A similarly
unresolved argument has been made regarding multiple-object
tracking paradigms (15–18).

Here, we propose a quantitative strategy for distinguishing
between these alternatives: The psychometric function for de-
tection of a single target as a function of its duration can be used
to predict the expected psychometric function for multiple
targets, and the predicted shape is quite different for parallel and
sequential strategies. We can thus determine which strategy best
describes the performance of human observers with multiple
attended items. The mathematical details of this method are
given in supporting information (SI) Appendix, but the under-
lying idea can also be understood in simple terms. A ‘‘probe’’
event of variable duration must be detected by the observer (Fig.
1). When only a single location is cued, the observer can allocate
their attentional resources entirely to this location (‘‘full atten-
tion’’ condition). In other trials, there can be two or more cued
locations (‘‘divided attention’’ condition; note that the term
‘‘divided’’ refers here to a particular experimental instruction,
independent of the attentional allocation strategy—parallel or
sequential—chosen by the subject). Finally, on catch trials, the

probe occurs in an uncued, unexpected location (‘‘minimal
attention’’ condition). Within a ‘‘parallel’’ model, attention is
shared across the targets so performance for a given probe
duration will lie somewhere between the performance levels
obtained with full and with minimal attention at this same
duration (Fig. 2A). As the number of cued locations increases,
the psychometric function will move closer to the function found
for minimal attention (governed by a parameter we call the
division cost). For a ‘‘sampling’’ strategy, performance is again
a mixture of the full and minimal attention functions but in a
manner determined by the location of attention at the onset of
the probe and the rate at which it moves from one cued location
to the next. Each successive sample, whether directed to the
location of the probe or one of the other cued locations, might
temporally overlap with the probe for a certain duration, draw-
ing a corresponding contribution from the ‘‘full’’ or the ‘‘minimal
attention’’ functions, respectively (see Fig. 2 B and C for
examples and SI Appendix for a more detailed description).

We consider two versions of the ‘‘sampling’’ model. According
to the ‘‘sample-when-divided’’ version (Fig. 2B), the periodic
sampling strategy is used only when more than one item must be
attended; for a single attended item, even at long durations,
attention will sample the probe for its entire duration. This
reflects the classic idea of a switching ‘‘spotlight’’ of attention
(19–22). According to the ‘‘sample-always’’ version (Fig. 2C),
periodic sampling occurs even when only one item is attended:
At long durations the probe is not sampled continuously, but in
a succession of epochs whose information is combined (by
probability summation) before the decision is made (for conve-
nience, the ‘‘duty cycle’’ of this periodic sampling process was
assumed to be 1, i.e., there was no ‘‘off’’ time between successive
samples). The psychometric curve at set size 1, in this case, is
already the result of a temporal sampling process, and so another
full-attention curve must be hypothesized (and ultimately com-
puted, based on the observed performance at set size 1; see SI
Appendix). Such systematic sampling could occur, for example,
if the interplay between information sampling and information
processing stages restricted information transmission to partic-
ular moments. Although such a strategy might seem inefficient,
the idea is supported by recent findings suggesting that certain
forms of motion perception, for a single moving element, could
rely on attentional sampling at a more-or-less fixed rate (23, 24).
Overall, we thus compared 3 models (parallel, sample-always,
sample-when-divided) and attempted to determine which model
could best explain human performance in a contrast decrement
detection task with multiple potential target locations. Two
different contrast decrement strengths were used, resulting in an
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‘‘easier’’ and a more ‘‘difficult’’ version of the task. (As we will
see later, these two versions entail different attentional require-
ments, as defined by visual search slopes: efficient search for the
easy task, inefficient search for the difficult task.). Each model
was given a single free parameter: the sampling period (from 50
ms to 1,000 ms) for the two sampling models, a division cost
parameter (from 0 to 1) for the parallel model, reflecting the cost
in performance for sharing attention with each additional target.
The entire parameter space was explored, and the best param-
eter value (i.e., the value that generated a prediction closest to
the performance of a given human observer) was determined
for each model. The model with the lowest prediction error is
likely to ref lect the attentional allocation strategy used by our
observers.

Results
Psychometric functions from one representative subject are
shown in Fig. 3. Over the group of eight subjects, a three-way
ANOVA (task difficulty � set size � probe duration) confirms
that the probability of detecting the probe increases with in-
creasing duration [F (5, 336) � 553.4, P � 0.0001] and that it is
also affected by set size [F (3, 336) � 9.9, P � 0.0001].
Importantly, although task difficulty had a main effect on
performance [F (1, 336) � 346.5, P � 0.0001] and significantly
interacted with probe duration [i.e., affected the slope and/or the
threshold of the psychometric functions; F (5, 336) � 36.0, P �
0.0001], it did not reduce the effects of set size [F (3, 336) � 0.2,
P � 0.9]. We can thus investigate, both for the difficult and easy
versions of the task, the attentional strategy that led to these
significant set size effects. The same three-way ANOVA for
performance obtained in the ‘‘minimal attention’’ condition
(when the probe appeared at one of the uncued locations) again
revealed a main effect of probe duration [F (5, 252) � 136.1, P �
0.0001] and of task difficulty [F (1, 252) � 108.5, P � 0.0001], but
no main effect of set size [F (2, 252) � 0.5, P � 0.59] and no
interaction between set size and task difficulty [F (2, 252) � 1.2,
P � 0.31]. This is somewhat expected: Set size determines the
division of attentional resources among the cued elements, but
should not affect what goes on outside of the focus of attention.
Thus, we collapsed the minimal attention data across set sizes
(Fig. 3).

The derivation of optimal parameters for each model is
illustrated in Fig. 4 A and C for the ‘‘difficult’’ task, and in Fig.
4 B and D for the ‘‘easy’’ task. From a given subject’s psycho-
metric functions with full and minimal attention (Fig. 3), we
computed the expected psychometric functions for divided
attention (set sizes 2, 3, and 4) within each of the three models
(as illustrated in Fig. 2 and detailed in SI Appendix). For each
model, we explored the range of possible parameter values (the
single free parameter was the sampling period for the sampling
models and the cost of each additional attended element for the
parallel model), and each time, we computed the prediction
error, i.e., the distance between predicted and observed data
(Fig. 4 A and B shows these prediction errors for the same subject
as in Fig. 3; Fig. 4 C and D shows an average over the group of
eight subjects). The ‘‘optimal’’ parameter value was the one
yielding the lowest prediction error (vertical arrows in Fig. 4
A–D) when compared with the actual experimental data. The
‘‘best’’ model (i.e., most likely to reflect the subject’s strategy)
was taken to be the one yielding the smallest prediction error
(horizontal arrows in Fig. 4 A–D). The average prediction errors
at the optimal parameter value of each model are reported in Fig.
4 E and F.

A two-way ANOVA (model type �task difficulty) revealed no
main effect of task difficulty [F (1, 42) � 0.31. P � 0.5] on
prediction accuracy but a significant effect of model type [F (2,
42) � 11.9, P � 0.0001] and a significant interaction [F (2, 42) �
3.23, P � 0.05], showing that the various models’ ability to
predict experimental data depended on task difficulty (Fig. 4 E
and F). The model that best predicted our observed data
(determined with post hoc pair-wise t tests, P � 0.05) was the
sample-always model when the task involved a challenging
contrast decrement detection (with the sampling period �140
ms, ranging from 100 to 190 ms across our eight subjects; Fig. 4
A, C, and E), whereas the optimal model was a parallel one for
an easy version of the same task (with a performance cost of 17%
for each additional item to be attended; Fig. 4 B, D, and F). This
distinction was observed for all subjects tested, a result that
would be highly unlikely to occur by chance, were these two
models assumed to be equivalent (P � 0.00005). The sample-
when-divided model performed significantly worse than the
other two, both in the easy and in the difficult versions of the task
(with an optimal sampling period at 660 and 580 ms, respec-

Fig. 1. Experimental design. Four disks filled with high-contrast dynamic random noise were constantly shown to the subjects. At the beginning of each block,
a cue display indicated which of the disks were likely to contain the probe for the following trials (set size 1–4). The probe was a contrast decrement of variable
duration, occurring with 50% probability in one of the cued elements. At set size 1, ‘‘full attention’’ could be allocated to the probe, whereas at set sizes 2, 3,
and 4, attention had to be ‘‘divided’’ between multiple targets. In 10% of trials (including probe-present trials), a catch stimulus (similar to the probe) was shown
at an uncued location. By definition, we assume that it received ‘‘minimal attention.’’ (Set size 4 trials had no uncued location and therefore could not serve as
catch trials). At the end of each trial, subjects reported whether the probe was presented among the cued locations, and (using a separate key) whether a catch
stimulus had been detected at an uncued location. Probe and catch stimulus duration varied independently between 50 and 1,000 ms. The strength of the contrast
decrement could either be 50% (‘‘easy’’ version) or 30% (‘‘difficult’’ version).
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tively). Note that prediction errors were also computed for the
false alarm data (SI Fig. 6): in this case the two-way ANOVA did
not yield a significant effect of model type [F (2, 42) � 0.04, P �

0.9] or a significant interaction between model type and task
difficulty [F (2, 42) � 0.04, P � 0.9]. Thus, the previous result is
unlikely to be due to some tradeoff between correct detections
and false alarms.

The better performance of the parallel model in the easy
version of the task is unlikely to be due to eye movements or
faulty fixation, because gaze cannot be simultaneously divided
between multiple locations. However, the better performance of
the sample-always model during the difficult task raises the
possibility that our observers could have used a gaze-switching
strategy. Given our modeling results, this would require that the
eyes move approximately seven times per second, even when a
single location is attended. Or, it could arise from intersaccade
intervals that are randomly, different integer multiples of one
seventh of a second, a distribution of eye movement timing that
has not been previously reported. Nevertheless, to address this
alternate explanation, we had two of our subjects perform the
difficult version of the task while their eye movements were
monitored (SI Fig. 7). Even though eye movements toward the
targets were never observed, both observers displayed the usual
pattern of results, with the sample-always model yielding the best
prediction (at a sampling period of 160 and 180 ms, respectively),
followed by the parallel and the sample-when-divided models.

What might be the inherent difference between the easy and
difficult versions of our detection task, which makes one a
parallel process and the other an apparently sequential one? In
a control experiment we presented our stimuli in a situation akin
to a ‘‘visual search’’ experiment. We manipulated effective set

Fig. 2. Computational principle. The detection probability of a probe event (e.g., brief contrast decrement) increases with its duration. Using the psychometric
functions obtained for full attention (when the probe location is known) and minimal attention (when the probe occurs at an unexpected location), one can
derive predicted functions for divided attention (when the probe occurs at one of multiple possible target locations). Depending on the strategy assumed for
attentional allocation (‘‘parallel,’’ ‘‘sample-when-divided,’’ or ‘‘sample-always’’), the predicted functions will differ. We can thus distinguish among these three
alternative models of divided attention. (A) Within a parallel model, probe information for divided attention accrues at a rate intermediate between that
obtained for full and for minimal attention; performance only depends on performance with full and minimal attention at the same probe duration. (B) Within
a sampling model, performance for divided attention (shown here for one example trial with a set size of 2) originates from a series of periods during which
information accrues either at the rate of full attention (periods marked 1 and 3 in this example) or at the rate of minimal attention (period 2). Only the onset
portion of the full attention psychometric curve, with values below the postulated sampling period, is used to generate these predictions (because attention
will not rest at a given location for longer than the postulated sampling period). Note that the illustration is only meant to exemplify what happens on a single
hypothetical trial; this explains the accelerating shape of the information accrual function for this illustrative trial. In the general case, because the onset time
of each attentional sample on any given trial is unknown, we integrate the depicted calculation over all possible onset times (see SI Appendix); this integration
will result in regular nonaccelerating psychometric functions (data not shown). (C) In the ‘‘sample-always’’ model, information accrues in discrete epochs, even
when a single location is cued. The ‘‘set size 1’’ psychometric function therefore reflects a collection of such epochs and not the true full attention function. The
full attention curve can be recovered from the set size 1 curve, however, by inverting the previously described calculation (see SI Appendix). Performance with
divided attention is then derived as before (B) by combining periods of full attention and minimal attention.

Fig. 3. Psychometric functions for one subject in the difficult (A) and easy (B)
versions of the contrast decrement detection task. Probe detection probability
increases steadily with probe duration (note the log scale on the x axis).
Although the functions are steeper and shifted to the left in the easy version
compared with the difficult version, set size (the number of cued elements)
significantly affects performance in both cases.
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size on each trial by precueing a random subset of the four
elements using central arrows. The probe, when present, was
always shown at one of the cued locations and remained until the
subject responded by pressing the appropriate button (probe
present/absent). We measured the reaction times as a function
of effective set size on each trial, both for the difficult and the
easy contrast decrement levels (Fig. 5). A two-way ANOVA (set
size �task difficulty) with reaction time as the dependent
variable revealed a main effect of set size [F (3, 56) � 5.3, P �
0.005] and a main effect of task difficulty [F (1, 56) � 425.1,
P � 10�6], as well as a significant interaction [F (3, 56) � 4.72,
P � 0.01]. No significant main effect or interaction was found
with error rate as the dependent variable (P � 0.2). Post hoc tests
showed that set size significantly affected reaction time for the
difficult task [F (3, 28) � 8.1, P � 0.0005] but not for the easy
task [F (3, 28) � 0.05, P � 0.98]. In other words, detecting the
stronger contrast decrement relied on a parallel search (slope 1
ms per item), whereas the search was ‘‘serial’’ (slope 38 ms per
item) for the fainter contrast decrement. This qualitative dif-
ference between the two difficulty levels probably reflects the
different strategies used by our observers for allocating attention
in the 2 versions of the main experiment.

Discussion
Our results show that attention might resolve a difficult, atten-
tionally demanding task by periodically sampling information
from the different target locations, at a rate of approximately
seven elements per second. This strategy is not identical, how-
ever, to the classic hypothesis of a ‘‘serial spotlight’’ of attention

subjects in the difficult version of the task. The shaded area represents SEM
across subjects. The sample-always model was the optimal for all subjects
tested, with an optimal ‘‘sampling period’’ of 140 ms on average (range
100–190 ms). (D) Average prediction errors across eight subjects in the easy
version of the task. The optimal model in this case is the parallel model, with
an optimal ‘‘division cost’’ of 17% on average (range 9–25%). (E and F)
Prediction error of each model at its optimal parameter value (average across
eight subjects). (E) For a difficult contrast decrement detection task, the model
that best reflected human performance was a sampling model, in which
periodic sampling occurred even during undivided attention (sample-always
model). (F) For an easier version of the same task, the parallel strategy yielded
the lowest prediction error. The classic idea of a switching spotlight (sample-
when-divided model) did not closely reflect our observers’ strategy in either
situation.

Fig. 4. Model prediction errors for one subject (A and B, same subject as in
Fig. 3) and averaged across eight subjects (C and D), in the difficult (A and C)
and the easy (B and D) versions of the contrast decrement detection task. The
prediction error is the r.m.s. distance between observed and predicted data in
the divided attention conditions (i.e., set sizes 2, 3, and 4). This error is
computed for each possible value of the model parameter (sampling period
for the sample-always and the sample-when-divided models, lower horizontal
axis; division cost for the ‘‘parallel’’ model, upper horizontal axis). The mean
prediction error (�SEM, shaded area) across set sizes is plotted for each model.
The optimal model is the one yielding the lowest prediction error (horizontal
arrows on the left vertical axis), which in A is the sample-always model and in
B is the parallel model. The optimal parameter values for each model are
indicated by the vertical arrows. (C) Average prediction errors across eight

Fig. 5. Reaction times (A) and error rates (B) for contrast decrement detec-
tion in the control experiment, as a function of set size (number of precued
elements), for the two different difficulty levels (n � 8). Whereas error rates
are unaffected by task difficulty, reaction times strongly differ depending on
the task. The search slopes (average RT increase for each set size increase) are
38 ms per item and 1 ms per item, respectively, for the difficult and easy
versions of the task, suggesting that the task difficulty alters the underlying
attentional requirements.
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postulated by two-stage theories of visual processing (19–22): it
appears, indeed, that attention also operated in this periodic
sampling regime when it was focused on a single target location.
Without this property, a classic ‘‘serial switching’’ model was
shown to perform poorly at explaining human psychometric
functions. This may elucidate why, so far, serial switching models
have fared relatively poorly in previous attempts at pitting them
against parallel models [e.g., Eckstein (13)].

For an easy version of the contrast decrement detection task
(i.e., one that generates flat search slopes and probably requires
little attention), a parallel allocation of attentional resources to
the different potential targets appeared to be a viable strategy.
However, the parallel model mainly dictates the spatial distri-
bution of attention during the trials, and not the temporal
strategy: we cannot rule out the idea that periodic samples were
also taken during this task if we assume that each sample would
comprise information from all targets at once. As a side note, the
fact that we obtained distinct results in two different versions of
the task rules out the possibility that a systematic artifact in our
analysis method could be responsible for the better performance
of the sample-always model in the difficult contrast decrement
detection task.

Of course, the present conclusions are derived from modeling
of psychometric functions, which (like all modeling efforts)
necessitates making assumptions about psychological processes.
There is still the possibility, therefore, that these assumptions
and the corresponding models do not cover the entire spectrum
of alternatives and that adding assumptions (or free parameters)
to a parallel or a classic ‘‘serial switching’’ model might endow
it with better prediction accuracy. For example, recent evidence
suggests that independent attentional resources exist for the two
visual hemifields (25). It is possible that a hybrid model assuming
parallel allocation of attention across hemifields, but periodic
sampling of information within each hemifield, might better
reflect our observers’ performance. This would be an interesting
possibility to explore in further model refinements.

If attention, when focused on a single location, samples
information periodically like a blinking spotlight, then why have
the hundreds of previous studies of attentional mechanisms not
revealed this remarkable property? The fact that most experi-
mental paradigms (even those involving electrophysiology) rely
on averaging signals across several trials is probably a good place
to start looking for an explanation. If the onset of each periodic
attentional sample (an internal process) bears no relation to
stimulus onset (an external event), such averaging would conceal
the effects of periodic attentional sampling to the experimenter.
On the other hand, our quantitative method allows us to address,
albeit only statistically, the temporal allocation of attention on
single trials. Another outstanding possibility could be that our
task and experimental conditions are unique for generating this
pattern of results. It is true that our conclusions obtained in a
task requiring the sustained monitoring of a particular feature
(contrast) at multiple static locations may not generalize to
studies concerned with transient aspects of attention or to tasks
requiring the sustained monitoring of multiple locations inde-
pendent of featural information (e.g., multiple-object-tracking
paradigms). Similarly, we address only spatial aspects of atten-
tion, whereas it is well known that some feature-based forms of
attention can enhance the processing of a particular feature
throughout the entire visual field, i.e., in a nonspatial way
(26–28). It would seem, however, that even if the present results
were shown to hold only for a very particular form of attention
under specific experimental conditions, they would still provide
a forceful challenge for current theories of attention, most of
which are not equipped to explain our findings—with only a few
exceptions (29).

In conclusion, a more profound question beckons: Why should
the attentional system adopt the less-than-optimal strategy of not

sampling continuously, especially if there is only one location
being sampled? Active periodic sampling of the outside envi-
ronment is a ubiquitous property of sensory systems: saccades in
vision, sniffs in olfaction, whisker movements in rat somatosen-
sation, and even echolocation in bats or electrolocation in the
electric fish are all examples of explicit cyclic mechanisms for
overt perceptual sampling (30). Attention might have evolved
from these periodic processes, as a more economical means of
covertly sampling endogenous representations—possibly relying
on the widespread oscillations that can be observed in most of
these systems (31–40). More simply, it could be that the interplay
between information sampling and information processing in the
visual system requires the sampling stages to transmit informa-
tion during particular epochs, rather than continuously; or it
could be that the process that directs the sampling must also
govern other processing stages and has to alternate between
these functions. Whatever the ecological reason (if any) ulti-
mately turns out to be, the suggestion that attention operates
periodically will have significant implications for future research.

Experimental Methods
We had eight human observers (three females, five males; age
range 25–32) who performed two versions of a task (in separate
sessions) involving the detection of a contrast decrement. Sub-
jects were seated in a dimly lit room. Four disk stimuli (radius
1.5° of visual angle) were presented on a gray screen at 4° from
fixation in the four cardinal directions (Fig. 1). At the beginning
of a block of trials, one to four of the disks were cued as potential
targets for this block (the number of cued disks will be referred
to as ‘‘set size’’). Subjects were instructed to focus attention on
these disks and ignore others. To minimize the effects of trial and
stimulus-onset transients, all disks flickered constantly (even
during the intervals between trials and between blocks) with
spatiotemporal white noise at maximum contrast (pixel size 0.3°,
interval between successive frames 10 ms). A trial lasted for 2 s,
and was indicated solely by the presence of the fixation cross.
With a 50% probability in each trial, one of the cued disks
presented a contrast decrement (the probe), whose duration
varied from 50 to 1,000 ms. The task of the subjects was to report
whether a decrement had occurred or not, by pressing the
appropriate key at the end of the trial. The two versions of the
task corresponded to different strengths of the contrast decre-
ment: 50% for the easy version, and 30% for the difficult version.
A movie rendition of the task can be downloaded at http://
www.klab.caltech.edu/�rufin/blinkingspotlight/movie1.avi. Psy-
chometric functions for probe detection as a function of its
duration were determined for each subject and set size (between
one and four). Additionally, we also determined subjects’ per-
formance outside of the main focus of attention by presenting a
number of catch trials (10% probability) in which the contrast
decrement was shown in one of the uncued disks. Subjects were
instructed to press a separate key if they detected this decrement.
Thus, we also determined the psychometric function for perfor-
mance with minimal attention. This function is critical because
it provides a baseline for computing performance in the divided
attention conditions (this is true for all three strategies com-
pared; see SI Appendix). Half of the observers initially per-
formed the easy version of the task, and the other half began with
the difficult version. Each subject performed at least 1,152 trials
(six sessions � four set sizes � 48 trials) for each version of the
task. Two of the observers performed the difficult version of the
task a second time (for at least 960 trials each) while their eye
positions were monitored by using a binocular infrared eye-
tracker at a sampling rate of 120 Hz (ISCAN ETL 200; ISCAN).

After the main experiment, each subject completed two
sessions (corresponding to the easy and difficult contrast dec-
rement levels) of a control experiment, in which the cue for
potential targets was presented centrally (using one to four
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central arrows) at the beginning of each trial. Cue validity was
100%: The probe (contrast decrement) always appeared on one
of the cued elements. The probe, when present, remained until
the subject’s response (a so-called ‘‘response-terminated search’’
procedure), and reaction times were measured as a function of
the effective set size (i.e., how many potential targets had been
cued on this trial). Each subject performed at least 256 trials
(four blocks of 64 trials) for each version of the task. A movie

rendition of this control task can be downloaded at http://
www.klab.caltech.edu/�rufin/blinkingspotlight/movie2.avi.
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