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A scheme for extracting an effective free energy landscape from
single-molecule time series is presented. This procedure uniquely
identifies a non-Gaussian distribution of the observable associated
with each local equilibrium state (LES). Both the number of LESs
and the shape of the non-Gaussian distributions depend on the
time scale of observation. By assessing how often the system visits
and resides in a chosen LES and escapes from one LES to another
(with checking whether the local detailed balance is satisfied), our
scheme naturally leads to an effective free energy landscape
whose topography depends on in which time scale the system
experiences the underlying landscape. For example, two metasta-
ble states are unified as one if the time scale of observation is
longer than the escape time scale for which the system can visit
mutually these two states. As an illustrative example, we present
the application of extracting the effective free energy landscapes
from time series of the end-to-end distance of a three-color,
46-bead model protein. It indicates that the time scales to attain the
local equilibrium tend to be longer in the unfolded state than those
in the compact collapsed state.

local equilibrium � single-molecule measurement � time series analysis

Energy landscape theory provides a framework for resolving
important contemporary issues observed in the dynamics

and thermodynamics of complex systems (1–3). The potential
energy landscape of biomolecules is a multidimensional hyper-
surface composed of 3N degrees of freedom (in which N is the
number of atoms) associated with a very complex topography. At
nonzero temperature the free energy landscape may be more
appropriate to reveal the origin of complexity in kinetics of the
systems. Recently, Krivov and Karplus (4, 5) revealed in terms
of their transition disconnectivity graph (TRDG) of folding–
unfolding equilibrium simulations of a �-hairpin that the heter-
ogeneity of the denatured state ‘‘ensemble’’ on the multidimen-
sional free energy landscape is significantly masked by the
projection onto a few order parameters (e.g., the fraction of
native contacts).

On the contrary, recent experimental developments in single-
molecule spectroscopy have provided us with several insights
into not only the distribution of the molecular properties but also
the dynamical information at the single-molecule level buried in
the ensemble-averaged measurements (6–10). For example,
some experimental studies have indicated the existence of
heterogeneous pathways for protein folding (8) and abnormal
diffusion depending on the time scale at which one observes the
dynamical events (9).

In fluorescence resonance energy transfer (FRET) experi-
ments, what one can observe is, for example, f luorescence from
donor (D) and acceptor (A) molecules embedded in single
proteins as a function of time. Such physical quantities are
expected to trace the change in the D–A distance at the
single-molecule level. The complexity in kinetics observed in
single-molecule measurements arises from the morphological
features inherent to the underlying multidimensional free energy
landscape of the system.

What can one deduce or extract solely from scalar single-
molecule time series about the morphological properties of the
underlying multidimensional free energy landscape? This is the
central question to be addressed in this article. It should be noted
that there exist several problems in the single-molecule mea-
surements (11–14) for the elucidation of the underlying free
energy landscapes. One of the most cumbersome obstacles is the
so-called ‘‘degeneracy problem’’: even when the system traverses
different physical states, the value of the time series (e.g., D–A
distance) is not necessarily different and may be degenerate due
to the finite resolution of the observation and the nature of the
observable onto which the multidimensional nature of the
system is projected. It is known that such degeneracy may bring
about apparent long-term memory even when the transitions
among states are Markovian (14).

In the present article a method is presented for constructing
an effective free energy landscape in terms of a given scalar time
series as free as possible from the degeneracy problem. The crux
is the evaluation of states not solely by the scalar value of the time
series at a specific time but by the short-time distributions in the
neighborhood of the time. The short-time distributions are
expected to differentiate the states that are degenerate in the
scalar value (corresponding to first-order moment of the distri-
bution) because the short-time distributions can also reflect the
higher-order moments. As shown later, a set of the short-time
local distributions can lead the concept of local equilibrium state
(LES). Then one can construct an effective free energy land-
scape by assuming canonical transition state theory (TST). The
time window for which the local distributions are constructed
may be regarded as the time scale of ‘‘observation.’’ The
different time windows can lead to the corresponding different
coarse-grained free energy landscapes the system can trace at the
different time scales of observation.

In this article, we demonstrate our method with an off-lattice,
three-color, 46-bead model protein by Honeycutt and Thirum-
alai (15), whose energy landscapes have been examined in a
number of previous studies (16–22). We scrutinize scalar time
series of the end-to-end distance generated by isothermal mo-
lecular dynamics (MD) simulation at several temperatures, from
which we extract the underlying effective free energy landscape
as a function of temperature and the time scale of observation.

Definition of ‘‘State’’ in Terms of Single-Molecule Time Series
Fig. 1 schematically shows our procedure to construct a set of
states from time series of an observable s(t). From the time series
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s(t) in Fig. 1a, how does one elucidate the number of states? The
number of states has often been counted by fitting the whole
distribution of the observable s by a combination of Gaussian
functions. However, can one define the state as free as possible
from any assumption about the form of the distribution function
associated with each state?

Suppose that s(t) is recorded with an equal interval from t1 to
tn. First, we extract ‘‘short segments’’ in a time window (tm � �/2,
tm � �/2] in the vicinity of tm and construct the corresponding
short-time probability density function gm

(�)(s) sequentially. Sec-
ond, we select a ‘‘measure’’ to quantify the degree of proximity
of two probability density functions. In this article, we chose the
Kantorovich metric (23) defined by

dK(pi�pj) � �
��

�

ds� �
��

s

ds��pi�s�� � pj�s����, [1]

where pi(s) and pj(s) are two arbitrary probability density
functions with respect to s. It was found that the dK is much more
appropriate than the most commonly used measures, e.g., Kull-
back–Leibler divergence (relative entropy) (24) and Hellinger
distance (25), in differentiating the distance between two prob-
ability density functions [see the supporting information (SI)
Appendix for more detail]. Fig. 1b illustrates the metric relation-
ship (regarding dK) among the set of gm

(�)(s) by the projection
onto a two-dimensional plane so as to maintain the metric
relationship among them as well as possible (26). Each node
corresponds to each gm

(�)(s) at a different time tm. Third, we

partition the set of gm
(�)(s) into a union of ‘‘clusters (subsets)’’ on

the full-dimensional metric space as illustrated by clusters sur-
rounded by solid lines in Fig. 1b (see SI Appendix). Each cluster
can be supposed as a candidate of state because all gm

(�)(s) in each
cluster are classified as almost the same shape as the short-time
distribution. In what circumstance may one assign each cluster of
gm

(�)(s) as state?
Here we incorporate the concept of local equilibrium states

(LESs) into our framework: First, we assign which cluster
(‘‘candidate of state’’) the system traverses at each time tm along
the original s(t) by referring gm

(�)(s) centered at tm, in other words,
when the system enters and leaves each cluster along the time
series. Second, we check whether the time window � is shorter
than the escape time �esc(i) from the ith cluster:

� � �esc(i) [2]

(see SI Appendix). If a cluster in {gm
(�)(s)} satisfies Eq. 2 we assign

the candidate of state as an LES, otherwise as a non-LES at the
given time window �. This definition of state, based on the
short-time distributions in a given time series, is expected to be
as free as possible from the degeneracy problem compared with
using solely the (scalar) value of the time series.

The state classified as LES should, in principle, provide us
with a unique local distribution of the observable whenever the
system revisits the same state along the course of time evolution.
The uniqueness of the local distribution associated with each
LES enables us to evaluate residential probability Pi of the ith
LES, that is, how often the system resides or visits in the ith LES.
In addition, one can evaluate the transition probabilities Pij from
the ith LES to the jth LES, that is, how often the system escapes
or reacts from the ith LES to the jth LES per unit time. When
the local detailed balance Pij � Pji is satisfied in a given time
series, which is the necessary condition to validate canonical
transition state theory of the reaction rate, one can translate
these probabilities into an effective free energy landscape by the
following equations (4):

Fi � � kBT lnPi, [3]

Fij � � kBT ln� h
kBT

Pij� , [4]

� � kBT ln� h
kBT

Pji� � Fji, [5]

where Fi and Fij, respectively, denote the relative free energy of
the ith LES and the relative free energy of the barrier linking the
ith and jth LES. kB, h, and T denote the Boltzmann constant,
Planck constant, and absolute temperature, respectively. Eq. 5 is
derived by assuming canonical TST; the free energy barrier
height from the ith LES to the jth LES is obtained by Fij � Fi.
Note that the Kramers theory (27) tells us that the canonical TST
provides an upper bound of the rate constant. The free energy
barrier derived from Eq. 5 can be affected by the existence of
viscosity from the environment (28, 29). An appropriate cor-
rection may be required for the better estimation of the free
energy barrier (7).

This clustering of the short-time probability density functions
satisfying Eq. 2 naturally leads to the probability density function
of the ith LES, pi

(�)(s), defined as a collection of Dirac delta
functions �(x) of all {s(tm)} belonging to the same cluster i in
{gm

(�)(s)}:

pi
����s� 	

1
Ni



m�cluster i

��s � s� tm�� , [6]
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Fig. 1. A schematic picture of the state assignment procedure. (a) A single-
molecule time series s(t) (taken from an end-to-end time series of the 46-bead
model protein at T � 0.3�). For every mth time step tm, the short-time
probability density function gm

(�)(s) [� gm
(�)(s)ds � 1] is evaluated for a time

window (tm � � /2, tm � � /2] (with � set to be 104 MD steps). (b) A two-
dimensional projection of a set of gm

(�)(s) so as to maintain the ‘‘metric’’
relationship among the gm

(�)(s) (determined by Eq. 1) as well as possible by using
a nonlinear multidimensional scaling method (26). Each node or circle corre-
sponds to each gm

(�)(s) at different tm as indicated by red and blue lines [for
visual clarity, not all but every other 10,000 sampled points of gm

(�)(s) are plotted
from the time series in a]. The set covered by the dashed line indicates the full
set of gm

(�)(s) corresponding to the full s(t). Different subsets (covered by solid
lines) of different colored nodes correspond to the different state ‘‘candidate’’
where the composite gm

(�)(s) are classified as the same group on this metric
space in the full dimension. (c) The corresponding frequency distributions of
the four major state candidates with respect to s. If the average escape times
of the system from them in s(t) are sufficiently longer than the time window
�, they are considered to be LES (see text).
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where Ni � 	m�cluster i ���
� ds��(s� � s(tm)) � 	m�cluster i 1 (in

the absence of any broadening effects of signal in the measure-
ment). Note that the probability density function of LES is not
necessarily Gaussian (as indicated in Fig. 1c) and it should
depend on the local morphological nature of the underlying free
energy landscape. The time window � in the construction of the
local distributions could be regarded as the time scale of
‘‘observation.’’ For example, as the time window increases, it is
expected that a set of some LES becomes unified as one larger
LES if the associated escape times from there are shorter than
the time window �. The different time windows naturally lead to
the corresponding different coarse-grained free energy land-
scapes the system should find at the different time scales of the
observation.

Results and Discussion
As an illustrative example, we apply our method to the scalar
time series of the end-to-end distance of an off-lattice, three-
color, 46-bead model protein (15) at several temperatures. This
system has been examined in a number of previous studies
(16–22). This model is composed of hydrophobic (B), hydro-
philic (L), and neutral (N) beads and is termed the BLN model
hereafter. The global potential energy minimum for the se-
quence B9N3(LB)4N3B9N3(LB)5L folds into a �-barrel structure
with four strands. The BLN model exhibits a frustrated potential
energy landscape (19, 20) and it does not fold easily and uniquely
(17, 18). Two peaks are seen in the heat capacity: one corre-
sponds to the collapse temperature, at which the BLN model
transitions from the extended to the compact collapsed states,
and the other to the folding temperature, where it folds into the
global potential energy minimum (17, 18).

The isothermal MD simulation was performed by Berendsen’s
thermostat (30) for a range of temperatures kBT � 0.3–2.0�,
which involves the folding and collapse temperature of the BLN
model. Here � is the energy unit of the model (see also the legend
of Fig. 2). After 50,000-MD-steps simulation for equilibration,
the value of the end-to-end distance was recorded every 100
steps during the course of a 13-million-step trajectory. Here the
MD step, 
t, corresponds to �1/180 of the time scale of one
vibration of the bond. The coupling constant 	 with the Be-
rendsen thermostat was chosen as �1/(200
t) such that one can
expect that the canonical distribution is quickly attained during
the course of MD simulation. The lower the temperature, the
longer the system becomes trapped in several metastable states,
which make it more difficult to ‘‘see’’ the global morphological
nature of the underlying free energy landscape. Hence, to survey
the global nature as possible, the end-to-end distance time series
was prepared with 20, 10, and 5 trajectories at 0.3–0.4, 0.5–0.8,
and 2.0�, respectively.

Extracted LES at Different Temperatures
Fig. 2 presents the normalized frequency distributions of the
assigned LES (including non-LES) from the end-to-end distance
time series at kBT � 0.3–2.0� for the original BLN model. Here
the time window � was set to be 10,000 
t in evaluating the
short-time distributions. This corresponds to �55 oscillations of
the bond vibration and 50 times longer than the time scale of the
coupling between the protein and the thermal bath.

At 0.3� and 0.4�, four and three large LESs are identified. The
larger the normalized frequency distribution, the more the
system resides in the LES. Note that the folding temperature Tf
was assigned to be 0.27� (31) to 0.35� (32), although reliable
sampling could not be expected below 0.4� because the kinetics
are controlled by escape from the long-lived traps at such a low
T region (19). As T increases to 0.5�, one can see the existence
of three large LESs, into which some of the LESs observed at
0.4� are considered to be unified. This temperature falls between
Tf and the collapse temperature Tc and, hence, one may expect

that the collapsed state is composed of, at least, three large
superbasins on the free energy landscape the system can find at
the chosen time scale �.

The three large LESs observed at 0.5� are interpreted as
unified into one large LES at 0.6�. This unification of the three
LESs implies that the system quite often traverses back and forth
between the three unified LESs at 0.6� within the chosen �. Note
also that some ‘‘delocalized’’ distributions start to emerge (with
low probabilities) besides this large unified state at 0.6�.

At 0.7�, although the ‘‘compact’’ large LES ceases, delocalized
distributions become more significant with higher probabilities.
Note that from 0.6� to 0.7� the ‘‘center’’ of the LES migrates
from the short to the long end-to-end distance regions, which
corresponds to the transition from the collapsed state to the
unfolded state. This migration manifests the existence of Tc
between 0.6� and 0.7� (32). Note here that none of distributions
is classified as LES. This indicates that, in the chosen time scale
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Fig. 2. The normalized frequency distributions of LES/non-LES constructed
from the end-to-end distance time series of the BLN model at different temper-
atures, that is, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 2.0 �. The normalized frequency
distribution of the ith LES is derived by 	m � cluster i �(s � s(tm))/	m � all clusters

� � �
� ds� �(s’ � s(tm)). In the Insets of 0.3–0.5�, graphs magnified in the horizontal

axis are given. The unit of the vertical axis is 10�2 [�], where the bin size of the
horizontal axis is taken to be 0.05
 for 0.3–0.5� and 0.1
 for 0.6–2.0�. Note that
the distributions indicated by the dotted lines did not satisfy Eq. 2. The potential
energy function is described by V � (Kr/2)	i(ri � r0

i )2 � (K� /2)	i(�i � �0
i )2 �

	i [A(1 � cos �i) � B(1 � cos 3�i)] � 4�	i � j � 3 S1[(
/Rij)12 � S2(
/Rij)6], where
S1 � S2 � 1 for BB (attractive) interactions, S1 � 2/3 and S2 � �1 for LL and LB
(repulsive) interactions, and S1 � 1 and S2 � 0 for all of the other pairs involving
N, expressing only excluded-volume interactions. Kr � 231.2�
�2 and K� �
20�/rad2, with the equilibrium bond length r 0

i � 
 and the equilibrium bond
angle � 0

i � 1.8326 rad.
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�, in neither the compact states nor the more delocalized
denatured states can the system be well equilibrated (i.e., the
residential times inside them are shorter than �).

At 0.8� above Tc, two distributions are classified as LES,
whereas the other distributions violate Eq. 2 in the �. All of the
two LES and one non-LES observed at 0.8� are unified as one
distribution delocalized through the configuration space at 2.0�.
Note that if only one cluster is assigned in {gm

(�)(s)} the state is
always classified as LES because the corresponding escape time
formally becomes infinity.

Quite recently, Kinoshita and his coworkers (33) found by
using their single-molecule detection technique that iso-1-
cytochrome c (known as having a collapsed intermediate state)
exhibits relatively slower conformational dynamics in the un-
folded state, compared with that in the intermediate state. The
consequence observed in a frustrated BLN model may indicate
that the time scales to attain the local equilibrium tend to be
longer in the (extended) unfolded state than those in the
compact collapsed state at the single-molecule level because of
the enlargement of the conformation space in which the system
should move about in the unfolded state.

A Visualization of the Effective Free Energy Landscape
As temperature increases, one can expect that a certain set of
LES/non-LES becomes unified as one LES if the system can
wander through the set of LES/non-LES across the barriers
linking those LES/non-LES in a much shorter time than the
given time window �. Several visualization techniques have been
developed to represent this topographical feature of the multi-
dimensional energy landscape (3, 21, 22, 34). However, there is
no appropriate scheme to capture how each state (or superbasin)
is related to each of the others through different temperatures.
We present a visualization scheme in terms of the dK distance
matrix among probability density functions of LES/non-LES at
different temperatures, combined with nonlinear multidimen-
sional scaling (MDS) method (26). This scheme projects the
multidimensional abstract space (where each state is represented
as a point or node whose position satisfies the mutual dK relation
with all of the other states) onto a two-dimensional space so as
to preserve the metric relationship among the nodes on that
multidimensional space as much as possible.

Fig. 3 presents how the LES/non-LES observed at different
temperatures are related each other. Here each node or circle
represents an LES/non-LES, and its area is proportional to the
residential probability at different temperatures. One can see
that the single LES at 2.0� becomes split into three superbasins
as the temperature T decreases to 0.8�. From 0.8� to 0.6�
through 0.7�, the largest LES is shifted from the middle to the
left superbasins, manifesting the existence of Tc between them.
From 0.5� to 0.3� via 0.4�, at which the largest residential
probabilities are somewhat delocalized from the second to
fourth LES, the shift of the superbasin (where the system resides
for the longest period during the simulation) may be identified.
This shift of the superbasin, i.e., from the second LES at 0.5� to
the third LES at 0.3� in Fig. 3, might reflect the existence of Tf,
although the sampling should not be sufficient to capture the
underlying free energy landscape at such a low T region.

Note that this visualization scheme is applicable, in general, in
revealing the dependency of the LES network structure not only
on temperature but also on the other physical variables, e.g., the
concentration of denaturant, pH, and the time window �.

Eq. 5 can also offer the elucidation of free energy barrier
height linking two LESs when the local detailed balance is
satisfied. Elsewhere, a disconnectivity graph analysis including
the information of the barrier height will be presented for each
temperature.

The � Dependency of LES
The LES/non-LES probability density functions depend on the
time window �. Suppose a (symmetric) double-well potential
system with an activation potential barrier much higher than kBT
coupled with the thermal bath. The system is expected to possess
two LESs corresponding to the two wells when � is short enough
to differentiate the two wells, compared with the escape time �esc
from one well to another (but the � should be longer than the
local equilibration time in each well). With a � much longer than
�esc, the system frequently goes back and forth between the wells
through the barrier. If the chosen � is also long enough to
‘‘globally’’ equilibrate across the two wells, the system should
find only a single unified LES. In between the ‘‘short’’ and ‘‘long’’
time windows � for the system to ‘‘see’’ two and one LES(s),
respectively, there exists a time scale in � neither long enough to
attain the global equilibrium across the two wells nor short
enough to reside in either of two wells to be locally equilibrated
before the escape from one well to the other. Such an interme-
diate time scale of � results in a non-LES distribution through the
two wells at the chosen time scale.

Let us consider a more complicated system with multiple
wells. Fig. 4 shows how the LES and non-LES of the BLN model
protein depend on � at 0.4�. The chosen � corresponds to 400,
500, and 2,000 sample points (nS) in evaluating the local distri-
butions of the end-to-end distance time series. From nS � 100 to
400, the major three LESs were assigned with almost identical
distributions (see also the Inset of Fig. 2 at 0.4�). As � increases
from nS � 400 to 500, one of the non-LESs and one of the LESs
observed at nS � 400 are unified as one LES. In addition, one
LES observed at nS � 400 turns to a non-LES at nS � 500
because the escape time becomes shorter than the chosen time
window �. The non-LES at nS � 500 merges into one of the LESs,
resulting in one new LES at nS � 2,000.
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Fig. 3. A projection of the LES/non-LES network of the BLN model onto a
two-dimensional space in terms of nonlinear MDS method using closeness
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probability of the state at each temperature T. The non-LESs are depicted by
dashed circles. The colors of the circles denote the different T: gray, blue, light
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corresponding LES/non-LES. Each line connects from each state at a T to the
closest state at the adjacent higher T (with respect to dK).
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Such ‘‘stepwise’’ unification of a set of multiple states depend-
ing on the time window � arises from the existence of hierarchical
time scales of the escapes on multidimensional free energy
landscapes. The most striking consequence is that the topogra-
phy of the free energy landscape is subject to the time scale of
observation and the roughness of the landscape becomes
smeared out as the time scale of observation increases. In the
glass transition, heterogeneous properties in finite time and
space scales have been explored in terms of the so-called random
first-order transition theory (35) and space-time thermodynam-
ics (36). The LES network topology depending on time and space
scales is expected to relate with such studies in glassy complex
systems.

Comparison with a Free Energy Landscape Constructed from
the Full Set of Coordinates
The short-time non-Gaussian distributions are expected to lift a
certain degeneracy more (which should exist inherently in the
projected scalar time series) than by using only the scalar value
of the time series. This increase is because the short-time
distributions can reflect higher-order moments in the neighbor-
hood of a chosen point along the time series. As shown in the SI
Appendix, Kantorovich metric dK based on the short-time non-
Gaussian distributions turned out to be much superior to the
other measures such as relative entropy and can differentiate the
underlying (multidimensional) morphological features associ-
ated with LES more than the scalar value of the time series.

However, how much did the LES/non-LES procedure capture
the complexity of the underlying multidimensional free energy
landscape? Fig. 5 presents a coarse-grained transition discon-
nectivity graph (TRDG) (5) for the multidimensional free
energy landscape of the BLN model at 0.4�. We used a coarse-
graining procedure (21) in which two free energy basins are
unified as one when the TST rate constants evaluated from one
basin to another and vice versa are both faster than a chosen
threshold. The coarse-grained TRDG exhibits the complexity
buried in the free energy landscape. In the low free energy
regime, several free energy basins exist, separated by large
barriers.

The evaluated lowest four LES/non-LES distributions and the
end-to-end distance distributions of the lowest 10 TRDG basins

are presented in Fig. 5 b and c, respectively. One can see that the
relative order in the stability among the lowest four LES/non-
LESs coincides with that among the corresponding TRDG
basins. Moreover, the lowest four LES/non-LESs constructed in
terms of the scalar time series can qualitatively reproduce the
shape of the distributions of the end-to-end distance evaluated
for the TRDG basins (e.g., both LES4 and the fourth TRDG
distributed around 1.5
 have a long tail in the longer distance
regime). The relative magnitude of stability, however, cannot be
fully captured. This inability is mainly because some short-time
probability density functions {gm

(�)(s)} (which should belong to
distinct free energy basins) still have a certain degeneracy, that
is, too close to result in different LESs (see also SI Appendix).
This LES technique is expected to lift ‘‘degeneracy’’ as much as
possible within the limited source of scalar finite time series.
However, a certain degeneracy must remain, in principle, unless
one can access the information of the full set of coordinates. Our
approach can straightforwardly be generalized to multivariate
time series. Highly resolved multivariate detection by single-
molecule spectroscopy is required to further lift such inevitable
degeneracy if significant.

The interpretation of our LES in terms of the underlying
high-dimensional potential energy landscape is important but
the exploration of the high-dimensional landscape itself is one of
the most intriguing unresolved problems. Shalloway and col-
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Fig. 5. A comparison with transition disconnectivity graph (TRDG) con-
structed from the full set of coordinates. (a) A coarse-grained TRDG for the
multidimensional free energy landscape of the BLN model at 0.4�. This TRDG
was constructed in terms of 1.6  104 quenched structures and mutual
transitions among them obtained along a long isothermal MD trajectory of
2.2  108 
t. We used a coarse-graining procedure (21) with a TST rate
constant threshold of �/5 (all of the LESs merge one after another, resulting in
a single LES with the threshold larger than ��/2. As the threshold decreases,
the number of the TRDG basin increases more with lesser residential proba-
bility. With �/5, the system mainly (�50%) resides in the lowest 10 TRDG
basins). The index i ( � 1–4) (also shown in c) is numbered as the ith lowest free
energy basin. The total numbers of the bare and the coarse-grained TRDG
basins are 15,374 and 827, respectively. (b) The normalized frequency distri-
butions of LES and non-LES at 0.4�, constructed from the end-to-end distance
time series. The four major LESs (non-LESs) are represented by bold lines
(dotted bold line). The red, blue, black, and green lines indicates LES1, LES2,
non-LES3, and LES4, respectively (the index i in LES/non-LES i is numbered as
the ith highest residential probability). The total numbers of LESs and non-
LESs with � � 104 
t are 4 and 4, respectively. (c) The normalized frequency
distributions of the end-to-end distance of the quenched structures that
belong to each of the lowest 10 free energy basins on the TRDG in a. The first
to fourth lowest free energy basins in a are depicted by bold lines with the
index i. Each color indicates which LES/non-LES i (i � 1–4) the system traverses
most frequently while tracing in the lowest 10 TRDG basins (the color denotes
the LES/non-LES i in b) (see also SI Appendix).
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leagues (37) demonstrated, by using a six-atoms cluster, that
coarse-grained states under Brownian dynamics must have not
discrete but ‘‘soft’’ boundaries with smooth overlap between
their residential probabilities on the conformational space. The
comparison with LES and their ‘‘macrostates’’ by using the same
system may be interesting to interpret the LES network in terms
of the multidimensional potential energy landscape.

Conclusions
In this article, we have presented a method to extract effective
free energy landscapes from single-molecule time series. If the
local equilibrium and the local detailed balance are satisfied in
a chosen time scale of observation, one can construct the effective
free energy landscape for the regions where the system wanders
frequently. This method is not based on any a priori assumption
of local equilibrium for all substates on that landscape but rather
provides us with a time scale at which the system more likely
attains the local equilibrium in a set of substates.

The typical time scale of FRET measurements is at the order
of 10�3 s. In such a time scale, the system can go back and forth
frequently among lots of substates that should be averaged out
completely. This averaging results in a sharp spike of the FRET
efficiency if one can ignore shot noise and other broadening

effects not dependent on the interdye distance. There exists no
means to single out such unified LES within experimental
resolution. However, our method is expected to differentiate the
larger substates and establish a coarse-grained effective free
energy landscape at the time and space scales where the system
can experience their different morphologies. Furthermore, by
scrutinizing the variance of each local distributions of measured
FRET efficiencies, one may elucidate the time scale of the local
equilibration for each state (7). The hierarchical coarse-grained
effective free energy landscapes can also be derived as a function
of �. This method can also be applied to a set of short single-
molecule time series (typically, with a few tens of transitions), by
supposing that each (short) time series is sampled with the same
experimental conditions.
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