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Single-molecule experiments on the motor protein kinesin have
observed runs of backsteps and thus a negative, that is, reverse
mean velocity, V, under superstall loads, F ; but, counterintuitively,
beyond stall, V(F ) displays a shallow minimum and then decreases
in magnitude. Conversely, under assisting loads V(F ) rises to a
maximum before decreasing monotonically. By contrast, while the
velocity of myosin V also saturates under assisting loads, the motor
moves backward increasingly rapidly under superstall loads. For
both kinesin and myosin V this behavior is implied remarkably well
by simple two-state kinetic models when extrapolated to large
loads. To understand the origins of such results in general mecha-
noenzymes, biochemical kinetic descriptions are discussed on the
basis of a free-energy landscape picture. It transpires that the
large-load performance is determined by the geometrical place-
ment of the intermediate mechanochemical states of the enzy-
matic cycles relative to the associated transition states. Explicit
criteria are presented for N-state sequential kinetics, including
side-reaction chains, etc., and for parallel-pathway models. Phys-
ical colocalization of biochemically distinct states generally implies
large-load velocity saturation.

backsteps � biomechanochemical kinetics � free-energy landscape �
motor proteins � velocity saturation

S ingle-molecule studies of motor proteins and other mecha-
noenzymes (1–4) under varying imposed loads aim to un-

cover features of the underlying biochemical structure and
mechanisms. Thus, in recent experiments (5, 6) on conventional
kinesin, a highly processive motor, the mean velocity, V, along
the microtubule track (which we will suppose is aligned with the
positive x axis) has been measured, at various concentrations of
ATP, as a function of an imposed load F � (Fx, Fy, Fz) in both
resisting and assisting regimes. [Sideways and oblique loads have
also been examined (5, 7).]

Observed Behavior and Large-Load Extrapolations
Fig. 1 displays the data of Block and coworkers (5) as the x
component of F varies (with Fy � 0). In the resisting regime, Fx
� 0, shown on the right, the observations extend up to a stall
force of FS � �(6–7) pN at which, by definition, the velocity
vanishes. The assisting regime, Fx � 0, extends on the left to Fx
� �8 pN. Remarkably, ‘‘helping the motor’’ by pulling it in the
positive (or ‘‘designed’’) direction, results in a decreasing velocity
at high [ATP]. At low [ATP] the assistance does at first increase
the speed; but then V appears to reach a relatively low maximum.
This unexpected behavior is well captured by the solid curves,
which represent a theoretical fit (8, 9) that recognizes the
vectorial character of the load F transmitted to the motor body.
The fit at low [ATP] suggests that V(Fx) would also decrease
quite rapidly at larger loads.

Perhaps more surprising is the behavior predicted by the
extensions of the fitted plots into the superstall regime where the
resistive load �Fx� exceeds �FS�. Then, the velocity changes sign
and becomes negative, corresponding to a reverse or backstep-
ping motion. However, the speed remains small, 10–30 nm/s;
furthermore, some 20–30% beyond FS the plots undergo shallow
minima, and thereafter, V(Fx) approaches zero from below.

These predictions were not reported originally (8) and, indeed,
might well be regarded as merely representing an unwarranted
extrapolation of theory into a totally new domain of motor
operation (10). Nevertheless, as seen in Fig. 2, when Carter and
Cross (6) explored this highly resisting superstall regime just
such low, 10–40 nm/s, backward velocities emerged. Further-
more, unambiguous minima appeared, albeit at somewhat higher
loads. What might be the implications of this seemingly anom-
alous behavior?

The Carter–Cross data in Fig. 2 for assisting (Fx � 0) loads also
confirm the conclusions from Block et al. (5) regarding the
decrease of V at high [ATP]: despite the noise, a clear drop-off
is seen for Fx � 5 pN. Similarly, at [ATP] � 10 �M, a relatively
small rise is followed by a downward trend not inconsistent with
the anomalous decay at larger forces implied by the 4.2 �M fit
in Fig. 1.
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Fig. 1. Velocity vs. x component of the load F for kinesin. The data, for [ATP] �
1.6nmand4.2�MarefromBlocketal. (5)andthefitstoatwo-statekineticmodel
embodying a free-energy landscape picture are from Fisher and Kim (8).
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Comparable velocity vs. load data for myosin V derived from
observations by Mehta et al. (13) under resistive loading up to the
stall force FS � �2.8 pN are shown in Fig. 3a. The original
substall fits to these data (14) have been extrapolated analytically
to both the assisting and large resisting (Fx � FS) regimes (see
Fig. 3a). For superstall loads, the fits closely merge, indicating an
independence of [ATP]; then, in contrast to kinesin, the predicted
velocity plunges rapidly to negative values exceeding 800 nm/s.
For assisting loads, however, the implied behavior more closely
reflects that for kinesin: the fits exhibit broad maxima that,
ultimately, decrease to zero (although this is not evident graph-
ically for high [ATP]).

Experiments by Gephardt et al. (15) ranging from Fx � 10 pN
to �10 pN, serve to check these expectations. As evident from
Fig. 3b, the extrapolated substall fits provide a remarkable (and
even semiquantitative) description of the striking fall of V(Fx) to
large backward values. Note, especially, the observed indepen-
dence of [ATP] beyond stall. Furthermore, the assisting-load
measurements confirm the predicted saturation effect: for
[ATP] � 1 �M, there is little increase above V(0); while for 100
�M, even the anomalous decrease with increasing Fx seems
confirmed.

In summary, in addition to seeking the origins of the large-
load behavior of kinesin, one should ask why myosin V is so
different in the superstall regime. More generally, how is it that
simple two-state kinetic models, matching only data for low
loads, extrapolate so successfully to both large assisting and
resisting loads?

Free-Energy Landscape and Transition States
To make progress, consider the basic N-state kinetic model (4,
8, 9, 14) in which a mechanoenzyme in an initial or waiting state
[0] binds a substrate molecule (e.g., ATP) and proceeds forward
through a succession of N mechanochemical states ( j � 1, 2, . . .),
completing a cycle by reaching the final state [N] that, biochem-
ically, is identical to [0], while mechanically the enzyme has
completed a forward ‘‘step’’: for a rotary motor (2, 3), this step
could be an angular increment, ��; but for a translocatory motor
on a track (the situation on which we will focus), it will be a linear
displacement, d x̂ [where x̂ is a unit vector and d is close to 8.2
nm for kinesin and 36 nm for myosin V (1, 2)]. Chemical
reversibility demands that, for each forward transition from state
( j) to (j�1) at a rate uj, there is a reverse transition from ( j�1)
to ( j) with a (nonvanishing) rate wj�1.

To account for imposed loads one needs expressions for ui(F)
and wi(F); these follow from a free-energy landscape picture (1,
4, 8, 9, 16, 17). The most primitive example, an (N � 1) model
with just two rates, u0 and w0, is illustrated in Fig. 4. Here, the
coordinate x locates the enzyme, a motor protein, as it moves on
the periodic track. A free-energy barrier generates a transition
state, marked by a cross, which must be overcome by thermal
activation when the motor moves either forward or backward. As
depicted, �(x) is periodic which implies no net forward drift: this
corresponds to stall, that is, V � 0 and F � FS � (FS, 0, 0).

However, on imposing a force F (�FS) the free-energy function
becomes �(x) f �(r)�(F�FS)�r, where, for generality, we have
identified a ‘‘point of attachment,’’ P[r � (x, y, z)], on the body of
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Fig. 2. Velocity vs. load for kinesin derived from observations of Carter and Cross (6). Detailed data for the fractions of forward and backward steps, �� and
��, and corresponding dwell times, �, as functions of a running (1.5 pN)-bin averaged force yield the velocity via V � d(�� � ��)/� (11, 12), where d � 8.2 nm
represents the kinesin step size. The gray shading indicates the confidence intervals based on the number of observations.
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Fig. 3. Myosin V. (a) Substall data derived from Mehta et al. (13) fitted to a two-state kinetic model by Kolomeisky and Fisher (14) (evaluated here also
for [ATP] � 20 �M). Note the factor of 2 scale change for negative, superstall velocities. (b) The velocity under superstall and large assisting loads [after
Gebhardt et al. (15)]. The solid symbols represent data for [ATP] � 1 �M; those for Fx � �(5 and 10) pN have been narrowed and displaced slightly to
distinguish data for [ATP] � 0, 0.25 �M up to 0.1 mM. Note the scale change for V � �200 nm/s.
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the motor. Thus, a substall force tilts the landscape potential
downward lowering the barrier for a forward transition and, hence,
increasing u0 while the reverse transition rate, w0, is reduced.

In general, as illustrated in Fig. 5, the landscape �(r) will be
more complex and depend also on the z and y coordinates of P.
Potential wells (or valleys) at locations rj correspond to inter-
mediate states ( j). Reaction paths between neighboring states,
( j) and ( j � 1), traverse cols (or passes or saddles) that determine
the associated transition states at rj

� � rj � 1
� (see, e.g., ref. 9). To

leading exponential order in F, traditional reaction-rate theory
then yields (1, 8, 9)

uj	F
 � uj
0eF�dj

�/kBT, wj	F
 � wj
0e�F�dj

�/kBT, [1]

where the ‘‘partial substeps’’ are given by

dj
� � �j

�d � rj
� � rj and dj

� � �j
�d � rj � rj

�, [2]

and obey ¥j(dj
� � dj

�) � d (see, e.g., Fig. 4). The �j
� are ‘‘load

distribution vectors’’ or, neglecting the y and z components,
‘‘load distribution factors,’’ �j

�; they clearly sum to unity (4, 8, 9).

Velocities under Large Loads for N � 1
In the following we will appeal to formulas for V in terms of the
set of 2N transition rates {uj(F), wj(F)} (see, e.g., ref. 18). To gain
insight, however, let us initially neglect Fy and Fz and consider
only the simplest case N � 1 for which V/d � u0(F) � w0(F). For
the situation in Fig. 4 one may reasonably regard x as a reaction
coordinate so that the transition state lies, physically, between
states [0] and [1] and 0 � �0

� � d0
�/d � 1. Then one finds (see

curve b in Fig. 6) that superstall loads necessarily lead to large
negative speeds, that is, formally, V(Fx)3�
 as Fx3�
, while
assisting loads lead to the complementary behavior, that is, V(Fx)
3�
 as Fx3�
. Thus, the expected or ‘‘normal’’ performance
under large loads is mandatory in both regimes. Conversely, the
unnatural or ‘‘anomalous’’ response seen in Figs. 1–3 (minima
and decreasing reverse speeds at superstall and saturation/
maxima for assisting force) cannot be captured!

It is crucial to realize, however, that the physical displacement
x of the point of attachment, P, need not be an acceptable
reaction coordinate. Indeed, the ‘‘minimal’’ adequate biophysio-
chemical or enzymatic structural space may entail the y and z
coordinates of P and other ‘‘unseen’’ dimensions (8, 9, 16, 17).
Thus, as illustrated in Fig. 7, the transition state may lie outside
the natural domain 0 � x � d. There are two new cases: first, if,
as in Figs. 6c and 7, one has �0

� � d0
�/d � 1, then, necessarily,

anomalous superstall behavior is generated. See plot c in Fig. 6;
formally, we can assert: V(Fx) 3 0� when Fx 3 �
. Neverthe-
less, only normal behavior is realized under assisting loads: plots
b and c in Fig. 6.

In the last case, �0
� � d0

�/d is negative, and superstall variation
must be normal but assisting-load anomalous behavior arises,
that is, V(Fx) 3 0 when Fx 3 �
 (see Fig. 6a).

In all cases, the qualitative large-load behavior is indepen-
dent of the specific values of the load-free rates, u0

0 and w0
0. In

other words, the performance under superstall and assisting
loads is determined only by structural features of the landscape
�(x). Is that true more generally? If so, what are the crucial
features? And when are both superstall and assisting-load
behavior anomalous?
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Fig. 4. The simplest one-dimensional free-energy landscape, �(x), where the
coordinate x represents the point of attachment P on the motor at which the
load force F � (Fx, 0, 0) is imposed. The transition states (0�) and (1�) are
marked by crosses. Note that states [0] and [1] are biochemically equivalent
although physically displaced; likewise, (0�) and (1�).
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Fig. 5. An (N � 3)-state free-energy landscape, �(r), with locally stable intermediate states ( j) for j � 0, 1, 2, . . . , labeled and with an extra ‘‘side state’’ (2�).
The neglect of the transverse y coordinate is justified if � increases rapidly with y2. The transition states, at rj

� � rj � 1
� , are marked by crosses. If the pass between

state (2�) and [3 � 0] becomes sufficiently high, the (2�, 3) transitions will be suppressed: then a (1, 2�) transition represents a side reaction off the main reaction
path [0]º (1)º (2)º [3] (see Figs. 8 and 9).
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N-State Sequential Motor Protein Models
Recall, now, that N-state sequential models are specified by 2N
rates {ui, wj} and 2N structural parameters, namely, {rj, rj

�}, the
state and transition state locations of the attachment point, P.
Fig. 8 portrays two complete cycles of an N � 3 system. Note that
states ( j) and ( j � N) and ( j�) and ( j� � N) are biochemically
identical, although physically distinct; the corresponding peri-
odicity conventions rj�kN � rj � kd x̂ and rj�kN

� � rj
� � kd x̂, for

k � �1, �2, . . . , are embodied in the figure.
To account for the vectorial nature of the force F, we follow

refs. 8 and 9, noting that the tether transmitting force to the
motor body in a typical single-molecule bead assay (1, 4–7) is
inclined, say at a polar angle � to the z axis. Hence, the
experimentally controlled component Fx induces a normal com-
ponent Fz � �Fx� (8, 9). (We suppose Fy � 0.) Although the
orientation of the tether switches fairly abruptly (8, 9) when the
load changes from resisting to assisting, the magnitude of �,
mainly fixed by the bead diameter (8, 9), can be taken as
constant. Consequently, in using Eq. 1 we may suppose

F � Fxc� for Fx � 0 with c� � 	1, 0, �c �
 , [3]

where c� � cot � � 0. [For kinesin one has c� � 1.45 (9).]
Now, by employing known theory (18), one may write the

turnover rate, or reduced velocity, in the form (12)

V
d

�
1 � exp��	Fx � FS
d /kBT�� i�0

N�1 � j�0
N�1 Ki, j exp��FxDi, j

� /kBT�
, [4]

where the N2 force-independent inverse rate parameters Ki,j are
nonvanishing, positive ratios of various products of the zero-load
rate constants {uk

0, wl
0}. However, the force dependence for Fx �

0 is controlled by the 2N2 key geometrical parameters

Di, j
� � c��	ri�j

� � ri
 � xi�j
� � xi 	 c �	zi�j

� � zi
 , [5]

for i, j � 0, 1, . . . , N � 1. These may be regarded as projections
on to c� and c� (for Fx � 0) of the vectorial substeps from a state
ri to the transition state ri�j

� . See, for example, the nine vectors
from states [0], (1), and (2) in Fig. 8 given by j � 0, 1, and 2.

Now the way is clear! When large superstall loads are tested
(formally, Fx3 �
), Eq. 4 yields �V� � exp[�Fx�(d � Dmax

� )/kBT],
where Dmax

� is the largest projection Di,j
�. Consequently, we can

conclude, in words:
A: Anomalous superstall variation, V3 0�, results if but only

if at least one of the N2 projections Di,j
� exceeds the step size d.

Note that this justifies the conclusion illustrated in Fig. 6c.
Inspection of Fig. 8, however, reveals that the landscape of Fig.
5 [without state (2�)] cannot yield anomalous superstall behavior
but could do so if the coordinate x1 became smaller than x0

�.
The complementary argument for Fx � 0 applied to Eq. 4

(formally, Fx 3 �
) clearly yields:
B: Assisting-load anomalous behavior, V decreasing, is real-

ized if but only if at least one of the N2 projections Di,j
� is negative.

This bears out the convex form of Fig. 6a but shows that only
normal assisting load performance is realizable for the system in
Fig. 8. Furthermore, when N � 1 there is only one term in the
denominator in Eq. 4; thus, an anomalous response for both signs
of Fx is forbidden unless N � 2. Conversely, as demonstrated by
Fig. 1 (8), two-state models can be doubly anomalous.

Colocalization and Fuel Dependence
The structural projections in Eq. 5 are expressible by using the
load distribution vectors, �i

� and �j
� (see Eq. 2). Thus, in Fig. 8,

one has Dj,0
� � c���j

�d, Dj,1
� � c��(�j

� � �j�1
� � �j�1

� )d, etc., and,
using the periodicity, for example,

Dj,N�1
� � c�� 	rj�N

� � rj
 � d	1 � c���j
�
 , [6]

and so on. Now it may happen that to a good approximation a
transition state, say (j�) or (j�), and an adjacent biochemically
distinct state, say (j), are physically colocalized so that �j

� �
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(rj
� � rj)/d or �j

� � (rj � rj
�)/d vanishes. Thus, real biochemical

changes, ( j � 1)º ( j�)º ( j)º ( j�)º ( j � 1), occur, but the
point of attachment, P(x, y, z), on the motor undergoes no
appreciable displacement in the step ( j)º (j�) or in the step ( j�)
º ( j) [although, of course, ( j�) or ( j�) will likely differ from ( j)
in significant but unseen dimensions]. The corresponding van-
ishing of Dj,0

� then implies, by Eq. 4 and B, that under large
assisting loads V(Fx) will saturate, that is, approach a maximal
value.

Similarly, under resisting forces, the associated equality
Dj,N�1

� � d that follows from Eq. 6, takes one to the borderline
at which anomalous superstall behavior sets in (see A). Accord-
ingly, the backward velocity is then expected to decelerate as
�Fx� increases above FS and approach a limiting or minimal
negative value.

In application of kinetic models to motor proteins, the supply
of molecular fuel or substrate, say ATP, is well represented by
taking u0

0 � k0
0[ATP] as the initial, zero-load rate; the stall force

can then be set by a corresponding form for the reverse rate w0
0

(or wN�1
0 , etc.) (see refs. 4, 8, 14, and 19). The dependence or

otherwise of the large-load velocity on the fuel supply, as noted
in connection with myosin V in Fig. 3, hinges, therefore, on the
inverse rate parameters Ki,j in Eq. 4. When �Fx�3 
, one of the
N2 terms in the denominator will dominate exponentially and
carry a corresponding inverse rate, say K� or K� for Fx � 0. If
these particular parameters do not depend on [ATP], that is, do
not carry u0

0 as a factor [or, possibly, w0
0, etc. (14, 19)], the large

load response will be independent of [ATP], and vice versa. For
a given landscape this can be checked from expressions for
Ki,j (12).

Side-Reaction Paths
Experiments on RNA polymerase (20) have observed ‘‘pauses’’
in otherwise steady stepping along the DNA track. Such inter-
mittent motions suggest the presence of reaction side chains that
branch off the main pathway (see Fig. 9). The previous theory
is readily generalized for side-reaction chains (and trees, etc.)
(12, 18). If a sequence of L states, located, say, at rk

s for k � 1,
2, . . . , L, springs from state (s) at rs � r0

s , one needs 2NL further
structural parameters to extend conclusions A and B: these are
the vector projections

D j,k
s� � c��	r s�j

� � r k
s 
 , j � 0, 1, · · · , N � 1, [7]

and each is associated with an inverse rate parameter Kj,k
s as in

Eq. 4, but entailing also the side-reaction zero-load transition
rates {uk�1

0 , wk
0} (12). For the example in Fig. 9 the corresponding

LN � 1 � 3 new vectors have been drawn in.
Both anomaly assertions A and B now remain valid provided

that one supplements ‘‘the N2 projections Di,j
�’’ (or ‘‘Di,j

�,’’
respectively) by ‘‘and the LN projections D j,k

s�’’ (or ‘‘D j,k
s�’’).

Application to the side-reaction system of Fig. 9, where the
vector (r1

��r2�) has a relatively large negative x component,
reveals a surprise: whenever c� is not too large, the assisting-load
(V, Fx) profile will be anomalous (even though a normal super-
stall response remains).

If there are a number of side paths, one need only include the
extra vector projections in the anomaly condition list (12).

Parallel Pathway Mechanoenzymes. Various lines of evidence (4)
suggest a need for models with alternative pathways to achieve
cycle completion. In the simplest case, two independent parallel
pathways of N
 and N� transitions run from the unique state [0]
via (1
) or (1�) to (N
 � 1) or (N� � 1) and meet again at [N
]
� [N�]. Kolomeisky (21) has obtained exact results for V that can
be recast (and extended to multiple parallel pathways) as a sum
of two terms, V
 � V�, each with (by appeal to detailed balance)
the same numerator as in Eq. 4. The denominators are distinct

but coupled together (12). Then 2(N

2 � N�

2) structural param-
eters, Di,j


�and Dl,m
��, can be defined in precise analogy to Eq. 5;

these suffice to determine the large-load behavior.
Because the two chains are linked at state [0], it proves

essential to distinguish the corresponding projections, D0,j

� and

D0,m
�� , from those with roots at i, l � 0. Then we may introduce

N
� � N
N�(N� � 1) ‘‘coupled projections’’ by

Dj;l,m

�� � D0, j


� � Dl,m
�� � max

n
D0,n

��, [8]

where j, m � 0 while l � 1. The N�
'N�N
(N
 � 1) parameters
Dm;i,j

�
� are defined similarly (with i � 1), while for the comple-
mentary N
�-coupled projections, Dj;l,m


�� and Dm;i,j
�
�, min replaces

max. Finally, the first anomaly condition can be stated as:
A� Anomalous superstall variation is realized if but only if, first,
at least one of the (N


2 � N
�) 
-projections, Di,j

� and Dj;l,m


��, and,
second, at least one of the (N�

2 � N�
) �-projections, Dl,m
�� and

Dm;i,j
�
�, exceeds the step size d.
The complementary condition B� for assisting load anomalies

follows merely by replacing each superscript minus sign in A� with
a plus sign and changing the final phrase to ‘‘is negative.’’

These parallel pathway criteria for anomalous behavior seem
more demanding than for two distinct single chains. Neverthe-
less, the coupling actually provides extra possibilities beyond the
single-chain requirements. To see this, suppose N
 � N� � 2 and,
for simplicity, consider c� � 0 so that only the scalar load
distribution sets, �
 � (�
0

� ,�
1
� ,�
1

� ,�
0
� ) and ��, are needed to

specify the 
- and �-chain structures. The concrete assignments

�
 �
1

10
	5, 1, 2, 2
 and �� �

1
10

	5, � 1, 3, 3
 , [9]

which verify ¥j�
j
� � 1, then prove instructive.

By way of Eq. 5, these yield the sets {Di,j

�} and {Dl,m

��} of N

2 �

N�
2 � 4 basic structural projections for each chain, namely,

	0.5, 0.8; 0.2, 0.9
d, and 	0.5, 0.7; 0.3, 1.1
d , [10]

where i, j , l, m � 0, 1. Consider first each chain individually: from
the criteria A and B one sees that the 
-chain cannot display
anomalous (V, Fx) profiles. Since D11

�� � d, however, the �-chain
will be anomalous above stall: this is a consequence of the
negative load factor ��1

� , as is easily seen in a plot like Fig. 8.
But when the two chains are coupled we must appeal to A� and

use Eq. 1 to compute the N
� � 4 coupled projections, noting first
from Eq. 10, that maxn(D0,n

��) � 0.7d whence one finds

�Dj;l,m

� � � 	0.1, 0.9; 0.4, 1.2
d for l � 1, j , m � 0, 1.

[11]

Since D1;1,1

� exceeds d we conclude that the coupled (
,�) chains

will, in fact, jointly exhibit anomalous superstall behavior. Lastly,
it should be remarked that side reactions branching off one or
both pathways can be handled analytically just as explained
above for the sequential models (12). Explicit analytical results

d dx

z

0 3 6

1

2

4

5

2′ 5′

+0
+1

+2 + +4
+5

+1′ 4′ +

3

Fig. 9. Two cycles of the three-state model in Fig. 8 augmented by a
side-reaction path of length L � 1 branching from state (1) to state (2�) yielding
three additional significant structural vectors.
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have also been found (12) for looped side reactions in which a
transition sequence of M � 2 steps branches off from a particular
state to which it returns on the last step. However, the possible
role of such ‘‘isolated futile cycles’’ is not presently clear.

Discussion
Our analysis of the conditions under which large loads lead to
anomalous (V, Fx) responses might well be explored for other
enzyme schemes. Most pressing perhaps are divided pathway
systems, in which, after N� (�1) steps, the enzyme can proceed
by two distinct routes, say 
 and �, that meet again with N� (�0)
steps remaining before the full cycle is completed. Fig. 5
represents a (1, 2, 2, 0) example. There is, indeed, evidence that
myosin V has such a significant alternative pathway (22, 23). A
closed formulation for V(Fx) in terms of all of the 2¥
 N
 rates
has been derived (12). On using that, explicit criteria emerge
regarding the large-load behavior, but they lack the intuitive
clarity and relative simplicity exemplified in the anomaly rules A,
B, A�, and B� derived above. Specifically, disconnected four-state
vector differences, such as (ri

� � rj � rk
� � rl), appear and must

also be used.
Rather than describe a systematic algorithm for still more

complex kinetic models (12) let us reflect briefly on the results
obtained. Foremost is the fact that mechanoenzyme perfor-
mance under large imposed forces is determined by a relatively
few general parameters that physically locate specific transition
states relative to intermediate biomechanochemical states.

Furthermore, as already demonstrated for kinesin (8), allow-
ance for motions of the enzyme normal to the track, or,
generally, in the full (x, y, z) space, may be crucially important.
Likewise significant is the recognition, illustrated in Figs. 6 and
7, that a mechanochemical transition state need not lie ‘‘physi-
cally’’ between the biophysical states it links. This recognizes that
the obvious physical coordinate measuring the progress of a

mechanoenzyme may not be a satisfactory reaction coordinate:
thus, as in Figs. 6 and 7, ‘‘local backtracking’’ may occur even
though the enzymatic transitions move steadily forward (11).

Recall next, the observations in Figs. 1–3 demonstrating that
reverse motions and their fuel dependence under superstall
loads can be successfully predicted by simple kinetic models and
smoothly linked to substall performance without invoking fur-
ther mechanisms. These facts bring into question various pro-
posals (e.g., refs. 10 and 15), arguing that new effects and special
phenomena should enter when, under the imposition of a large
resistive load, a mechanoenzyme progresses backward. Although
novel features could play a role when a mechanoenzyme is
reversed by overload, one might, in the absence of contrary
evidence, rather hold that the fundamental biophysiochemical
picture of a series of reactions being reversed merely by tilting
the free-energy landscape, that is, altering the balance of free
energy, should be accepted as the primary hypothesis.

Finally, when an imposed force is switched from resisting or
opposing, as usually considered normal for mechanoenzymes, to
assisting or helping, it is certainly reasonable to allow for specific
mechanical changes; merely reversing the sign of Fx in a formula
fitted for Fx � 0 is unlikely to prove adequate. In our analysis this
was recognized explicitly by introducing in Eq. 3 the projection
vectors c� that allow for the tether orientation. But, in a detailed
analysis of kinesin (8), a further specific mechanism was invoked
on the basis of the experimental data (7). Nevertheless, the
paramount role of the geometrical location of states and tran-
sition states should remain under large assisting forces just as in
the superstall regime.

We thank Dr. Martin Lindén and Professor A. B. Kolomeisky for their
interactions and correspondence and Professor D. Thirumalai for his
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