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Recent studies that combined psychophysical/neurophysiological
experiments [de Lafuente V, Romo R (2005) Nat Neurosci 8:1698–
1703] analyzed the responses from single neurons, recorded in
several cortical areas of parietal and frontal lobes, while trained
monkeys reported the presence or absence of a mechanical vibra-
tion of varying amplitude applied to skin of one fingertip. The
analysis showed that the activity of primary somatosensory cortex
neurons covaried with the stimulus strength but did not covary
with the animal’s perceptual reports. In contrast, the activity of
medial premotor cortex (MPC) neurons did not covary with the
stimulus strength but did covary with the animal’s perceptual
reports. Here, we address the question of how perceptual detec-
tion is computed in MPC. In particular, we regard perceptual
detection as a bistable neurodynamical phenomenon reflected in
the activity of MPC. We show that the activity of MPC is consistent
with a decision-making-like scenario of fluctuation-driven compu-
tation that causes a probabilistic transition between two bistable
states, one corresponding to the case in which the monkey detects
the sensory input, the other corresponding to the case in which the
monkey does not. Moreover, the high variability activity of MPC
neurons both within and between trials reflects stochastic fluctu-
ations that may play a crucial role in the monkey’s probabilistic
perceptual reports.

neurodynamics � perceptual detection � attractor networks � spiking
dynamics � multistability

S ince the foundation of experimental psychology, one of the
core problems that marked the research of the mind was the

question of how the brain translates sensory stimuli into mean-
ingful interpretations. One refers to these brain processes as
sensation and perception. Gustav Fechner (1) started to inves-
tigate quantitatively these brain processes establishing the func-
tional relationship between the physical and the psychical world.
A simpler form of operationalizing this problem is by means of
the perceptual detection paradigm, i.e., the report of a produced
or not produced sensory percept when a near-threshold sensory
stimulus is presented. Recently, several studies reported the
neural correlates of sensory detection by fMRI and single-cell
recordings. In the case of vibrotactile stimulation, activity in
somatosensory and frontal cortical areas suggests that percep-
tual detection results from different functional mechanisms,
involving early sensory brain areas and cognitive processes (2, 3).
In particular, de Lafuente and Romo (2) analyzed the recorded
responses of neurons in primary somatosensory (S1) and medial
premotor cortex (MPC) of monkeys judging the presence or
absence of threshold vibrotactile stimulation. They observed that
S1 neurons are always activated by the presence of the stimulus,
but MPC neuronal activation covaries with the monkey’s behav-
ior. This observation suggests that S1 neurons encode the
physical stimulation, whereas MPC neurons are engaged with
the production of a sensory percept. Moreover, because neurons
from MPC have been shown to be involved in the decision-

making process during vibrotactile somatosensory discrimina-
tion (4), perceptual detection could be associated with a cogni-
tive function, namely decision-making. Given these
experimental facts, we can characterize the behavior associated
with the phenomenon of perceptual detection and the underly-
ing neural correlates. But, what is still missing are the compu-
tational mechanisms associated with those neural correlates and
an answer to the question of how perceptual detection is
computed.

The aim of this article is to analyze the putative computational
mechanisms involved in perceptual detection. We focus our
analysis on the paradigm and experimental results mentioned
above (2). We analyze and model the activity of MPC neurons
that correlates with perceptual detection by means of the
theoretical framework proposed for decision making. In partic-
ular, we propose perceptual detection as the result of a neuro-
dynamical bistability (5). Bistability refers to the regime in which
two different stable states coexist. We show that the neural
correlates underlying the production of a percept are consistent
with a decision-making-like scenario of fluctuation-driven com-
putation that causes probabilistic transition between two states:
the ‘‘detection’’ and ‘‘no detection’’ of the sensory stimulus. We
propose two possible bistable models. Moreover, one of the
models predicts the existence of ‘‘no’’ neurons. We show exper-
imental results that corroborate this prediction.

Results
We present the results of the nonstationary probabilistic analysis
calculated by means of the full spiking simulations averaged over
several trials. In all cases, we aim to model the behavior of the
MPC neurons that are shown in figure 3 c and f of the work of
de Lafuente and Romo (2), which reflect the proper detection
of the percept. We propose that the perceptual response results
from a neurodynamical bistability. In this framework, each of the
stable states corresponds to one possible perceptual response:
‘‘stimulus detected’’ or ‘‘stimulus not detected.’’ The probability
of detecting the stimulus is given by the transitions between these
two states. In fact, the probabilistic character of the system
results from the stochastic nature of the networks. The finite-size
effect is the source of this stochasticity. To compare the theo-
retical results with the experimental results, we first studied the
characteristics of the bistable neurodynamical models. We plot-
ted the behavior of the relevant populations encoding the
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different bistable states corresponding to the two alternative
choices. For the NCYN model, Fig. 1IIa plots the proportion of
‘‘yes’’ responses as a function of the intensity of the applied
vibrotactile stimulation, i.e., as a function of the strength � of the
stimulus presented. A similar result is obtained for the CYNN
model (Fig. 1IIc). The two figures show that the proportion of
‘‘yes’’ responses (hits) increases as the intensity of the stimulus
applied grows. Both models are consistent with the experimental
results of de Lafuente and Romo (2) shown in their figure 3 e and
f (reproduced here in Fig. 1I). Hence, both models show a
probabilistic behavior that emulates the real behavior of subjects
detecting a vibrotactile stimulus (2). Nevertheless, the CYNN
shows a step function that is more consistent with the discharge
characteristic of MPC neurons than the NCYN. Let us now
concentrate on the level of firing activity observed in MPC
neurons that covary with the behavioral responses. Fig. 1IIb for
the NCYN model and Fig. 1IId for the CYNN model show the
activity of the neurons encoding the ‘‘yes’’ response (selective
excitatory population sensitive to the applied vibrotactile stim-
ulus) averaged over trials that reported a percept (hits). In both
models, the mean firing activity is almost constant and is not
linearly related with the stimulus amplitude. On the contrary, the
firing activity of the S1 neurons depends strongly on the stimulus

amplitude. It is also reflected in the experimental results. The
fact that neurons encoding the ‘‘yes’’ response present a rela-
tively constant level of activation in trials that report a detected
percept, whereas in trials that fail to detect a percept these
neurons are low-activated (spontaneous level) is consistent with
an attractor network. Therefore, the transition driven by the
fluctuations are consistent with the behavioral data.

Model Predictions and Experimental Recordings: ‘‘Yes’’ Neurons and
‘‘No’’ Neurons. Despite the fact that both models are consistent
with the existing experimental data (2), the underlying compu-
tation is totally different. In one case, the detection of a percept
is associated with the probability of activation of a bistable
population in the absence of strong competitions (model
NCYN). On the other hand, the underlying computation in the
CYNN corresponds to a more genuine decision-making para-
digm because the bistability is given by a strong competition with
the extra excitatory population encoding a default ‘‘no’’ re-
sponse. Both models can be distinguished, because they perform
different predictions when the detailed underlying temporal
evolution of the whole network is investigated.

A typical misstrial corresponding to a ‘‘no’’ response (percep-
tion not detected) is depicted in Fig. 2a. In this case, the specific
excitatory population sensitive to the applied vibrotactile stim-
ulus remains in the spontaneous state. Fig. 2b shows a typical hit
trial, i.e., a ‘‘yes’’ response (perception detected). The specific
excitatory population sensitive to the applied vibrotactile stim-
ulus reflects a transition to a high firing-rate state encoding the
‘‘yes’’ response. In both cases, the stimulus is applied between
200 and 700 ms (shadowed region). The red dashed line marks
the value of the threshold we used to classify the response.
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II. Modeling Results

I. Behavioral and neuronal data
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Fig. 1. Experimental and simulated neural and behavioral data. I. Behavioral
and neuronal data. Behavioral detection curve and responses to the stimulus
of MPC neurons. (Left) Proportion of ‘‘yes’’ responses as a function of the
amplitude of a 20-Hz vibratory stimulus applied to a fingertip (500 trials for
each noncero amplitude and 4,500 trials for the cero amplitude). (Right) Mean
response of MPC neurons as a function of stimulus amplitude. In contrast to
what has been observed in primary somatosensory areas, stimulus amplitude
has little effect on the activity of MPC neurons. II. Modeling results. NCYN
model (a and b) and CYNN model (c and d).

Fig. 2. Temporal evolution of the firing-rate activity of the selective excita-
tory population sensitive to the specific vibrotactile stimulation applied for
two different trials with NCYN (Upper) and CYNN (Lower) models. (Left) ‘‘No’’
response (perception not detected). Pearson’s correlation computed for the
two pools during a ‘‘no’’ response trial is 0.63 for model CYNN. (Right) ‘‘Yes’’
response (perception detected) and a Pearson’s correlation of 0.66 for CYNN.
Stimulus applied between 200 and 700 ms (shadowed region). Red dashed line
on the NCYN marks the value of the classification threshold. The simulations
have been performed by the full spiking and synaptic simulation of the
network. The orange curves correspond to the ‘‘yes’’ pool and green curves
correspond to the ‘‘no’’ pool.
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Fig. 2 c and d show similar simulations, but now for the CYNN
model. In this case, we plotted the temporal evolution of the
firing-rate activity of the selective excitatory population sensitive
to the specific vibrotactile stimulation applied and the extra
excitatory population encoding the default ‘‘no’’ response. Fig.
2c plots a typical miss trial corresponding to a ‘‘no’’ response
(perception not detected). There is no transition, and the
‘‘no’’-response neurons increase their firing activity monotoni-
cally and remain strongly activated (encoding a no-detection
response). Their activity will tend to decrease again after a
period. In the case of the ‘‘yes’’-response neurons, their firing
activity is inhibited, and remains at a low level. Fig. 2d shows a
typical hit trial, i.e., a ‘‘yes’’ response (perception detected). As
before, the specific ‘‘yes’’ neurons, sensitive to the applied
vibrotactile stimulus, perform a transition to a high activity state,
whereas the ‘‘no’’ neurons are slightly inhibited, and they fire at
an activity lower than the one they show in the prestimulus
period. This state encodes the ‘‘yes’’ response. In this model, the
‘‘no’’ response is reflected by an active population that shows an
elevated level of firing activity during the pre- and poststimu-
lation period, whereas the ‘‘yes’’ response population goes to a
state of low firing-rate activity. In other words, in addition to the
model NCYN, which just reflects the neurodynamics of the ‘‘yes’’
neurons, the CYNN model can capture the dynamics of the ‘‘no’’
neurons, which is a concrete prediction that can be identified
experimentally.

In addition to the ‘‘yes’’-response neurons, and in agreement
with the CYNN, we found that half of the recorded MPC
neurons (71 of 144, 49%) suppressed their activity during the
delay period after stimulus presentation (figure 2a MPC, middle
column in ref. 6). These neurons showed high basal activity that
was maintained if no stimulus was presented (Fig. 3I). The firing
dynamics of these neurons support the idea that decisions about
stimulus presence or absence are coded by two distinct neuronal
populations engaged in a competition that determines the final
behavioral output, as postulated by the CYNN model. Notice
that in the experimental plots, MPC ‘‘no’’ neurons show a peak
of activity when a stimulus is applied that is not captured by the
CYNN model. We hypothesize that this sudden increase of
activity is due to the fact that, during the stimulation period all
neurons (‘‘yes’’/‘‘no’’ neurons) show strong activation encoding
the presence of the stimulus. Nevertheless, after this period of
stimulation, the neuronal system engages in a decision-making
process that is the one that we are modeling here. Therefore, the
different type of firing-activity modulations observed in the
‘‘yes’’ neurons and ‘‘no’’ neurons after the stimulation is perfectly
captured by the CYNN model. The fact that ‘‘no’’-response
neurons showed increased basal firing rates is consistent with the
idea that the decision to answer ‘‘no’’ is a default decision which
competes against the decision to answer ‘‘yes.’’ These experi-
mental observations strongly support the computation of the
detection consistent with model CYNN.

Discussion
In this article, we show that perceptual detection results from a
decision-making-like cognitive operation associated with a mul-
tistable neurodynamical phenomenon. The neural correlates
underlying the production of a percept are consistent with a
scenario of fluctuation-driven computation that causes proba-
bilistic transitions between multistable states, corresponding to
detection or no detection of the sensory stimulus. Our model
begins to describe the mechanisms underlying the link between
the neuronal stochasticity and the behavior by constructing
computational models that account for both cellular and behav-
ioral levels. In this way, we extend computational and theoretical
neuroscience approaches to the problem of decision making.
These approaches used biophysically realistic neural circuits
designed to implement stochastic noise-driven decision-making

(7–9). In general, these models involve populations of excitatory
neurons engaged in competitive interactions mediated by inhi-
bition. The external physical stimuli bias the competition in favor
of one of the populations that develops gradually increased
activity whereas activity in the other populations is inhibited.
This final configuration corresponds to a decision state associ-
ated with a specific choice. In this scenario, the strong and weak
activity states are stable for the same set of parameter values,
which is called bistability. The computation involved in decision
making is then understood as the fluctuation-driven, probabi-
listic transition from the spontaneous to the decision state. These
biophysical neurodynamical implementations are able to quali-
tatively account for some experimental aspects of psychometric
and neurometric data underlying decision making (10).

In particular, we proposed two different network models:
noncompeting ‘‘yes’’ neurons (NCYN) and competing ‘‘yes–no’’
neurons (CYNN). Both models are consistent with the existing
single-cell recordings, but they involve different types of bistable
decision states and, consequently, different types of computation
and neurodynamics. By analyzing the temporal evolution of the
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Fig. 3. Responses of type ‘‘yes’’ and type ‘‘no’’ neurons recorded during
stimulus-present (red line) and stimulus-absent (blue line) trials. (a) Raster plot
of a ‘‘yes’’ neuron showing the strong responses to the vibratory stimulus and
its maintained activity throughout the delay period preceding the behavioral
response. (b) Raster plot of a ‘‘no’’ neuron showing the suppressed activity
during the delay period and its maintained high firing rate during stimulus-
absent trials. (c) Mean firing rate of 73 ‘‘yes’’ neurons during stimulus-present
and stimulus-absent trials. (d) Mean firing rate of 71 ‘‘no’’ neurons during
stimulus-present and stimulus-absent trials (black line indicates mean activity,
and colored area depicts 95% confidence intervals). (e) Average activity over
the ‘‘yes’’-response trials of the population of neurons in the CYNN model that
codifies the ‘‘yes’’ response. ( f) Average activity over the ‘‘yes’’-response trials
of the population of neurons in the CYNN model that codifies the ‘‘no’’
response.
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firing-rate activity of neurons in trials associated with the two
different behavioral responses, we were able to show experi-
mental evidences in favor of the CYNN model. Specifically, the
CYNN model predicts the existence of neurons that encode the
‘‘no’’ response and others associated with the ‘‘yes’’ response.
The first ones slightly decrease their activity at the end of the
trial, whereas the second group increases their firing activity
when a stimulus is presented. In conclusion, the computational
models proposed here provide a deeper understanding of the
fundamental mechanisms underlying perceptual detection and
how these are related with the neuroscience data. We argue that
addressing such a task is a prerequisite for grounding empirical
neuroscience in a cogent theoretical framework.

Materials and Methods
Neuronal Correlates of Perceptual Detection. We focus on the
experimental results of the neural correlates (S1 and MPC areas)
of subjective sensory experience (2). de Lafuente and Romo
used a behavioral task where trained awake monkeys report the
presence or absence of a mechanical vibration applied to their
fingertips by pressing one of two pushbuttons. de Lafuente and
Romo found that the activity of MPC neurons was only weakly
modulated by the stimulus amplitude, and it covaried with the
monkeys’ trial-by-trial reports. On the contrary, S1 neurons did

not covary with the animals’ perceptual reports, but their firing
rate did show a monotonically increasing graded dependence
with the stimulus amplitude (figure 3 c and f in ref. 2). The fact
that MPC neurons correlate with the behavioral performance,
but show an all-or-none firing-rate response, suggests an under-
lying bistable dynamic in an attractor framework.

Stochastics Neurodynamical Model. The neurodynamical frame-
work we use here consists of a network of integrate-and-fire
neurons with realistic synaptic dynamics. In the model, compe-
tition and cooperation mechanisms can account for the most-
relevant characteristics of the neuronal activity related with
subjective sensory experience. These competition and cooper-
ation mechanisms are implemented in an attractor network
consisting of recurrently connected populations of excitatory
neurons mutually connected with a common inhibitory popula-
tion. This neurodynamical formulation is based on the principle
of biased competition/cooperation, which has been able to
simulate and explain, in a unifying framework, attention, work-
ing memory, reward processing in a variety of tasks (5, 11, 15),
and decision-making (7, 15).

Network. We modeled a patch of MPC neurons in the frontal lobe
by a network of interacting neurons organized into a discrete set
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Fig. 4. Network architecture and corresponding bifurcation diagrams. (Upper) Minimal network architecture of the MPC model. The two proposed models
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to the population that codifies the ‘‘no’’ response. A ‘‘yes’’ response is given when the population sensitive to the frequency applied is high activated over the
population that codifies the ‘‘no’’ response. A ‘‘no’’ response is given when the population sensitive to the stimulus is inhibited by the population that codifies
the ‘‘no’’ response. The arrows indicate the recurrent connections between the different neurons in a pool. (Lower) Bifurcation diagrams for both NYCN (c) and
CYNN (d) models. The diagrams show the different attractor regions as a function of the stimulus input (�) and the level of coupling within the neurons of the
same selective population (cohesion).
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of populations. Populations are defined as groups of excitatory
or inhibitory neurons sharing the same inputs and connectivities.
Some of the excitatory population of neurons have a selective
response that, in our case, reflects the sensitivity to an external
applied vibrotactile stimulation. All other excitatory neurons are
grouped in a ‘‘nonselective’’ population. There is also one
inhibitory population grouping the local inhibitory neurons that
regulate the overall activity by implementing competition in the
network. Neurons in the networks are connected by three types
of receptors that mediate the synaptic currents flowing into
them: AMPA, NMDA glutamate, and GABA receptors. Neu-
rons within a specific excitatory population are mutually coupled
with a strong weight ��. Neurons between two different selective
populations have anticorrelated activity that results in weaker
connections ��.

We propose two different network models that are consistent
with the two possible behavioral responses: ‘‘stimulus detection’’
and ‘‘no stimulus detection,’’ The computation involved in
perceptual detection is then understood as the fluctuation-
driven, probabilistic transition to one of the two possible bistable
decision states. In the first model, a selective excitatory popu-
lation corresponds to the detection of a percept associated with
an external applied vibrotactile stimulation. We assume that the
strength of the input impinging in that excitatory population �
is proportional to the strength of the presented vibrotactile
stimulus (as, for example, encoded in S1, i.e., the input to MPC
is transmitted from S1). When a stimulus is presented, there is
just one population sensitive to it. To model this characteristic,
we use a network composed of two selective populations, but
only one will be selective to the stimuli applied (in fact, in this
first model, the neurons in the second selective populations
behave as the nonselective neurons). The relevant bistability in
this model is therefore given by the state where the excitatory
populations are low activated (corresponding to no detection of
a percept, i.e., ‘‘no’’ response) and the state where the excitatory
population sensitive to the presented vibrotactile stimulus is
highly activated (corresponding to the detection of the percept,
i.e., ‘‘yes’’ response). We denominate this model noncompeting
‘‘yes’’ neurons (NCYN) (Fig. 4a). Just the selective population
sensitive to the applied vibrotactile stimulation used in the
experiment is represented. In the second model, we add to the
network extra excitatory populations corresponding to a ‘‘no
detection’’ default response. We denominate this model com-
peting ‘‘yes–no’’ neurons (CYNN) (Fig. 4b). The figure shows a
selective excitatory population sensitive to the applied vibrotac-
tile stimulation used in the experiment (corresponding to the
detection of the percept, i.e., ‘‘yes’’ response) and the extra
selective excitatory population encoding the ‘‘no’’ response
(corresponding to the not detection of a percept, i.e., ‘‘no’’
response). The latter pool receives a constant input of 50 Hz (‘‘no
detection’’ default input) encoding the ‘‘no’’ response by default.
This input causes a competition between the neurons sensitive to
an external applied vibrotactile stimulation and the neurons that
encodes the default ‘‘no’’ response. In this case, the dynamics
corresponds to a genuine decision-making competitive compu-
tation between the neurons sensitive to an external applied
vibrotactile stimulation and the neurons that encode the ‘‘no’’
response by default. The relevant bistability is therefore given by

one state where the excitatory population corresponding to the
‘‘no’’ response is highly activated, and the excitatory population
sensitive to the presence of the specific stimulus is inhibited (‘‘no
stimulus detection’’). Another state appears when the ‘‘no’’
population is inhibited and the specific population sensitive to
the stimulus wins the competition (‘‘stimulus detection’’). Note
that in the CYNN model, we use different cohesion values ��

and ��� for the different selective populations and the same ��.
See the supporting information (SI) for a full specification of the
whole connectivity.

Simulations. We study the characteristics of the network in the
stationary conditions with the mean-field approach. Using this
approximation, we scan the relevant parameter space given by
the population cohesion �� versus the external input �. The
mean-field results for the NCYN-model are illustrated in a
bifurcation diagram (Fig. 4c) that shows different regimes of the
network. For small values of � and for a weak population
cohesion, the network has one stable state where all populations
are firing at a weak level (spontaneous state). This spontaneous
state encodes the ‘‘no’’ response in the NYCN model. For higher
population cohesion and higher values of �, a state correspond-
ing to the strong activation of the selective population sensitive
to the applied vibrotactile stimulation emerges. We call this
excited state encoding the ‘‘yes’’ response the ‘‘yes’’ state.
Between these two regions, there is a bistable region where the
state corresponding to weak (‘‘no’’ response) or strong (‘‘yes’’
response) activation states of the selective population sensitive
to the applied vibrotactile stimulation are both stable. For the
CYNN model, the mean-field analysis is summarized in Fig. 4d.
In this case, the bifurcation diagram has five different regions:
three unique stable-state regions and two bistable regions. We
distinguish a unique stable ‘‘yes’’-state region (‘‘yes’’-response
population strongly activated/‘‘no’’-response population weakly
activated), another one with a ‘‘no’’-state region (‘‘no’’-response
population strongly activated/‘‘yes’’-response population weakly
activated) and a region in which both populations are excited
(‘‘yes’’-response population strongly activated/‘‘no’’-response
population strongly activated, a unique stable state, too). In the
first bistable region, the ‘‘yes’’ state and the ‘‘no’’ state coexist,
and in the other one, the coexistence is between the ‘‘no’’ state
and a state in which both populations are excited. Once we
analyzed the bifurcation diagrams, we restricted the range of
parameters selecting those in which the networks operate in the
bistable regime.

To study the probabilistic behavior of the neuronal dynamics
of the network, we analyzed the spiking simulations of the
configurations corresponding to the region of bistability. We
analyzed the spiking data consistently with the analysis of the
experiment data in ref. 2 (see the SI).
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