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Abstract. y-Sarcoglycan is a transmembrane, dystro-
phin-associated protein expressed in skeletal and car-
diac muscle. The murine y-sarcoglycan gene was dis-
rupted using homologous recombination. Mice lacking
v-sarcoglycan showed pronounced dystrophic muscle
changes in early life. By 20 wk of age, these mice devel-
oped cardiomyopathy and died prematurely. The loss
of y-sarcoglycan produced secondary reduction of 3-
and d-sarcoglycan with partial retention of a- and
e-sarcoglycan, suggesting that 3-, y-, and d-sarcoglycan
function as a unit. Importantly, mice lacking y-sarco-
glycan showed normal dystrophin content and local-
ization, demonstrating that myofiber degeneration
occurred independently of dystrophin alteration. Fur-
thermore, B-dystroglycan and laminin were left intact,
implying that the dystrophin—dystroglycan—laminin

mechanical link was unaffected by sarcoglycan defi-
ciency. Apoptotic myonuclei were abundant in skeletal
muscle lacking y-sarcoglycan, suggesting that pro-
grammed cell death contributes to myofiber degenera-
tion. Vital staining with Evans blue dye revealed that
muscle lacking y-sarcoglycan developed membrane dis-
ruptions like those seen in dystrophin-deficient muscle.
Our data demonstrate that sarcoglycan loss was suffi-
cient, and that dystrophin loss was not necessary to
cause membrane defects and apoptosis. As a common
molecular feature in a variety of muscular dystrophies,
sarcoglycan loss is a likely mediator of pathology.
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of proteins at the muscle membrane that are asso-

ciated with muscular dystrophy. Dystrophin, the
protein product of the Duchenne muscular dystrophy
(DMD)! gene, is an elongated cytoskeletal protein that
binds actin and a complex of dystrophin-associated pro-
teins, forming the dystrophin-glycoprotein complex (DGC;
Burghes et al., 1987; Campbell and Kahl, 1989; Ervasti
and Campbell, 1991; Koenig et al., 1987; Monaco et al.,
1986; Rybakova et al., 1996; Yoshida and Ozawa, 1990).
More recently, a subcomplex of the DGC, sarcoglycan,
was associated with mutations that result in human auto-

P ROGRESS in human genetics has identified a number
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somal recessive muscular dystrophy (Bonnemann et al.,
1996a; Campbell, 1995; Duggan et al., 1997; Straub and
Campbell, 1997). There are at least five subunits of
sarcoglycan: a, 3, v, 8, and e (Ettinger et al., 1997; Lim et al.,
1995; McNally et al., 1998; Nigro et al., 1996; Noguchi et al.,
1995; Roberds et al., 1993). Three of these sarcoglycans—
B, v, and d—share homology as type II transmembrane
proteins with cysteine-rich EGF-like repeats in their extra-
cellular domains. Mutations in any single sarcoglycan gene
result in varying degrees of secondary reduction of the
other sarcoglycan units, suggesting interaction between
the sarcoglycan subunits. a-sarcoglycan is a type I trans-
membrane protein expressed exclusively in skeletal and
cardiac muscle. A widely expressed fifth sarcoglycan,
e-sarcoglycan, was recently identified with significant ho-
mology to a-sarcoglycan (Ettinger et al., 1997; McNally et
al., 1998). e-sarcoglycan is present in skeletal and cardiac
muscle, but is also expressed in most tissues studied, dem-
onstrating that sarcoglycan-like proteins are present in
nonmuscle tissues.

In the presence of B-p-octyl-glycoside, the sarcoglycan
subunits can be separated from the remainder of the
DGC, but the exact interaction between sarcoglycan and
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the remainder of the DGC, particularly dystrophin, is ill-
defined (Ozawa et al., 1995; Yoshida et al., 1994). Studies
of human muscle biopsies have provided limited informa-
tion regarding the nature of the sarcoglycan—dystrophin
interaction. Quantitative assessment of dystrophin content
showed a secondary decrease of dystrophin content in pa-
tients with mutations in B-, y-, and 3-sarcoglycan; the re-
duction in dystrophin content ranged from 40 to 90% of
normal (Vainzof et al., 1996). This finding suggests that a
secondary decrease in dystrophin may be responsible for
the pathology of muscular dystrophy in patients with pri-
mary sarcoglycan mutations.

In addition to the sarcoglycans, the DGC includes dys-
troglycan, a highly glycosylated protein whose o subunit
directly binds the extracellular matrix (ECM) protein
laminin (Ibraghimov-Beskrovnaya et al., 1992). Dystrogly-
can is widely expressed, and mice homozygously lacking
dystroglycan have an early embryonic lethality (day 6.5 af-
ter conception) arising from the role of dystroglycan in
nonmuscle tissue, particularly the extraembryonic struc-
ture Reichert’s membrane (Williamson et al., 1997). Dys-
troglycan binds laminin-a2, an extracellular matrix protein
expressed in peripheral nerve, skeletal, and cardiac muscle
(Ervasti and Campbell, 1993; Yamada et al., 1994). In hu-
mans, laminin-a2 (merosin) mutations have been associ-
ated with a severe phenotype, congenital muscular dystro-
phy (Helbling-Leclerc et al., 1995; Nissinen et al., 1996). A
murine model for laminin-a2 deficiency, the dy mouse,
demonstrates a severe phenotype resulting in marked skel-
etal muscle degeneration and early death (Sunada et al.,
1994; Xu et al., 1994). In contrast, the murine model for
dystrophin deficiency, the mdx mouse (Sicinski et al.,
1989), has a milder phenotype than its human counterpart.
mdx mice have a normal lifespan, but demonstrate many
of the histologic features seen in human muscular dystro-
phy, including fiber size variation and centrally placed nu-
clei. Human DMD patients exhibit replacement of myofi-
bers with fatty and fibrous infiltration within the first
decade, yet mdx mice show progressive fibrosis relatively
later in life. Although the mdx mouse has a milder pheno-
type than human DMD patients, it has proved useful for
studies identifying the nature of the membrane defect in
muscular dystrophy. Vital staining studies of mdx and dy
mice suggested different mechanisms of membrane degen-
eration since dystrophin deficiency produces membrane
defects, while laminin deficiency did not (Matsuda et al.,
1995; Straub et al., 1997). This observation and its cyto-
skeletal localization has lead to the hypothesis that dystro-
phin participates in a mechanical link that stabilizes mus-
cle membrane. Contraction-induced force exerted on a
membrane defective in dystrophin is thought to lead di-
rectly to membrane disruptions and myofiber degenera-
tion.

To investigate the role of sarcoglycan in muscular dys-
trophy, we targeted the murine vy-sarcoglycan gene. In
early life, mice lacking y-sarcoglycan developed muscular
dystrophy that preferentially affected the proximal muscu-
lature. Mice lacking y-sarcoglycan developed cardiomyop-
athy that affected both the right and left ventricle. Vital
staining of mice lacking y-sarcoglycan revealed membrane
disruptions demonstrating that sarcoglycan deficiency has
a similar mechanism to dystrophin-deficiency and is unlike
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laminin deficiency. Membrane disruptions in vy-sarcogly-
can-deficient muscle were primarily observed in proximal
skeletal muscles similar to humans with limb-girdle mus-
cular dystrophy (LGMD). Moreover, apoptotic myonuclei
were abundant in +y-sarcoglycan—deficient muscle. Impor-
tantly, dystrophin, dystroglycan, and laminin were intact
and normally present at the sarcolemma in y-sarcoglycan—
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Figure 1. Homologous recombination in the murine -y-sarcogly-
can locus. (a) The strategy for replacing exon 2 of murine vy-sar-
coglycan with neomycin phosphotransferase (neo) is shown. The
probe used for Southern blotting and the primers (arrows) used
for genotyping progeny from gsg'/~ crosses are indicated. E,
EcoRI; H, HindIII; N, Notl; Xb, Xbal; Xh, Xhol. (b) Southern
blot of EcoRI-digested genomic DNA from ES cells. Homolo-
gous recombination in the y-sarcoglycan locus produces the loss
of a single EcoRI site. (¢) PCR genotyping of progeny from gsg*/~
interbreeding. The PCR product generated by the mutant allele
is 410 bp, and that generated by the wild-type allele is 376 bp. (d)
Immunoblotting of total protein from wild-type (lanes 1 and 5)
and mutant gsg '~ (lanes 2 and 6) muscle with a monoclonal anti-
body directed at +y-sarcoglycan amino acids encoded by exon 6
(NCL-35DAG, lanes I and 2), or with a polyclonal anti-dystro-
phin antibody (AB6-10, lanes 5 and 6). No +y-sarcoglycan is de-
tectable in gsg~/~ muscle. Dystrophin is normal in gsg~'~ muscle.
Polyclonal antisera raised to the complete y-sarcoglycan protein
also shows the absence of y-sarcoglycan protein in gsg™'~ mice
(data not shown). A Coomassie-stained gel, gsg™'* (lane 3) and
gsg~'~(lane 4), demonstrates equivalent loading. y-sarcoglycan
and dystrophin were resolved on 12.5% and 5% SDS-PAGE, re-
spectively.
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deficient muscle. Therefore, y-sarcoglycan deficiency was
sufficient to cause muscle membrane instability and the
dystrophic process independently of dystrophin, placing
sarcoglycan genetically downstream of dystrophin.

Materials and Methods

Gene Targeting

Genomic phage encoding exon 2 of y-sarcoglycan was isolated from a mu-
rine 129SV]J library (Stratagene, La Jolla, CA) and characterized by re-
striction mapping, nucleotide sequencing, long-range PCR, and Southern
hybridization. 5 kb of the first intron and 1.7 kb of the second intron were
cloned into pPNT (Tybulewicz et al., 1991). Targeted RW4 ES cells
were selected as described previously (Scott et al., 1994). Recombinants
were screened by PCR and confirmed by Southern blotting of EcoRI-
digested genomic DNA using a probe shown in Fig. 1 a. Recombinant ES
cell clones were injected into C57BL/6 blastocysts and implanted into
pseudopregnant foster mothers. Chimeric males were identified by coat
color, and were mated to C57BL/6 females. Germline transmission was
identified by coat color, and was confirmed by PCR and Southern blot-
ting. PCR genotyping of progeny was performed on genomic DNA iso-
lated from tail clippings using the primers shown in Fig. 1 a. Animals were
housed and treated according to standards set by the University of Chi-
cago Institutional Animal Care and Use Committee.

Immunoblotting

Immunoblots to detect +y-sarcoglycan protein were performed as de-
scribed previously (Nicholson et al., 1989), using either affinity-purified
polyclonal (McNally et al., 1996) or monoclonal (NCL-35DAG; NovoCas-
tra Laboratories, Newcastle upon Tyne, UK) anti-y-sarcoglycan.

General Characterization, Vital Staining,
and Terminal Deoxynucleotidyl Transferase-mediated
dUTP Nick End-labeling (TUNEL) Assay

Animals were observed for gait abnormalities weekly through 24 wk of
age. Serum creatine kinase (CK) levels were measured on blood drawn
from tail veins at 4 (n = 24) and 8 (n = 24) wk of age. Blood was collected
in a Microstainer Serum Separator tube (Becton Dickinson, Franklin
Lakes, NJ) and analyzed using a Vitros DT60II discrete chemistry ana-
lyzer (Eastman Kodak, Rochester, NY). Vital staining was performed as
described previously using filter-sterilized Evans blue dye (Sigma-Aldrich,
St. Louis, MO) resuspended in PBS at 1 mg/0.1 ml/10 g body weight (Mat-
suda et al., 1995; Straub et al., 1997). Intraperitoneal injections were per-
formed on mice at 2 (n = 5),4 (n = 4) and 8 (n = 4) wk of age; mice were
killed 12 h after injection. TUNEL was performed on fixed, paraffin-
embedded muscle using the ApopTag™-fluorescein kit (Oncor Inc.,
Gaithersburg, MD). Double-labeling with polyclonal anti-dystrophin an-
tibodies was performed after TUNEL-labeling, as described below.

Histology and Immunocytochemistry

Muscle from 4-, 8-, and 20-wk-old animals was fixed for 24-48 h in 10%
neutral buffered formalin and embedded in paraffin. 10-uM sections were
cut and stained with Masson trichrome. Immunostaining was performed
as described (McNally et al., 1996). The following primary antibodies
were used: polyclonal anti-dystrophin AB6-10 (Lidov et al., 1990), poly-
clonal anti-y-sarcoglycan (McNally et al., 1996), polyclonal anti-B-sarco-
glycan (Bonnemann et al., 1996b), monoclonal anti-a and y-sarcoglycans
(NCL-50DAG and NCL-35DAG, respectively), monoclonal anti-B-dystro-
glycan (NCL-B-DG), monoconal anti-utrophin (NCL-DRP2), and mono-
clonal anti-merosin (NCL-merosin; NovoCastra Laboratories). Polyclonal
anti-d-sarcoglycan was raised to a glutathione-S-transferase fusion protein
containing amino acids 85-291 of the human protein (Genbank number
X95191), as previously described (McNally et al., 1996). Polyclonal anti-
e-sarcoglycan was raised similarly using amino acid residues 31-413 of the
human e-sarcoglycan sequence (Genbank no. AF036364). Cy3-conjugated
secondary antibodies (Jackson ImmunoResearch Laboratories, West
Grove, PA) were used. Integrin-31 antibody (MAB1997) was from
Chemicon International, Inc. (Temecula, CA). Counterstaining with 4',6-
diamidino-2-phenylindole (DAPI) was performed at 20 pg/ml for 1 min.
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Sections were photographed on a Zeiss Axiophot epifluorescence micro-
scope.

Electron Microscopy

Mice were perfusion-fixed with 2% paraformaldehyde and 2% gluteralde-
hyde. Skeletal muscle was processed for EM by postfixation with 1% os-
mium tetrozide in water for 1 h, washed in water, and dehydrated with
ethanol and propylene oxide. Dehydrated tissues were embedded in plas-
tic, sectioned at 60 nm, and stained with 5% uranyl acetate and 1% lead.
Sections were viewed and photographed on a Hitachi 600 EM.

Results

Targeted Disruption of y-Sarcoglycan and Generation
of Null Mice

Given the large size of the y-sarcoglycan gene, exon 2 was
chosen for targeting. Exon 2 specifies the initiator me-
thionine, the cytoplasmic tail, and the transmembrane do-
main. Homologous recombination replaces exon 2 with
the phosphoglycerate kinase promoter/neomycin phos-
photransferase cDNA (Fig. 1 a). A representative South-
ern blot of a targeted ES cell clone is shown in Fig. 1 b.
Heterozygous gsg'/~ mice were viable, fertile, and ap-
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Figure 2. Characterization of mice lacking +y-sarcoglycan. (a)
Left, wild-type gsg™™ mouse; right, gsg”/~ mouse displaying
stunted growth and abnormal stance. (b) Survival curve for gsg™/~
vs. wild-type gsg*'* littermates. By 4-5 mo of age, nearly 50% of
gsg~'~ animals die. (c) Serum creatine kinase (CK) levels of wild-
type gsg*’* (white), heterozygous gsg*'~ (gray), and mutant gsg ™/~
(black) animals at 4 and 8 wk of age. At 4 wk, the mean serum
CK was elevated ~10X that seen in wild-type mice, and at 8 wk
the mean CK was elevated more than 40X that seen in wild-type
mice. The standard deviation (*) of serum CK values in 8-wk-old
mice was =22,830; 4/13 mice in this group had serum CK values
of 17,750, 28,400, 33,400, and 80,500 Ulliter (normal range 68—
1070 Ulliter). (d) The percentage of myofibers with centrally
placed nuclei is greatly increased in gsg~/~mice.
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peared healthy. gsg*/~ mice were bred to obtain gsg™/~
mice (Fig. 1 ¢). Immunoblot analysis showed no detectable
vy-sarcoglycan protein in homozygous mutant gsg™~ mus-
cle (Fig. 1 d), indicating that this mutation created a null
allele. Notably, immunoblotting for dystrophin revealed
that normal amounts of dystrophin remain in +y-sarcogly-
can—deficient muscle (Fig. 1 d).

y-Sarcoglycan-deficient Mice Develop
Muscular Dystrophy

Most mutant gsg~~mice were of normal size and appear-
ance, but displayed a variably abnormal gait that was char-
acterized by a stiff walking posture and a widened hind-leg
spacing (Fig. 2 a). Less than 10% (4 of 50) of mutant gsg™~
mice had stunted growth or died as early as 3 wk of age.
By 5 mo of age, 50% of gsg™/~ animals died (Fig. 2 b). The
average weight of mutant, heterozygous, and wild-type
mice did not differ significantly at 8 wk of age. However,
by 20 wk of age mutant mice weighed less than wild-type
(28.3 = 1.9 vs. 34.1 = 0.3 g). Mutant mice were less active
than wild-type littermates, exhibited less climbing and bur-
rowing activity, and were slow to initiate walking or run-
ning from a sitting position. Elevation of serum CK, indi-
cating disruption of muscle membrane integrity, was
detected at 2 wk of age (1.7X wild-type controls). By 4 wk
of age, serum CK levels were elevated in gsg™~ mice to an
average of ten times that seen in normal mice (Fig. 2 ¢).
This elevation continued in 8-wk-old gsg™~ mice and
ranged from 3-240X the serum CK levels of normal con-
trols (Fig. 2 ¢).

Diaphragm muscle from gsg '~ mice appeared hypertro-
phied and opaque when compared with gsg*/* and gsg™/~
littermates. The thickness of gsg™~ diaphragm muscle was
greater than that of wild-type controls without an increase
in myofiber size or content (Fig. 3 a). Such pseudohyper-
trophy is a hallmark of progressive proximal muscular dys-
trophy, and commonly affects the gastrocnemius muscles
of patients with LGMD and DMD (Dubowitz, 1995). His-
tologic analyses of muscle from gsg™~ mice revealed se-
vere dystrophic changes, including wide variation in fiber
size, inflammatory infiltrate, and abnormal calcification
with fatty and fibrous replacement. Dystrophic changes
were evident throughout the entire diaphragm muscle of
gsg ™'~ mice (Fig. 3 a). Quadriceps and gastrocnemius mus-
cle also showed pronounced dystrophic changes (Fig. 3, b
and c). In these muscles, unlike the diaphragm, regions of
marked degeneration were juxtaposed with segments of
intact myofibers. Most of these intact myofibers, however,
had centrally placed nuclei consistent with regeneration
having occurred. The number of centrally placed nuclei in
8-wk-old gsg~'~ quadriceps muscle was greatly increased
(45X) above wild-type littermate controls (Figs. 2 d and 3 d).

Cardiomyopathy in gsg~'~ Mice

The hearts of 20-wk-old gsg™~ mice were examined. Both
the right and left ventricular walls appeared thickened, re-
sulting in near obliteration of the ventricular cavities. gsg™~
hearts weighed less than wild-type hearts (167 = 17 vs. 190 =
0 mg, but total body mass was decreased in gsg™'~ mice).
The heart-to-body mass index was increased (5.91 + 0.30
mg/g for gsg™/~ vs. 5.57 + 0.05 mg/g for wild-type animals).
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Figure 3. Histologic analysis of skeletal muscle lacking +y-sar-
coglycan. a—c show Masson Trichrome staining of muscle. (a)
Low-power view of diaphragm muscle from normal (gsg*/*) and
mutant (gsg~/~) mice. Of note, the magnification is equal in the
two photos. Diaphragm tissue from gsg™/~ mice was hypertro-
phied. Marked replacement by connective and adipose tissue is
seen throughout the diaphragm of gsg~/~ muscle. Areas of calcifi-
cation are visible. (b) Low-power magnification of gsg~'~ quadri-
ceps muscle (right) shows regions of inflammatory infiltrate adja-
cent to normal appearing muscle. (¢ and b) Bar, 100 pm. (c)
High-power view of quadriceps muscle showing an area of infil-
trate and regeneration. (d) Immunostaining of muscle plasma
membrane with an anti-dystrophin antibody counterstained with
DAPI to reveal centrally placed nuclei seen in gsg™'~ muscle. (c
and d) Bar, 25 pm.

Mice examined at earlier time points, including 4 and 8 wk
of age, did not show the same degree of cardiomyopathy
(data not shown). Fig. 4 a shows representative hearts
from 20-wk-old gsg™~ animals that were killed for the
study. Mutant hearts showed marked thickening of the
ventricular walls; the heart in Fig. 4 a also showed signifi-
cant fibrosis. Fibrosis was evident throughout the right and
left ventricle, but a prominent fibrotic area was present in
the posterior segment of the left ventricle (Fig. 4 c¢).
Perivascular regions of fibrosis were also seen (Fig. 4 d).
Fibrosis was not seen in gsg™~ hearts at 4 and 8 wk of age
(data not shown). Of a cohort of ten gsg ™~ mice, five died
before 5 mo of age. Postmortem analysis of these gsg™~
mice revealed areas of ventricular fibrosis that were visible
on gross examination (data not shown).
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Figure 4. Cardiomyopathy in gsg™/ mice. (¢ and b) Masson
trichrome-stained hearts taken from 20-wk-old littermates. Bar,
625 pm. LV, left ventricle; RV, right ventricle. (a) A representa-

tive gsg™'~ heart with significant increases in right and left ven-
tricular wall thickness. (¢) The region within the box of a. The
gsg '~ heart shown in a shows marked fibrosis, seen as blue stain-
ing. Wall thickness of the right ventricle is markedly increased
(a); the right ventricular cavity is marked with an asterisk. (c)
Bar, 100 pm. (d) A higher magnification view of perivascular fi-
brosis is seen. (d) Bar, 25 pm.

Sarcoglycan Loss Causes Muscular Dystrophy Without
Alteration in Dystrophin

Immunostaining of +y-sarcoglycan—deficient and dystro-
phin-deficient skeletal muscle is shown in Fig. 5 a. mdx
muscle showed a marked secondary deficiency of B-, y-,
and d-sarcoglycan in addition to the primary defect of dys-
trophin loss. In gsg™~ muscle, dystrophin staining is intact,
but B- and 3-sarcoglycan show severe secondary reduction
at the sarcolemma. In mdx muscle, revertant fibers are
commonly seen that reexpress dystrophin. Dystrophin-
positive revertant fibers in mdx also reexpress sarcoglycan
as shown for &-sarcoglycan (Fig. 5 a, bottom middle). No
such revertant phenomenon is seen in gsg~/~ muscle. Par-
tial retention of a-sarcoglycan at the sarcolemma was seen
(Fig. 5 b, top). Immunoblotting for a-sarcoglycan shows
that 10-30% of a-sarcoglycan is expressed in gsg™~ mus-
cle (Fig. 5 ¢). Normal levels of e-sarcoglycan are present in
gsg~’~ muscle, yet e-sarcoglycan is completely absent in mdx
muscle. B-dystroglycan and laminin-a2 (merosin) staining
was intact at the sarcolemma of gsg™~ muscle. In muscle
lacking dystrophin, the dystrophin-related protein utro-
phin is upregulated to compensate for the lack of dystro-
phin protein (Helliwell et al., 1992; Karpati et al., 1993;
Love et al., 1989). Utrophin staining in gsg™/~ muscle is
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unchanged from wild-type controls, consistent with a nor-
mal dystrophin content in <y-sarcoglycan—deficient ani-
mals. Integrin-B1 was also unchanged in gsg™~ muscle.

Membrane Defects in Muscular Dystrophy

Evans blue dye (EBD) is a small molecular mass tracer
that tightly complexes with serum albumin. Normal mus-
cle fibers are impermeable to the EBD—albumin complex,
while mdx muscle fibers are positively stained, reflecting a
loss of membrane integrity (Matsuda et al., 1995; Straub
et al., 1997). EBD was injected into mutant and normal
mice to determine the extent sarcolemmal disruption as a
result of sarcoglycan deficiency. No EBD staining was
seen in gsg™’" and gsg™/~animals at any age (data not
shown). In contrast, 2-wk-old gsg™~ mice showed EBD
staining of the diaphragm, shoulder girdle, and pectoralis
major muscles on gross examination (data not shown). By
4 wk of age, gsg~/~ animals displayed significant staining in
nearly all muscle groups examined. Bands of EBD-posi-
tive tissue gave the gsg™/~ diaphragm a striking, radially
streaked appearance not seen in wild-type littermate con-
trols (Fig. 6 a). The adductor muscles of the leg were com-
monly EBD-positive, as were the pectoralis major, latissi-
mus dorsi, rectus abdominus, external oblique, and triceps
brachii muscles. Mutant muscles lacking macroscopic evi-
dence of EBD uptake showed microscopic evidence of
EBD-positive fiber clusters demonstrating the extensive
nature of the dystrophic process in gsg~/~ mice (Fig. 6 b).

Moyofiber Loss is Mediated by Apoptosis

To investigate the mechanism of myofiber degeneration in
vy-sarcoglycan deficiency, TUNEL was performed on
quadriceps muscle from 8-wk-old gsg™'*, gsg*'~, and gsg ™/~
mice. No TUNEL-positive myonuclei were detected in
gsg™'* and gsg*'~ skeletal muscle (Fig. 6 c, left). In con-
trast, TUNEL-positive nuclei were commonly found in
gsg~’~ muscle (Fig. 6 c, right), indicating that apoptosis
contributed to muscle degeneration in y-sarcoglycan—defi-
cient muscular dystrophy. TUNEL-positive nuclei were
most commonly seen in degenerating areas of gsg™/~ mus-
cle, but were seen also in intact or partially degenerated
muscle fibers (Fig. 6 d). The presence of TUNEL-positive
myonuclei in intact, dystrophin-positive muscle fibers sug-
gests that sarcoglycan deficiency leads to apoptosis as an
early event in the dystrophic process.

Normal Sarcomeres, Neuromuscular Junctions, and
Basement Membrane in y-Sarcoglycan Deficiency

The sarcoglycans are found throughout the sarcolemma,
and are not excluded at the neuromuscular junctions. The
sarcomeres, membrane, and neuromuscular junctions of
gsg~/~ mice were examined by EM and compared with
wild-type littermates. No ultrastructural differences were
seen in the sarcomeres, membrane, or neuromuscular
junctions of gsg™/~ mice (Fig. 7), suggesting that mem-
brane disruptions visualized by EBD staining are below
the limit of resolution of EM. Gross ultrastructural abnor-
malities are not a feature of sarcoglycan deficiency.
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Figure 5. Immunostaining
for components of the dystro-
phin—glycoprotein  complex
(DGC) in mdx and gsg™'~
muscle. (¢) Immunostaining
for dystrophin (dys), B-sar-
coglycan (bsg), y-sarcoglycan
(gsg), and d-sarcoglycan (dsg).
B-, v, and d-sarcoglycan are
absent in both dystrophin-
deficient muscle (mdx) and
y-sarcoglycan deficient mus-
cle (gsg™'"). Revertant fibers
that regain the ability to ex-
press dystrophin are com-

monly seen in mdx muscle. These revertant fibers also regain the ability to express sarcoglycan
(shown for $-sarcoglcyan). Dystrophin remains present at the membrane in gsg~/~ muscle. (b)
Immunostaining for a-sarcoglycan (asg), utrophin (utr), integrin-g1 (intB1) laminin-a2 (merosin,
lama2) and B-dystroglycan (bdg) in normal and gsg~'~ muscle. The dystrophin-related protein
utrophin is also normal at the membrane of gsg~/~ muscle as is laminin-o2 (merosin) and dystro-
glycan. Bar, 25 um. (¢) Immunoblotting with a-sarcoglycan and e-sarcoglycan antibodies in gsg™'~
and mdx muscle. a-sarcoglycan is partially retained in gsg ™'~ muscle. e-sarcoglycan is completely
absent from mdx muscle, while it is normal in gsg~'~ muscle. (Lanes /-3) Immunoblotting with
anti-a-sarcoglycan monoclonal antibody. Lane I, normal muscle; lane 2, gsg~'~ muscle; lane 3,
mdx muscle.

Discussion

y-Sarcoglycan is Critical for Cardiac and
Skeletal Muscle

We have developed mice lacking +y-sarcoglycan through
homologous recombination in embryonic stem cells. Un-
like mdx mice that display a more mild phenotype than
DMD patients, mice lacking y-sarcoglycan develop a phe-
notype that closely parallels the human disease exhibiting
the clinical and histopathologic features of LGMD, includ-
ing pseudohypertrophy, elevated serum CK, degeneration,
and regeneration of skeletal muscle. Furthermore, gsg™~
mice develop marked cardiomyopathy that is likely to play
a role in their early death. The degree of left ventricular
wall thickening is consistent with an intrinsic cardiomyop-
athy that is likely hypertrophic in nature. The presence of
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marked fibrosis in the posterior segment of the left ventri-
cle likely arises from similar pathogenetic mechanisms
that affect skeletal muscle in sarcoglycan deficiency. It is
possible that wall thickening seen in the right ventricle of
gsg™’™ hearts arises in part as a secondary consequence of
restrictive lung disease and elevated pulmonary vascular
resistance. The marked dystrophic process that affects the
respiratory muscles, particularly the diaphragm, may lead
to a restrictive lung disease and hence, a secondary cardio-
myopathy.

The phenotype in mice lacking y-sarcoglycan is similar
to that seen in the Syrian hamster, BIO 14.6, that displays
both cardiomyopathy and muscular dystrophy (Hombur-
ger et al., 1962). The BIO 14.6 hamster is a spontaneously
arising mutant that has a large, not fully defined deletion
that encompasses part of an alternative first exon of the
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tosis in +y-sarcoglycan—deficient muscle. TUNEL-labeling was performed on quadriceps muscle from a gsg

Figure 6. Vital staining with
Evans blue dye (EBD) reveals
disruption of membrane integ-
rity in sarcoglycan-deficient
muscle. Mice were injected with
EBD and killed after 12 h. (a)
Low-power magnification (5X)
of diaphragm muscle from EBD-
injected wild-type and mutant
mice. Diaphragm muscle from
gsg™'~ mice exhibits segmental
EBD uptake (seen as blue areas)
while no EBD uptake is seen
in wild-type diaphragm. (b) Re-
gions of EBD uptake are seen
as red cytoplasmic staining on
fluorescence microscopy. No
evidence of EBD microscopic
staining is seen in gsg*/* muscle
(data not shown). (Left) a region
of gsg™/~ triceps muscle with
marked EBD staining (black
bar, 100 pm). (Right) A higher
power view of gsg™/~ gastrocne-
mius muscle showing EBD stain-
ing (white bar, 25 wm). (¢) Apop-
=/~ mouse. TUNEL-positive

nuclei appear green. No TUNEL-positive nuclei were found in normal gsg*’* myofibers (left). In contrast, myofibers with TUNEL-pos-

itive nuclei were seen commonly in gsg ™/~

strates that TUNEL-positive nuclei are found within gsg ™/~

muscle (right). (d) Counterstaining with an anti-dystrophin antibody (yellow-orange) demon-
myofibers. Myofibers undergoing degeneration and demonstrating de-

creased membrane staining for dystrophin also show evidence of apoptosis.

hamster d-sarcoglycan gene (Nigro et al., 1997; Sakamoto
et al., 1997). Recently, membrane defects as observed by
EBD staining were described in the BIO 14.6 hamster
(Holt et al., 1998). The similar phenotype in gsg™~ mice and
the BIO 14.6 hamster argues that both vy- and d-sarcogly-
can have critical and nonredundant roles for cardiac and
skeletal muscle. The cardiomyopathic phenotype of gsg™~
mice is strikingly different from that seen in mdx mice
since mdx mice display little to no cardiomyopathy. This
result further suggests that the sarcoglycans, particularly
v- and &-sarcoglycan, are critical for cardiac muscle func-
tion.

gsg~’~ mice display a more severe skeletal muscle phe-
notype than mdx mice since gsg~/~ mice show a greater se-
rum CK elevation, early and more extensive fibrosis, and a
higher percentage of centrally placed nuclei (McArdle et al.,
1994; Deconinck et al., 1997). mdx mice show a period of
intense muscle necrosis at 3-8 wk of age followed by a rel-
ative plateau period. gsg~'~ mice show marked necrosis at
3-8 wk of age. Areas of necrosis were commonly seen in
gsg™’~ muscle from older animals, but regions of necrosis
appeared less often than in 8-wk animals. Serum CK in
gsg™/~ animals peaks at 8 wk of age, but remain grossly el-
evated at 16 wk of age at levels twice that seen in mdx
(data not shown).

gsg~’~ mice die at a similar age as the recently described
double knockout mice that lack both dystrophin and utro-
phin (Deconinck et al., 1997; Grady et al., 1997). However,
gsg~’~ mice do not show gross skeletal abnormalities such
as kyphoscoliosis described in the double knockout mice.

Hack et al. y-Sarcoglycan Deficiency in Muscle

Interactions Within the DGC

The absence of y-sarcoglycan produces a nearly complete
secondary reduction of both B- and 8-sarcoglycan. - and
3-sarcoglycan mRNA was normally produced in gsg™~
myofibers (data not shown). Thus, y-sarcoglycan is neces-
sary for the proper assembly and membrane localization
of B- and 8-sarcoglycan proteins. Curiously, a-sarcoglycan
appears to be partially retained in gsg™/~ muscle, suggest-
ing that other components can stabilize a-sarcoglycan at
the membrane. e-sarcoglycan is completely absent in mdx
muscle, while it is produced at normal levels in y-sarcogly-
can deficiency. Since e-sarcoglycan expression mirrors dys-
trophin expression in mdx and gsg™/~ muscle, e-sarcogly-
can may be more closely associated with dystrophin.

Most importantly, the normal placement of dystrophin,
B-dystroglycan, and laminin-a2 (merosin) in +y-sarcogly-
can—deficient muscle indicates that this cytoskeleton—
membrane-ECM interaction is intact and unaffected by
y-sarcoglycan deficiency. The normal ultrastructural ap-
pearance of gsg™/~ sarcomeres, basement membrane, and
neuromuscular junctions may favor alternative cellular de-
fects such as aberrant cell signaling as a mediator of mus-
cular dystrophy. Sarcoglycan has the primary structure
suggestive of a cell surface receptor. The cytoplasmic do-
main of y-sarcoglycan has five tyrosine residues, and re-
cent studies imply bidirectional signaling with integrins
may involve the sarcoglycan subunits (Yoshida et al., 1998).
Identifying the extracellular and intracellular ligands that
normally bind the subunits of sarcoglycan will be an im-
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portant step in defining any potential cytoskeleton—
sarcoglycan—-ECM complex or signaling cascade.

Sarcoglycan Deficiency Mediates Pathology in DMD

In DMD and madx, primary dystrophin mutations lead to a
secondary reduction or mislocalization of a number of dys-
trophin-associated proteins, including the sarcoglycan sub-
units (Ohlendieck and Campbell, 1992; Ohlendieck et al.,
1993). In mice lacking y-sarcoglycan, the normal content
and location of dystrophin suggests that sarcoglycan defi-
ciency is sufficient to cause muscular dystrophy. It is clear
that in gsg™/~ muscle, the presence of dystrophin is insuffi-
cient to stabilize sarcoglycan, and cannot prevent the dys-
trophic process in both cardiac and skeletal muscle. Given
the macromolecular nature of the DGC, the absence of
sarcoglycan may lead to abnormal interactions within the
DGC and the presence of muscular dystrophy. Whether
restoration of the sarcoglycan complex, specifically B-, y-,
and &-sarcoglycan will be sufficient to prevent the dystro-
phic phenotype is unknown. Previous data suggested that
restoration of the DGC is not sufficient to prevent the dys-
trophic phenotype (Cox et al., 1994; Greenberg et al.,
1994). However, DGC analysis in those studies was before
the discovery of -, y-, and d-sarcoglycan. Since sarcogly-
can deficiency is the common feature in both DMD and
LGMD, it is a likely mediator of the dystrophic process in
both these disorders. Moreover, inhibiting apoptosis or
developing new strategies to stabilize the sarcoglycan sub-
units, particularly -, y-, and 8-sarcoglycan, are reasonable
therapeutic approaches to the treatment of Duchenne and
the Duchenne-like muscular dystrophies.

We thank Celeste Simon, Renée Hackenmiller, and Jeff Leiden for advice
and comments, and Lisa Gottschalk for her help preparing figures.

A.A. Hack is supported by the Medical Scientist Training Program and
the Training Program in Development Biology. E.M. McNally is sup-
ported by the National Institues of Health, Muscular Dystrophy Associa-
tion, Heart Research Foundation, and a Research Resources award from
the Howard Hughes Medical Institute to the University of Chicago Bio-
logical Sciences Division.

The Journal of Cell Biology, Volume 142, 1998

Figure 7. Ultrastructural analy-
sis of gsg~/~ and normal muscle.
(5,000x) Neuromuscular junc-
tion, sarcomeres, and mem-
brane from gsg~/~ and wild-type
muscle (gsg*/*) shows that neu-
romuscular junctions form nor-
mally with normal post synaptic
folds. The sarcolemma is intact
throughout its length, and the
basement membrane is continu-
ous and apparently normal at
this level of ultrastructure. Sar-
comere formation is normal in
_ gsg~/~ muscle. Bar, 200 nm.
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