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Letters to the Editor

TP53 intron 6 polymorphism and the risk of ovarian and
breast cancer

Sir
Germline mutations in the coding and splice junction regions of
TP53 that directly alter the amino acid sequence are rare but are
generally highly penetrant and predispose such individuals to a
variety of malignancies. Recently, there has been speculation that
some common sequence variants of TP53, which either result in
conservative amino acid substitutions or lie in intronic regions
outside of splice junction regions, may represent low penetrance
mutations (Peller et al, 1995; Avigad et al, 1997). The biological
significant of these sequence variants needs to be carefully
assessed as conflicting associations with cancer predisposition
have been reported. For example, Runnenbaum et al (1995)
reported an eightfold relative risk of ovarian cancer in women
harbouring a 16-bp polymorphism in intron 3 of TP53. However,
we (Campbell et al, 1996) and Lancaster et al (1995) found no
evidence of a significant association of this allele in larger groups
of ovarian cancer patients, suggesting that the association reported
by Runnenbaum et al (1995) was spurious.

Recently, Peller et al (1995) reported an association between
an intron 6 polymorphism and predisposition to breast and colon
cancer in a small number of cases from Israel. The polymor-
phism is a G to A transition located 61 nucleotides from the end
of exon 6 and abolishes an MspI restriction endonuclease site
(CCGG to CCAG). We investigated the frequency of the CCGG
(N) and CCAG (N') alleles in 224 women with ovarian and 224
women with breast cancer treated in the UK, and in 254 control
subjects without cancer by polymerase chain reaction amplifica-
tion over the polymorphic region and analysis on sequencing
acrylamide gels (Table 1). All cancer patients and non-cancer
controls were caucasians from southern England.

Statistical analysis using the chi-square test revealed a signifi-
cant increase in the prevalence of the N' allele in those patients
with ovarian cancer when compared with controls (P = 0.01). In
contrast to Pellers' (1995) study, there was no difference seen in
those patients with breast cancer against the control (P = 0.88).

Sequencing of the polymorphic region confirmed the presence
of a G to A transition at position 61 in the N' individuals (Figure 1)
but there was a discrepancy between the N allele sequence
reported by Peller et al (1995) (TGG-CTGCCGGGTG) and that
deposited in the GenBank sequence database (5' TGGC-
CCTCCGGGTG). This discrepancy is probably due to a
sequencing artefact caused by the profound compression of the
triplet of cytosines. Interestingly, the compression is absent in the
N' allele sequence and it is possible that the G to A transition
disrupts a 'hairpin-like' structure formed by the annealing of the
cytosine and guanine triplets in the N allele (shown in bold in
Figure 1). The disruption of this secondary structure in the N'
allele may provide a mechanism for the impact of this polymor-
phism on TP53 function.

Although the association of the N' allele with ovarian cancer
reaches formal significance, it will be important to confirm this in
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Figure 1 DNA sequence across the intron 6 polymorphism. The DNA
sequence of individuals homozygous for the NN and N'N' alleles are shown.
A compression of the cytosine trplet is observed in the NN individual but a
normal spacing of the bands is observed in the N'N' individual. The triplet of
cytosines and guanines which are postulated to form a 'hairpin-like' structure
are shown in bold

Table 1 Frequency of TP53 intron 6 polymorphism alleles in control,
ovarian, and breast cancer groups

Genotype

NIN NN' N'N'

Controls (n = 254) 208 (81.9%) 42 (16.5%) 4 (1.6%)
Ovarian cancer (n = 225) 157 (69.8%) 62 (27.5%) 6 (2.7%)
Breast cancer (n = 224) 184 (82.1%) 39 (17.4%) 1 (0.5%)

P(controVovarian) = 0.01; P(control/breast) = 0.88

other populations, particularly in the light of previous spurious
associations of TP53 polymorphism and cancer risk.
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Seasonality in the presentation of acute lymphoid
leukaemia

Sir

A recent report by Badrinath et al (1997) observed a seasonal
distribution in the diagnosis of cases of acute lymphocytic
leukaemia as recorded by the East Anglian Cancer Registry in the
period 1971-94. This took the form of a 40% excess of cases diag-
nosed in the summer months (May-October), and was seen in chil-
dren (aged 0-14 years, summer-winter cases 158:113) and adults
(aged 15+ years, 142:102). Shown below are observations
obtained from a much larger dataset of both childhood leukaemias
and solid cancers, namely the Oxford Survey of Childhood
Cancers (OSCC), a national case-control study of childhood
cancer (Stewart et al, 1958; Knox et al, 1987), as well as data on
acute lymphoblastic leukaemia registrations from the West
Midlands region.

Table 1 shows the monthly pattern of onsets, divided into

summer (May-October) and winter (November-April) for all
childhood leukaemias and childhood lymphatic leukaemias in the
period 1953-8 1. (Onset date is the date when the survey child was
last perfectly well, obtained from the mother's description of the
fatal disease and any preceding illnesses.) For neither of the diag-
nostic groups was there a 40% summer-winter excess of onsets,
although a significant ratio of 1.05 was found for all childhood
leukaemias. The summer-winter ratio was even less marked for
date of diagnosis: all leukaemias 1.03 (0.99-1.07); lymphatic
leukaemias 1.02 (0.97-1.08). In addition, these data did not show a
more prominent summer excess of lymphatic leukaemia among
children less than 6 years of age (ratio 1.03, 95% confidence
interval 0.97-1.10, date of diagnosis), as was reported by
Badrinath et al (1997).

Table 1 also shows data from the West Midlands Cancer
Intelligence Unit on acute lymphoblastic leukaemia registrations

Table 1 Monthly distribution of presentation of lymphoid leukaemias

Onsets in children who died Registrations, West Midlands
from cancer aged 0-1-5 years, residents 1971-94

Great Britain, 1953-81

All leukaemias Lymphatic Acute lymphoblastic leukaemia
leukaemias only

Month Children (0-15 years) Children (0-14 years) Adults (15 + years)

May 775 449 65 47
June 820 495 71 62
July 808 425 78 48
August 757 444 74 45
September 756 425 75 48
October 794 481 69 42

Summer total 4710 2719 432 292

November 657 383 63 47
December 894 527 59 33
January 783 440 84 45
February 673 393 64 30
March 756 433 48 31
April 734 417 55 57

Winter total 4497 2593 373 243

Summer-Winter ratio 1.05 1.05 1.16 1.20
95% confidence limits 1.01, 1.09 1.00,1.10 1.02,1.30 1.03,1.37
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