Skip to main content
The British Journal of Cancer. Supplement logoLink to The British Journal of Cancer. Supplement
. 1996 Jul;27:S264–S266.

BMS181321 accumulation in rodent and human cells: the role of P-glycoprotein.

D S Cowan 1, T Melo 1, L Park 1, J R Ballinger 1, A M Rauth 1
PMCID: PMC2150000  PMID: 8763894

Abstract

A 2-nitroimidazole with a side chain that contains technetium-99m as a chelate, BMS181321, is undergoing evaluation as an imaging agent for myocardial and cerebral ischaemia, as well as a diagnostic probe for hypoxic cells in solid tumours. Its accumulation in hypoxic and aerobic populations of three lines of Chinese hamster ovary cells of differing P-glycoprotein status, as well as one rat and two human cell lines has been determined. There was selective accumulation of BMS181321 in hypoxic vs aerobic cells. P-glycoprotein level was not a factor in this accumulation and hypoxic human cells accumulated BMS181321 more rapidly than the rodent cells. These results indicate P-glycoprotein levels in tumour cells will not confound the use of BMS181321 as a hypoxic cell marker.

Full text

PDF
S264

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballinger J. R., Cowan D. S., Boxen I., Zhang Z. M., Rauth A. M. Effect of hypoxia on the accumulation of technetium-99m-glucarate and technetium-99m-gluconate by Chinese hamster ovary cells in vitro. J Nucl Med. 1993 Feb;34(2):242–245. [PubMed] [Google Scholar]
  2. Ballinger J. R., Hua H. A., Berry B. W., Firby P., Boxen I. 99Tcm-sestamibi as an agent for imaging P-glycoprotein-mediated multi-drug resistance: in vitro and in vivo studies in a rat breast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun. 1995 Apr;16(4):253–257. doi: 10.1097/00006231-199504000-00156. [DOI] [PubMed] [Google Scholar]
  3. Batist G., Tulpule A., Sinha B. K., Katki A. G., Myers C. E., Cowan K. H. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986 Nov 25;261(33):15544–15549. [PubMed] [Google Scholar]
  4. Brown J. M. Keynote address: hypoxic cell radiosensitizers: where next? Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):987–993. doi: 10.1016/0360-3016(89)90901-2. [DOI] [PubMed] [Google Scholar]
  5. Cowan D. S., Matejovic J. F., McClelland R. A., Rauth A. M. DNA-targeted 2-nitroimidazoles: in vitro and in vivo studies. Br J Cancer. 1994 Dec;70(6):1067–1074. doi: 10.1038/bjc.1994.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowan D. S., McClelland R. A., Rauth A. M. Isolation and characterization of a cell line resistant to 5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide (2-NLP-3), a DNA-intercalating hypoxic cell radiosensitizer and cytotoxin. Biochem Pharmacol. 1995 Jun 29;50(1):61–68. doi: 10.1016/0006-2952(95)00113-e. [DOI] [PubMed] [Google Scholar]
  7. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  8. Koh W. J., Rasey J. S., Evans M. L., Grierson J. R., Lewellen T. K., Graham M. M., Krohn K. A., Griffin T. W. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22(1):199–212. doi: 10.1016/0360-3016(92)91001-4. [DOI] [PubMed] [Google Scholar]
  9. Linder K. E., Chan Y. W., Cyr J. E., Malley M. F., Nowotnik D. P., Nunn A. D. TcO(PnA.O-1-(2-nitroimidazole)) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: synthesis, characterization, and xanthine oxidase-catalyzed reduction. J Med Chem. 1994 Jan 7;37(1):9–17. doi: 10.1021/jm00027a002. [DOI] [PubMed] [Google Scholar]
  10. Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
  11. Nunn A., Linder K., Strauss H. W. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med. 1995 Mar;22(3):265–280. doi: 10.1007/BF01081524. [DOI] [PubMed] [Google Scholar]
  12. Piwnica-Worms D., Chiu M. L., Budding M., Kronauge J. F., Kramer R. A., Croop J. M. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993 Mar 1;53(5):977–984. [PubMed] [Google Scholar]
  13. Schecter R. L., Woo A., Duong M., Batist G. In vivo and in vitro mechanisms of drug resistance in a rat mammary carcinoma model. Cancer Res. 1991 Mar 1;51(5):1434–1442. [PubMed] [Google Scholar]
  14. Taylor Y. C., Rauth A. M. Differences in the toxicity and metabolism of the 2-nitroimidazole misonidazole (Ro-07-0582) in HeLa and Chinese hamster ovary cells. Cancer Res. 1978 Sep;38(9):2745–2752. [PubMed] [Google Scholar]
  15. Urtasun R. C., Chapman J. D., Raleigh J. A., Franko A. J., Koch C. J. Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1263–1267. doi: 10.1016/0360-3016(86)90273-7. [DOI] [PubMed] [Google Scholar]
  16. Whillans D. W., Rauth A. M. An experimental and analytical study of oxygen depletion in stirred cell suspensions. Radiat Res. 1980 Oct;84(1):97–114. [PubMed] [Google Scholar]

Articles from The British Journal of Cancer. Supplement are provided here courtesy of Cancer Research UK

RESOURCES