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    Chemokines orchestrate the migration of leuko-
cytes under homeostatic and infl ammatory con-
ditions by signaling through G protein – coupled 
receptors (GPCRs) expressed on traffi  cking im-
mune cells. The chemokine family includes  � 50 
members with 19 known receptors and is divided 
into four subclasses based on the arrangement of 
N-terminal cysteines ( 1, 2 ). Circulating leuko-
cytes infi ltrate tissues in response to cell-surface 
chemokine gradients established through asso-
ciation with glycosaminoglycans (GAGs). These 
ubiquitous sulfated polysaccharides infl uence 
multiple cytokines ( 3 ) and specifi cally modu-
late chemokines by stabilizing gradients under 
shear fl ow, protecting them from proteolysis, 
and regulating their biological activity ( 4 ). GAG 
binding also induces oligomerization of chemo-
kines, which may be necessary for leukocyte re-
cruitment in vivo ( 5, 6 ). 

 Large DNA viruses have evolved strategies 
to avoid detection and clearance by the host ( 7 ), 
including evasion of the chemokine network, an 
important component of the immune response 
to viral infection ( 8 ). Chemokines coordinate 
innate and adaptive immunity by modulating 
cellular recruitment, leukocyte activation, and 
polarization of the immune response ( 9 ). Herpes-
viruses and poxviruses encode numerous pro-
teins to subvert chemokine signaling, including 

altered chemokine and GPCR variants, as well as 
secreted decoy receptors that function as chemo-
kine scavengers capable of inhibiting chemo-
kine signaling and chemotaxis ( 10 ). Members 
of the  Orthopoxvirus  and  Leporipoxvirus  genera 
encode a conserved 35-kD decoy receptor, vi-
ral chemokine-binding protein, that selectively 
binds CC chemokines and has been extensively 
investigated biophysically ( 11 – 15 ). Recent work 
has shown that some  Orthopoxviruses  encode addi-
tional chemokine inhibitors, termed smallpox 
virus – encoded chemokine receptor domains ( 16 ), 
which are encoded either alone or C-terminally 
fused to secreted TNF decoy receptors and are 
capable of sequestering select members of the 
CC and CXC chemokine families. In contrast, 
the expression of chemokine decoy receptors 
by herpesviruses appears to be less generalized. 
Examples include the glycoprotein G variants 
encoded by ruminant   α  -herpesviruses that bind 
CC and CXC chemokines ( 17 ), and UL21.5 
from human cytomegalovirus that specifi cally 
binds CC chemokine ligand (CCL) 5 ( 18 ). All 
of the virally encoded chemokine decoy re-
ceptors identifi ed to date are encoded by novel 
sequences unrelated to any host proteins and 
exhibit a variety of chemokine-binding pro-
fi les that may refl ect diff erences in viral tropism 
or pathogenesis. 

 Mouse  � -herpesvirus 68 (MHV68) is a  natural 
pathogen of rodents, closely related to Kaposi ’ s 
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 Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-

mediated immune surveillance, exemplifi ed by the mouse  � -herpesvirus 68 M3 decoy 

receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and 

CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemo-

kine features associated with G protein – coupled receptor binding are primarily recognized 

by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfi gures to 

engage divergent basic residue clusters on the surface of chemokines. Favorable electro-

static forces dramatically enhance the association kinetics of chemokine binding by M3, 

with a primary role ascribed to acidic NTD regions that effectively mimic glycosaminogly-

can interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to 

potently sequester chemokines, thereby inhibiting chemokine receptor binding events as 

well as the formation of chemotactic gradients necessary for directed leukocyte traffi cking. 
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M3 may be tailored to work cooperatively with other viral 
proteins involved in pathogenesis. 

 We previously determined the crystal structure of M3 
alone and in complex with the P8A variant of CCL2 ( 27 ), 
which revealed signifi cant details about how CC chemokine 
sequestration is enabled by the decoy receptor. In this paper, 
we describe the crystal structures of M3 in complex with 
C chemokine ligand (XCL) 1, as well as wild-type CCL2. 
These structures show that M3 engages two out of four chemo-
kine classes with the same overall binding geometry and 
 stoichiometry. Comparative analysis reveals that the M3 C-
terminal domain (CTD) engages conserved chemokine struc-
tural elements associated with GPCR binding, whereas the 
acidic N-terminal domain (NTD) exhibits dramatic electro-
static complementarity with chemokines, contacting diver-
gent basic clusters involved in GAG association. Based on 
these observations, we have undertaken kinetic and muta-
tional analyses to assess the role of electrostatics in M3 chemo-
kine binding. We have also developed competition assays 
to address whether M3 is capable of disrupting chemokine 
interactions with GAGs. Collectively, our data reveal that the 

sarcoma-associated herpesvirus and EBV, and serves as a model 
system to study herpesvirus pathogenesis and latency ( 19 ). 
The M3 protein encoded by MHV68 is the product of an 
immediate-early transcript and is abundantly secreted during 
acute infection ( 20 ). M3 disrupts chemokine signaling and 
chemotaxis in vitro ( 21 ), and the phenotype of an M3-knock-
out virus is consistent with an immune evasion function 
during central nervous system infection ( 22 ). M3 is the only 
decoy receptor discovered thus far that binds members of all 
four chemokine classes ( 21, 23 ); however, M3 displays selec-
tivity within the CXC chemokine class, which may be func-
tionally relevant for MHV68 pathogenesis. Mouse chemokines 
shown to be up-regulated during MHV68 infection include 
lymphotactin, monocyte chemoattractant protein 1, RANTES, 
macrophage infl ammatory protein (MIP) 1  α  , MIP-1 � , eotaxin, 
IFN-inducible protein (IP) 10, MIP-2, and KC ( 24, 25 ). Of 
these chemokines, only MIP-2 and KC are not bound by 
M3 with high affi  nity. Strikingly, MHV68 also encodes a 
chemokine GPCR, MHV68-encoded open reading frame 
74, which signals in response to MIP-2 and KC but is antago-
nized by IP-10 ( 26 ). Thus, the chemokine-binding properties of 

  Table I.    Data collection and refi nement summary for M3 – chemokine complex structures  a   

M3 – CCL2 M3 – XCL1

Data Set

   Space group P3 1 21 I2 1 2 1 2 1 

   Unit cell ( Å ) a = b = 99.23, c = 243.5 a = 85.44, b = 104.18, c = 290.85

   Wavelength ( Å ) 1 1

   x-ray source  b  APS 19-ID APS 19-ID

   Resolution ( Å ) overall (outer shell) 2.5 (2.61 – 2.5) 2.6 (2.76 – 2.6)

   Observations/unique 791,582/48,731 674,773/40,275

   Completeness (%) 99.7 (100) 99.3 (99.9)

   R sym  (%) (I  > 0) 13.9 (41.2) 10 (49.2)

   I/ � 11.7 (4.1) 16.1 (2.7)

Refi nement summary  c  

   Resolution ( Å ) 20-2.5 20-2.6

   Refl ections R work /R free  (F obs   > 0) 45,669/2,258 33,788/1,771

   Molecules/ASU 6 4

   No. protein residues/atoms/solvent 1,299/10,113/546 865/6,720/192

   R work  overall (outer shell) (%) 23.2 (27.4) 22 (37)

   R free  overall (outer shell) (%) 29.9 (35.1) 27.3 (42.2)

   RMSD bond lengths ( Å )/angles ( ° ) 0.006/1.4 0.007/1.4

   RMSD dihedral/improper ( ° ) 25.3/0.87 25.2/0.98

   Cross-validated Luzzati error ( Å ) 0.47 0.46

   Ramachandran plot

   Most favored/additional (%) 86.8/12.9 83.2/16.4

   Generous/disallowed (%) 0.3/0 0.4/0

   M3 domain B-values ( Å  2 ) A-NTD = 40.4/A-CTD = 31.7 A-NTD = 53.9/A-CTD = 55.6

B-NTD = 40.8/B-CTD = 31 B-NTD = 58.7/B-CTD = 44.5

X-NTD = 42/X-CTD = 31.2

   Chemokine B-values ( Å  2 ) D = 40.4, E = 39.9, Y = 40.2 D = 105.4, E = 78

 a Values as defi ned by SCALEPACK (reference  54 ).

 b Advanced Photon Source SBC-CAT beamline 19-ID.

 c Values as defi ned in CNS (reference  57 ).
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M3 decoy receptor enables immune evasion through dual GAG 
and GPCR mimicry, eff ectively preventing the establishment 
of chemokine gradients and the activation of endogenous re-
ceptor signaling. 

  RESULTS  

 Structures of M3 in complex with XCL1 and CCL2 

 To ascertain the structural features of M3 that facilitate promis-
cuous recognition of distinct chemokine classes, the structures 
of M3 in complex with XCL1 and CCL2 were determined 
and compared. XCL1 uniquely contains only a single disulfi de, 
herein referred to as the invariant disulfi de, which is present 
in all four chemokine classes. Otherwise, both chemokines 
exhibit the characteristic chemokine-fold topology consisting 
of an extended N-loop ending in a short 3 10 -helix, followed 
by three  �  strands connected by 30s and 40s loops and a 
C-terminal   α  -helix ( 28, 29 ). Interestingly, the sequence of XCL1 
is substantially longer than CCL2 (92 vs. 75 residues, respec-
tively), although the last 20 residues beyond the C-terminal 
helix have not been structurally defi ned. 

 The crystal structure of M3 in complex with XCL1 was 
determined to a resolution of 2.6  Å  ( Fig. 1 A  and  Table I ).  
M3 is a two-domain protein that exists as a constitutive anti-
parallel homodimer, with two chemokine-binding clefts formed 
between adjacent NTDs and CTDs at opposite ends of the 
dimer. The M3 – XCL1 model comprises a 2:2 complex, with 
an asymmetrical M3 dimer caused by crystal contacts involv-
ing the A ’ -A – loop (residues 251 – 253) and the C ” , D, and E 
strands (residues 326 – 353) of the M3 A chain. XCL1 is deeply 
buried within the binding cleft, which sequesters  � 1,080  Å  2  
of chemokine surface area (19% total). XCL1 contributes 15 
residues and M3 17 residues to  > 130 contacts at the interface 
( Table II ), including 10 H-bonds, 3 of which form an anti-
parallel  �  strand between K 8  and T 10  of XCL1, and L 273  and A 275  
of the M3 AB-loop.  The two binding sites are strikingly simi-
lar, as refl ected by the near equivalence of total buried surface 
area (BSA) equaling 2,156  Å  2  at the XCL1 (D) interface, and 
2,181  Å  2  for the XCL1 (E) interface, with no major diff er-
ences in the number of contacts at each site ( Table II ). 

 We previously reported the structure of M3 in complex 
with the P8A mutant of CCL2 ( 27 ). Substitution of Pro8 with 
Ala has been clearly shown to disrupt CCL2 self-association 
( 30 ), and we were concerned that this mutant chemokine 
might associate with M3 diff erently than wild-type CCL2. 
To address this issue, we now describe the 2.5- Å  resolution 
structure of M3 in complex with wild-type CCL2. The model 
consists of a 2:2 complex ( Fig. 1 A ), plus another half com-
plex completed by crystallographic twofold symmetry, thus 
providing two examples of the M3 – CCL2 complex within 
the same crystal. Overall, the M3 structures with wild-type 
CCL2 and the P8A variant are almost identical, with a root 
mean square deviation (RMSD) of 0.50  Å  (all atoms) between 
structures. Likewise, the two copies of the M3 – CCL2 complex 
are quite similar, diff ering by an RMSD of 0.48  Å  (all atoms), 
with comparable binding niches refl ected by the total BSA in 
each complex (4,254 vs. 4,268  Å  2 ;  Table II ). We fi nd that M3 
contacts precisely the same surface of CCL2 as the P8A vari-
ant and utilizes equivalent residues to make the same number 
of contacts ( Table II ). Neither the Pro8 nor Ala8 side chains 
make any signifi cant contact with M3, and indeed, the chemo-
kine N-terminal strands adopt the same conformation as they 
engage the M3 CTD. Importantly, all elements of GCPR 
mimicry that we described previously are conserved in the 
wild-type structure ( 27 ). 

 Similar M3 recognition features of XCL1 and CCL2 

 To determine the basis of promiscuous M3 engagement of 
diverse chemokines, the M3 – XCL1 and M3 – CCL2 inter-
faces were analyzed to identify similar features of chemokine 
recognition. Although XCL1 and CCL2 share only 24% se-
quence identity (70 aligned core residues), M3 binds to the 
same general surface of each chemokine with a similar num-
ber of contacts. The shape complementarity of each inter-
face is also comparable, averaging 0.66 for CCL2 and 0.63 
for XCL1 ( Table II ). Comparison of our structures reveals 
that M3 targets shared chemokine features that we have 
parsed into three distinct regions, the chemokine N-terminal 
segment, the hydrophobic seam, and the divergent basic 

  Table II.    Structural analysis of M3 – chemokine complexes  a   

M3 – CCL2 M3 – XCL1

Shape complementarity  b  0.65, 0.66, 0.69 0.63, 0.62

BSA  c   ( Å  2 )

   Total 2,084, 2,170, 2,134 2,156, 2,181

   M3 1,071, 1,112, 1,087 1,075, 1,090

   Chemokine 1,013, 1,058, 1,049 1,081, 1,091

M3 BSA (nonpolar/polar) (%) 66/34, 64/36, 66/34 64/36, 68/32

Chemokine BSA (nonpolar/polar) (%) 58/42, 54/46, 59/41 57/43, 59/41

Total contacts  d   (NTD/CTD) 132 (56/76),133 (51/82),126 (50/76) 136 (67/69), 135 (65/70)

H-bonds (NTD/CTD) (all same) 12 (4/8) 10 (4/6)

 a Tabulated on a per-site basis in the order of chemokine chains D,E,Y and D,E, respectively, unless otherwise indicated.

 b Calculated using SC (reference  60 ).

 c Solvent-accessible BSA calculated with 1.4 ( Å ) in NACCESS (reference  61 ).

 d Nonbonded contacts ( < 4  Å ) calculated using HBPLUS (reference  62 ).
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  Figure 1.     Crystal structures of M3 – XCL1 and M3 – CCL2 complexes.  Structures of (A) M3 – XCL1 and (B) M3 – CCL2. (left) Each complex displays a 

2:2 stoichiometry, with M3 chains labeled A and B and chemokines labeled D and E. (middle) Space-fi ll models of XCL1 (E) and CCL2 (E). Sidechains of 

contact residues are highlighted in magenta. Shared chemokine features are circled, with residues in the basic cluster (dashed line) labeled in blue; also 

shown is the N-terminal segment (dotted line), with residues forming the antiparallel  �  strand labeled in black, as well as the hydrophobic cluster (bold 

dotted line). Cysteines of the CC and C motifs are labeled on CCL2 (C11, C12, and C52; note that C36 is not visible) and XCL1 (C11 and C48), respectively. 

The single disulfi de in XCL1 is structurally equivalent to the second disulfi de (C12 – C52) in CCL2 and is referred to as the invariant disulfi de. Conserved 

sidechain contacts are italicized, and GAG-binding residues are indicated by asterisks (references  35, 38 ). (right) The chemokine contact surface is high-

lighted in magenta, with 2.5 – 3.5- Å  (short-range) contacts in a darker shade and 3.5 – 5- Å  contacts in a gradient from magenta to white. M3 sidechain 

contacts are shown in stick form and labeled, with differential contacts highlighted with yellow labels and noncontacting residues shown in yellow for 

each structure. (C) Structure-based sequence alignment of XCL1 (1 – 65) and CCL2 (1 – 70). All residues that contact M3 NTD or CTD are highlighted in cyan 
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chemistries are used by M3 because of diff erences in primary 
sequences. For example, although CCL2 R 18  reaches out and 
makes contact with the distally located M3 E 129  and R 170  
sidechains, the structurally equivalent XCL1 residue Q 17  in-
stead hydrogen bonds with the more proximal M3 Q 84 . Near 
the chemokine N-terminal segment, CCL2 Y 13  and XCL1 
V 12  are both sequestered in a CTD hydrophobic pocket, but 
the smaller XCL1 sidechain does not fi ll the pocket to the 
same degree as Y 13  and, consequently, does not make contact 
with three M3 residues used by CCL2 (L 273 , P 356 , and T 357 ; 
 Fig. 1, A and B , right). This diff erence in hydrophobic con-
tact correlates with an overall decrease in the M3 CTD shape 
complementarity value, which drops from 0.71 for CCL2 to 
0.57 for XCL1. XCL1 also makes unique hydrophobic contacts 
with M3 T 226  via L 45  that replaces CCL2 K 49 . Thus, M3 is 
able to accommodate variable chemokine sequences through 
uniquely arrayed contact chemistries. 

 M3 structural plasticity 

 To further ascertain how M3 is able to similarly engage two 
diverse chemokines, the conformational variation exhibited 
by the decoy receptor was assessed. We previously hypothe-
sized that promiscuous ligand binding might be facilitated 
by the structural plasticity of the M3 chemokine-binding 
niches ( 27 ). Indeed, structural comparison of unliganded M3 
with the M3 – CCL2 (P8A) complex revealed signifi cant con-
formational rearrangements associated with ligand binding, 
including loop remodeling and domain movements of up 
to 8 ° . Comparison between the M3 – CCL2 and M3 – XCL1 
complexes indicates a more modest degree of plasticity, with 
an overall RMSD of 0.7  Å  for all M3 atoms with only mi-
nor domain movements. The conformational variation that 
is exhibited can best be understood in the context of how 
the M3 NTD and CTD diff erentially interface each chemo-
kine. Although the chemistry and geometry of the chemokine 
N-terminal segments engaged by the M3 CTD are highly 
similar, signifi cant sequence and conformational variation in 
the basic N-loop, 3 10 -helix, and 40s loop regions fl anked 
by the acidic M3 NTD is readily apparent ( Fig. 1 D ). The M3 
NTD adapts to these localized chemokine diff erences through 
sidechain and loop repositioning, along with an  � 2 °  rigid 
body rotation, which collectively result in a maximal C  α   dis-
placement of  � 2.5  Å  at the top of the s2b-s3 loop. Thus, with 
XCL1 bound, the rearranged NTD is optimally positioned 
for M3 E 80  and E 81  to engage R 23  and R 43  of the XCL1 ba-
sic cluster. Additionally, the repositioned NTD eff ectively 
narrows the binding niche, thereby maintaining close con-
tact with parts of the hydrophobic seam, which is organized 
in XCL1 to include L 19 , P 20 , and L 45 . Hence, although the 

cluster ( Fig. 1, A and B,  middle). M3 engages both chemo-
kines by contacting their common N-terminal segment, which 
includes the invariant disulfi de bond and adjacent residues. 
The M3 CTD makes several conserved contacts within this 
segment, including the packing of M3 P 272  against the invariant 
disulfi de, burial of hydrophobic chemokine residues (CCL2 Y 13  
and XCL1 V 12 ) within a pocket formed by the M3 AB- and 
EF-loops, and formation of an antiparallel  �  strand between 
the M3 AB-loop and the N-terminal chemokine backbone. 
Central to each interface is a stretch of hydrophobic chemo-
kine residues recognized by both M3 domains, termed the 
hydrophobic seam, situated in the N-loop region underneath 
the 40s loop. The two chemokines share major hydrophobic 
contacts in this region, specifi cally CCL2 residues I20 and I42, 
which are structurally analogous to XCL1 residues L19 and 
I38. Adjacent to the chemokine hydrophobic seam is a clus-
ter of divergent basic residues in the N-loop, 3 10 -helix, 40s 
loop, and C-terminal helix, which are engaged by the acidic 
M3 NTD. Electrostatic complementarity between acidic loops 
of the NTD and the basic cluster of each chemokine is a 
prominent feature of the shared interface. Specifi cally, 15 Glu 
and Asp residues of the s2b-s3, s4-s5, and s7-s8 loops of the 
M3 NTD are located opposite 9 (XCL1) and 6 (CCL2) Arg 
and Lys chemokine residues. Interestingly, although the basic 
cluster is a common feature of both chemokines, residues 
composing the cluster are variably positioned, and conse-
quently, the only conserved interaction within this region 
is between XCL1 R 23  and CCL2 R 24  and the backbone 
carbonyl of M3 E 81 . Thus, M3 recognizes several conserved 
elements of chemokine structure that are shared between these 
CC and C family chemokines. 

 Unique M3 recognition features of XCL1 and CCL2 

 Given the low degree of sequence identity between XCL1 
and CCL2, the structures were also analyzed for unique fea-
tures of chemokine engagement. An analogous total of 20 
CCL2 and XCL1 residues are contacted by M3, with only 1 
unique residue position contacted in each (K 38  in CCL2 and 
R 43  in XCL1;  Fig. 1 C ). Remarkably, only fi ve of these res-
idues are conserved between the two chemokines, indicating 
that the M3-engaged interfaces are no more sequence con-
served than the overall proteins. To bind these extraordinarily 
diverse interfaces, M3 uses 20 diff erent residue sidechains, 
of which 7 are diff erentially used ( Fig. 1, A and B , right). 
Many of the unique chemokine contacts are localized to the 
N-loop, a region of high sequence variation among chemokines 
because of its involvement in specifi c recognition by endog-
enous receptors ( 31 ). Although the extended N-loop adopts 
similar conformations in CCL2 and XCL1, distinct binding 

and blue, respectively, with disulfi de-forming cysteines in black. Conserved sidechain contacts are indicated by gray triangles and GAG-binding residues 

with asterisks. (D) Conformational rearrangement of M3 NTD with the C  α   trace of M3 – CCL2 in gray and M3 – XCL1 superimposed in blue, cyan, and ma-

genta. (E) RMSD (all atoms) between M3 in complex with XCL1 and CCL2 is highlighted on the trace of M3 – XCL1 as a gradient from white to red (from 

0.5 to  ≥ 3  Å ). Figures were prepared using Ribbons (reference  67 ) and GRASP (reference  68 ) software, as previously described, and the chemokine E chain 

interface is shown as the reference in all fi gures.   
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by almost two orders of magnitude (70-fold) from 7  ×  10 7  to 
8  ×  10 5  M  � 1 s  � 1  ( Fig. 2 C ). This trend is also refl ected in the dis-
sociation constant (K D ), which increases from 0.9 to 22 nM 
between 200 mM and 1.5 M NaCl. In contrast, the M3 – XCL1 
apparent off  rate ( k d  

app  ) was relatively unperturbed over the 
range tested, varying only fi vefold. A computational analysis 
of the M3 – XCL1 structural interaction predicts a congruent 
trend in the calculated electrostatic interaction energy as a 
function of ionic strength, indicating that electrostatics con-
tribute favorably to the free energy of interaction and, thus, 
enhance the binding affi  nity (Fig. S1 and  Table I ). It was also 
of interest to determine the on rate at lower salt concentra-
tions; however, severe mass transport eff ects precluded anal-
ysis below 200 mM NaCl. Therefore, the experimental trend 
was extrapolated to obtain rough estimates for  k a  

app   at low salt 
(Fig. S1 and Supplemental materials and methods, available at 
http://www.jem.org/cgi/content/full/jem.20071677/DC1). 
For example, extrapolation to zero salt leads to an estimated 
on rate of  � 4  ×  10 11  M  � 1 s  � 1 , suggesting that electrostatic 
forces would draw M3 and chemokines together at a rate much 
faster than diff usion alone ( � 10 9  M  � 1 s  � 1 ) ( 33 ). Importantly, 
the extrapolated on rate at physiological NaCl (150 mM) is 
 � 10 8  M  � 1 s  � 1 , which is two to three orders of magnitude 
faster than typical protein – protein interactions. Collectively, 
these kinetic and computational analyses clearly indicate that 
electrostatics facilitate fast M3 – chemokine complex forma-
tion, and further, suggest that M3 – XCL1 association may be 
among the most rapid protein – protein associations yet de-
scribed ( 32, 34 ). 

 M3 NTD acidic loops mediate electrostatic on-rate 

enhancement 

 Given that electrostatic complementarity is concentrated at 
the M3 NTD interface, the role of acidic NTD loops in en-
hancement of M3 – chemokine apparent on rates was exam-
ined. A structure-based M3 variant, termed M3 BBXB , was created 
by mutating the sequence  80 EELGQ 84  to  80 SRRGR 84  ( Fig. 3 A ).  
The mutant was designed with the goal of reducing electro-
static complementarity at the NTD interface by introducing 

M3 CTD maintains a rigid interface to contact chemokine 
N-terminal structural elements conserved between XCL1 
and CCL2, the NTD capably tracks the unique display of 
chemokine basic and hydrophobic residues through concerted 
reconfi guration. 

 Electrostatic complementarity between M3 and chemokines 

 These structures reveal that for both CCL2 and XCL1, the 
fl exible M3 structure adapts to optimize contacts with the 
basic cluster on an individual basis. This suggests that electro-
statics may be an important element of promiscuous chemokine 
sequestration by the M3 NTD. To further assess the com-
plementarity between M3 and chemokines, electrostatic po-
tential maps were calculated for M3, XCL1, and the M3 – XCL1 
complex revealing that the positive potential of the XCL1 
basic cluster is located directly opposite the negative potential 
of the M3 NTD acidic loops, and that both are signifi cantly 
neutralized in the complex ( Fig. 2 A ).  To demonstrate this 
charge neutralization biochemically, the M3 isoelectric point 
(pI) was experimentally determined ( � 4.5) and was found to 
increase by  > 1 pH unit in complex with either chemokine 
(Fig. S1, available at http://www.jem.org/cgi/content/full/
jem.20071677/DC1). Collectively, these data lend support for 
the hypothesis that electrostatics are important components 
of M3 – chemokine interactions. 

 M3 – chemokine association is enhanced by electrostatics 

 To address the contribution of electrostatics to the interaction 
of M3 with chemokines, binding kinetics were examined by 
surface plasmon resonance (SPR) to determine apparent on 
and off  rates. SPR analysis of chemokines binding to immo-
bilized M3 revealed a common feature of relatively fast ap-
parent on rates ( ≥ 10 7  M  � 1 s  � 1 ) at 150 mM NaCl. To further 
investigate this phenomenon, XCL1 binding was assessed 
as a function of increasing ionic strength, which eff ectively 
screens electrostatic interactions that can enhance protein asso-
ciation rates ( Fig. 2 B  and  Table III ) ( 32 ).  This series of mea-
surements revealed that the M3 – XCL1 apparent on rate ( k a  

app  ) 
is greatly reduced at high NaCl concentrations, decreasing 

  Table III.    NaCl dependence of M3 – XCL1 binding kinetics 

NaCl (M) K D(eq)  (R eq ) (nM) K D ( k d  / k a  ) (nM)  k a  
app   (M  � 1 s  � 1 )  × 10 7  k d   

app   (s  � 1 )  × 10  � 2  �  2  avg  a  

0.2  � 0.9 ( ± 0.2) 6 ( ± 1) 5.6 ( ± 0.2) 21.61

0.25 2.6 ( ± 0.4) 1.8 ( ± 0.4) 5 ( ± 2) 9 ( ± 3) 2.15

0.3 4.6 ( ± 0.5) 3 ( ± 0.5) 3 ( ± 1) 9 ( ± 2) 0.49

0.35 6.9 ( ± 0.8) 4.6 ( ± 0.6) 2.2 ( ± 0.7) 10 ( ± 2) 0.35

0.4 9 ( ± 0.9) 7 ( ± 1) 1.6 ( ± 0.4) 10 ( ± 2) 0.4

0.5 11 ( ± 1) 9 ( ± 1) 0.9 ( ± 0.2) 9 ( ± 1) 0.3

0.6 16.2 ( ± 0.8) 12 ( ± 1) 0.33 ( ± 0.04) 3.9 ( ± 0.6) 0.49

0.7 18.8 ( ± 0.9) 17 ( ± 2) 0.24 ( ± 0.02) 4.2 ( ± 0.5) 0.69

1 21 ( ± 2) 17 ( ± 2) 0.19 ( ± 0.03) 3.1 ( ± 0.3) 0.56

1.25 28 ( ± 2) 19 ( ± 0.8) 0.13 ( ± 0.01) 2.5 ( ± 2) 0.37

1.5 26 ( ± 6) 22 ( ± 2) 0.083 ( ± 0.003) 1.9 ( ± 0.1) 0.52

 a Average  �  2  for global kinetic fi ts at three ligand densities measured in triplicate.
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  Figure 2.     Kinetic analysis of M3 – XCL1 interactions.  (A) Corey-Pauling-Koltun model of M3, XCL1, and the M3 – XCL1 complex with an overlay of 

electrostatic potential maps from APBS (150 mM NaCl) in mesh, contoured at 0.7 kT/e and displayed using Chimera, as previously described (reference 

 69 ). Surface area buried in the complex is highlighted in green (XCL1) and yellow (M3), and both are labeled with experimental pI ’ s. (B) Representative SPR 

sensorgrams (gray) and fi ts (red) for XCL1 binding to M3 as a function of NaCl. (C) Binding constants for the NaCl range investigated (from 200 mM to 

1.5 M;  Table III ). (top) The on rate ( k a  app  ) and off rate ( k d  app  ) as a function of NaCl (mean ± SEM). (bottom) K D  (from the ratio of on and off rates) and K D(eq)  

(from nonlinear fi t to R eq  values; mean ± SEM).   
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Arg residues in the M3 s2b-s3 loop opposite basic chemokine 
sidechains in the N-loop and 40s loop. As anticipated, the 
M3 BBXB  mutant is less acidic than wild-type M3, with a pI 
shifted to  � 5, almost to the same degree as seen for wild-type 
M3 in complex with chemokine (Fig. S1). To assess whether 
this reduction of M3 surface charge results in a slower on rate 
for chemokine binding, kinetic analysis was performed for 
XCL1 binding to M3 BBXB  at 150 mM NaCl ( Fig. 3 B ). Indeed, 
the mutant displays a signifi cantly reduced on rate, which is 
1.8  ×  10 6  M  � 1 s  � 1 , a decrease of  � 100-fold compared with 
wild-type estimates ( Table IV ).  In contrast, the off  rate for 
M3 BBXB  is relatively unchanged at 0.043 s  � 1  compared with 
 � 0.06 s  � 1  for wild-type (200 mM NaCl), corresponding to a 
half-life of  � 15 s for both. Together with the salt-dependent 
kinetic analysis, these results suggest that electrostatics facili-
tate on-rate enhancement but do not contribute as much to 
complex half-life for this chemokine. Furthermore, analysis 
of the M3 BBXB  mutant fi rmly establishes an important role 
for the acidic NTD loops in the electrostatic enhancement of 
M3 – chemokine on rates. 

 Assessment of M3 chemokine binding by SPR competition 

 We exploited the reduced on rate of the M3 BBXB  variant to 
develop an SPR assay that facilitates the measurement of 
wild-type M3 binding to chemokines in solution, thereby 
avoiding the mass transport surface eff ects that limited analy-
sis at 150 mM NaCl. To this end, M3 BBXB  was immobilized 
on the sensor chip, and the solution affi  nity for XCL1 binding 
to wild-type M3 (inhibition dissociation constant [K I ]) was 
obtained by titrating coinjected M3 that competes for XCL1 
binding to immobilized M3 BBXB  ( Fig. 3 C ; a complete descrip-
tion of the assays is provided in Supplemental materials and 
methods). This competition assay yielded a solution affi  nity 
for XCL1 binding to M3 of K I  = 500 ( ± 70) pM ( Table IV ). 
By comparison, extrapolation of our salt-dependent data es-
timates an apparent on rate of  � 10 8  M  � 1 s  � 1  and an off  rate of 
 � 0.06 s  � 1 , yielding a K D  from the kinetic ratio of  � 600 pM. 
Thus, the M3 – XCL1 affi  nity determined by competition at 
150 mM NaCl is remarkably consistent with that extrapolated 
from our limited kinetic analysis. 

 M3 stoichiometrically inhibits chemokine – GAG interactions 

 The experiments described thus far have established that 
electrostatic interactions with the M3 NTD profoundly en-
hance chemokine on rates. Electrostatics are also an impor-
tant component of chemokine – GAG interactions, exemplifi ed 
by their salt dependence ( 35 ), the importance of N- and O-
sulfation of GAGs ( 36 ), and the role of residues in the che-
mokine basic cluster ( 4 ). In support of this concept, previous 
studies have shown that the addition of M3 to heparin-bind-
ing assays reduces GAG binding for some chemokines ( 37 ). 
To address whether M3 could directly inhibit GAG inter-
actions for diverse chemokines, an SPR competition assay 
was developed ( Fig. 4  ) .  Initially, chemokine-binding affi  nity 
for immobilized heparin was measured, and chemokine was 
titrated with coinjected M3 to assay inhibition of heparin 

  Figure 3.     M3 BBXB  kinetics and M3 competition assay.  (A) Posi-

tions mutated in M3 BBXB  and adjacent basic residues on XCL1 are 

shown in ball and stick form (oriented as in  Fig. 1 A ), and mutations 

are listed. Adjacent sections of the chemokine backbone are not shown, 

for clarity. (B) XCL1 binding to M3 BBXB . Representative sensorgrams 

(gray) and R eq  values (plot, inset) are shown with corresponding fi ts 

(red and black, respectively;  Table IV ). (C) Competition assay to deter-

mine the solution affi nity for M3 binding to XCL1 at 150 mM NaCl. 

Competition titration curve for coinjected M3 binding to XCL1 in com-

petition with immobilized M3 BBXB  is shown with a corresponding fi t to 

the data ( Table IV ).   
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manner (unpublished data). As expected, the other control 
GAG-binding proteins, VEGF ( Fig. 4 C ) and FGFR (not 
depicted), were completely unaff ected by incubation with M3, 
confi rming that GAG blockade by M3 is chemokine specifi c. 
Collectively, these complementary GAG competition assays 
demonstrate that M3 specifi cally blocks chemokine – GAG 
interactions in a stoichiometric manner, disrupting cell adhe-
sion for chemokines that display widely diff erent GAG affi  nities 
and binding modes. 

  DISCUSSION  

 GPCR mimicry by the M3 CTD 

 The M3 – XCL1 and M3 – CCL2 structures reveal that GPCR 
mimicry by the M3 CTD is conserved for at least two che-
mokine subclasses. The most evident element of structural 
mimicry is the hydrophobic packing of M3 P 272  against the 
chemokine invariant disulfi de ( Fig. 1 ), which mimics the 
 interaction observed for an N-terminal peptide of CXC 
chemokine receptor 1 in complex with CXCL8 ( 27, 41 ). 
M3 P 272  packs against the invariant disulfi de in precisely the 
same manner as P 29  of CXC chemokine receptor 1, and given 
that proline is highly conserved at this position among chemo-
kine receptors, this may represent a general mode in which 
the invariant disulfi de is recognized by GPCRs. Interestingly, 
CXCL8 N-loop interactions with the CXCL1 peptide do 
not appear to preclude chemokine dimerization through the 
 � 1 strand. If the M3 – chemokine binding mode is conserved 
for all classes, it is possible that CXCL8 could also bind to M3 
as a dimer, and in fact, preliminary data for the M3 – CXCL8 
complex are consistent with this hypothesis. In addition, 
hydrophobic residues immediately after the invariant disul-
fi de bond, CCL2 Y 13  and XCL1 V 12 , are both sequestered 
within the CTD hydrophobic pocket. Virtually all high af-
fi nity M3 ligands harbor a Tyr, Phe, or aliphatic sidechain at 
this position, which also appears to be important for receptor 
recognition ( 42, 43 ). This suggests that the CTD sequesters 
another key position engaged by GPCRs in general. Like-
wise, the M3 AB-loop forms an antiparallel  �  strand with 
residues in the N-terminal segment that participate in recep-
tor binding and signaling ( 39 ). Interestingly, the H-bonds 
within this strand are identically positioned for XCL1 and 
CCL2, unperturbed by diff erences in the disulfi de bonding 
patterns of each chemokine. This suggests that the M3 AB-
loop recognizes an N-terminal backbone conformation that 
is common to chemokines of diff erent subclasses within a 
region important for GPCR recognition. In summary, the 
two complex structures presented in this study demonstrate 

binding ( Fig. 4 ). This analysis was ultimately performed for 
members of three out of the four classes of chemokines, as 
CX3CL1 exhibited very low affi  nity for heparin (unpub-
lished data). Analysis of CCL2, XCL1, and CXC chemokine 
ligand (CXCL) 10 binding to heparin yielded K D  estimates 
( Fig. 4 A  and  Table V ) in agreement with previous papers 
( 35, 38 ), as XCL1 and CXCL10 exhibited nanomolar affi  nity 
and CCL2 micromolar.  Qualitative assessment of sensorgrams 
shows that XCL1 and CXCL10 display relatively slow multi-
phasic association kinetics and long-lived complexes in com-
parison with the rapid kinetics observed for CCL2, refl ecting 
the diverse nature of these individual chemokine – GAG inter-
actions. Results of the M3 competition assay show that M3 
blocks CC, C, and CXC chemokine binding to GAGs in 
a stoichiometric manner, as M3 completely inhibits hepa-
rin binding for all chemokines at nearly a 1:1 molar ratio 
( Fig. 4 B ). Furthermore, estimates for the M3 dissociation 
constant (K I ) in competition with heparin are in the pico-
molar – nanomolar range ( Table V ), suggesting that M3 could 
eff ectively inhibit GAG-binding at physiologically relevant 
chemokine concentrations ( 39 ). 

 A cellular competition assay was also conducted to assess 
M3 inhibition under conditions that more closely refl ect the 
GAG environment in vivo. Chinese hamster ovary (CHO) –
 K1 cells, rich in heparan sulfate and chondroitin sulfate, were 
stained with CCL2, XCL1, and CXCL10, as well as the con-
trol GAG-binding proteins vascular endothelial growth fac-
tor (VEGF) and soluble fi broblast growth factor receptor 
(FGFR; unpublished data), in the absence and presence of 
equal molar amounts of M3. The GAG-defi cient CHO-745 
line ( 40 ) was also stained as a control. The results clearly show 
that all chemokines and control proteins bind to GAGs on 
CHO-K1 cells. In the presence of M3, staining is specifi cally 
reduced for all three chemokines, with CCL2 and CXCL10 
staining completely reduced to the level of the 745 cells. 
The incomplete inhibition observed for XCL1 appears to 
be an artifact of nonspecifi c biotinylation, as similar results 
were obtained for other chemokines labeled in the same 

  Table IV.    M3 binding affi nity and kinetics at 150 mM NaCl 

M3 variant – chemokine K D(eq)  (R eq ) (nM) K D  ( k d  / k a  ) (nM)  k a   (M  � 1 s  � 1 )  × 10 7  k d   (s 
 � 1 )

M3 – XCL1  a  0.5 ( ± 0.07)  � 0.6  � 10  � 0.06

M3 BBXB  – XCL1 59 ( ± 6) 23 ( ± 1)  0.18 ( ± 0.01) 0.043 ( ± 0.004)

 a Estimates (~) for on and off rate derived from extrapolation of salt-dependent kinetics, kinetic-based K D  was determined from the ratio of these estimates, and equilibrium-

based K D(eq)  was determined by competition assay (referred to as K I  in the text).

  Table V.    Heparin-binding and M3 competition assay 

Heparin M3 competition

Chemokine K D  (R eq ) (nM) K I  (nM)

CCL2 1,200 ( ± 200) 18 ( ± 7)

XCL1 90 ( ± 10) 2.3 ( ± 0.7)

CXCL10 60 ( ± 10) 0.9 ( ± 0.3)
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 Prominent role of electrostatics in M3 – chemokine 

interactions 

 This study has also demonstrated that electrostatic interactions 
are a conserved element of chemokine recognition by the 

that M3 engages several conserved chemokine structural fea-
tures associated with GPCR binding, including the invariant 
disulfi de, adjacent hydrophobic residues, and the common 
N-terminal segment. 

  Figure 4.     Heparin-binding and M3 competition assays.  (A, left) Representative SPR traces for chemokines binding to immobilized heparin. Note that 

chemokines display multiphasic-binding kinetics, which therefore precluded kinetic analysis using a simple bimolecular interaction model. (right) R eq  val-

ues for chemokine binding to heparin with corresponding nonlinear fi ts to obtain K D  for each interaction ( Table V ). Equilibrium (R eq ) binding for CCL2 and 

CXCL10 was described well by a simple 1:1 interaction model; however, XCL1 displayed cooperative binding behavior and, thus, a more complex model 

was used (Supplemental materials and methods). (B) Competition titration curves with corresponding fi ts for coinjected M3 inhibition of XCL1, CCL2, and 

CXCL10 binding to immobilized heparin ( Table V ). (C) FACS analysis of chemokine binding to CHO-K1 (wild-type) and CHO-745 (GAG-defi cient) cell lines. 

Staining of CHO-745 cells is shown in violet for XCL1, CCL2, CXCL10, and VEGF control, with staining in the absence (green) and presence (magenta) of 

M3 superimposed.   
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ruption of CCL2 and XCL1 interactions with GAGs despite 
the fact that M3 does not make contact with all of the surface 
epitopes identifi ed for these chemokines. 

 Because most chemokines harbor a basic cluster located 
in roughly the same position as CCL2 and XCL1, the co-
incidence of GAG-binding residues with M3 NTD contacts 
may in fact be a more general phenomenon. In this study, 
we have shown that M3 capably disrupts the interaction of 
CXCL10 with GAGs, and that three out of four residues im-
plicated in GAG binding ( 45 ) are located in the 3 10 -helix and 
40s loop, forming a basic cluster that maps to approximately 
the same location as where CCL2 and XCL1 basic residues are 
contacted by the M3 NTD ( Fig. 5 C ). Computational dock-
ing studies indicate that M3 could readily contact CXCL10 
R22, K46, and K47 but would unlikely contact K26 located 
on the  � 1 strand. Nevertheless, as for CCL2 and XCL1, we 
suggest that partial engagement of the basic cluster is suffi  cient 
for complete blockade. Functional and structural mapping of 
GAG binding to another MHV68 up-regulated chemokine, 
CCL5, provides further support for the notion of M3 GAG-
binding mimicry ( Fig. 5 D ). The M3-contacted residues K49 
of CCL2 and R43 of XCL1 are located in the same 40s loop 
region as the BBXB motif residues of CCL5 ( 46 ). Further-
more, the crystal structure of a CCL5 – heparin disaccharide 
complex reveals that the 40s loop BBXB residues directly 
contact sulfate and carboxylate moieties of the carbohydrate 
( 47 ). Analogously, the 40s loop basic residues of XCL1 and 
CCL2 interact with carbonyl and carboxylate moieties from 
the M3 s2b-s3 loop. Thus, M3 acts as a functional GAG 
mimic for chemokines, using similar chemical means (absent 
sulfation) to competitively disrupt chemotactic gradient for-
mation, thereby preventing infl ammation at sites of MHV68 
infection ( Fig. 5 E ). 

 Collaborative nature of the two-domain M3 

binding interface 

 In this paper, we have demonstrated that M3 can stoichio-
metrically block GAG interactions for three chemokines with 
similar albeit not identically located basic clusters that appar-
ently facilitate distinct modes of heparin binding, as revealed 
by our SPR analysis. The M3 – XCL1 and M3 – CCL2 struc-
tures reveal how M3 is able to block such diverse interactions 
by interfacial reconfi guration that optimally engages the unique 
GAG-binding residues of each chemokine. Notably, M3 is 
not eff ective against other GAG-binding proteins, including 
VEGF and soluble FGFR. This is most likely a result of dual 
chemokine recognition by the two-domain M3 interface 
( Fig. 5 F ), which eff ectively ensures that GAG blockade is 
chemokine specifi c. 

 M3 is the only decoy receptor known to recognize chemo-
kines with a two-domain interface and, accordingly, displays 
the broadest chemokine-binding profi le, engaging members 
of all four classes with high affi  nity ( 10 ). Thus, an important 
advantage of two-domain recognition may be promiscuous 
binding. We argue in this paper that GPCR and GAG mim-
icry can be primarily attributed to functions of the M3 CTD 

M3 NTD and play an important role in chemokine seques-
tration by this decoy receptor. The structures presented in 
this study reveal that electrostatic complementarity is a prom-
inent feature of the M3 binding interface, with the acidic 
M3 NTD adapting to engage the divergent chemokine basic 
cluster in each case. The importance of electrostatics in 
M3 – chemokine interactions is highlighted by our kinetic and 
mutational analyses showing that M3 rapidly associates with 
chemokines, with an on rate that is remarkably enhanced by 
electrostatic interactions with the acidic M3 NTD. Electro-
static complementarity may in fact be a common mechanistic 
strategy among pathogen-encoded chemokine decoy recep-
tors. For example, the poxvirus viral chemokine-binding 
proteins have pI ’ s nearly as acidic as M3, and chemokine ba-
sic cluster residues play an important role in binding ( 14, 15 ). 
Similarly, when M3 is compared with some of the fastest 
electrostatically enhanced interactions found in biology, it is 
evident that all of these systems share the common goal of 
rapid inhibition. Other proteins have evolved fast association 
kinetics to necessarily achieve instant blockade of harmful 
enzymatic processes or neutralization of toxic intermediates 
( 32, 34 ). In the case of M3, rapid chemokine sequestration 
may be necessary to prevent the establishment and spread of 
gradients early during infection. M3 is abundantly secreted 
by virally infected cells but is still overshadowed by the high 
level of GAG expression in the extracellular matrix. The 
concentrated negative potential of the M3 NTD may there-
fore be required to serve as an electrostatic beacon, attracting 
chemokines over long range, increasing their rate of associa-
tion, and allowing M3 to compete with GAGs that are in vast 
excess. Thus, by rapidly sequestering chemokines before gra-
dients are established, M3 could mitigate the ensuing conse-
quences of chemokine signaling that are essentially toxic to 
the virus. 

 GAG mimicry by the M3 NTD 

 The SPR competition and CHO cell-surface assays reported 
in this paper demonstrate that M3 blocks GAG interactions 
for the chemokines CCL2, XCL1, and CXCL10. We have 
shown that electrostatic interactions between the divergent 
basic cluster found on chemokines and the acidic M3 NTD 
facilitate this blockade. GAGs are fl exible linear polysacchar-
ides heterogeneously decorated with acidic sulfate and car-
boxylate groups that engage chemokine basic clusters in a 
highly diverse manner ( 4 ). A comparison of available muta-
tional data for CCL2 ( 35, 44 ) and XCL1 ( 38 ) with our com-
plex structures reveals that the majority of residues implicated 
in GAG binding are also engaged by M3 ( Fig. 5, A and B ).  
Specifi cally, the M3 NTD directly contacts four out of six 
residues identifi ed by mutational analysis of CCL2, and two 
out of four residues of XCL1, with a prominent role played 
by E80 and E81 in the M3 s2b-s3 loop. The contacted che-
mokine residues are located in the N-loop, 3 10 -helix, and 40s 
loop, whereas the noncontacted residues are located in the 
 � 1 strand and C-terminal helix. Importantly, we note that 
our SPR and cell-surface binding assays demonstrate the dis-
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  Figure 5.     Dual GPCR and GAG inhibition by M3.  (A) Surface representation of CCL2 is shown, with previously identifi ed GAG-binding residues la-

beled (references  35, 44 ). Four out of the six residues defi ned by mutational analysis as creating the GAG-binding epitope of CCL2 are directly contacted 

by M3 and are colored blue (Arg 18 , Lys 19 , Arg 24 , and Lys 49 ), whereas the noncontacted residues are colored gray (Lys 58  and His 66 ). The M3 NTD s2b-s3 loop 

is displayed in cyan, with acidic contact residues E 80  and E 81  shown in stick form. (B) M3 contacts two out of the four previously identifi ed GAG-binding 

residues of XCL1 (R23 and R43, blue; K25 and R70, gray; reference  38 ). (C) The structure of human CXCL10 (reference  70 ) is shown, with the four con-

served GAG-binding residues identifi ed by mutational analysis in mouse IP-10 highlighted in blue (R22, K26, K46, and K47; reference  45 ). (D) The structure 

of CCL5 is shown, with GAG-binding residues established by structural and mutational analysis highlighted in blue (R44, K45, and R47; references  46, 47 ). 

(E) Proposed model for the disruption of chemokine gradients by M3 during MHV68 infection. (F) Schematic of M3 NTD-mediated disruption of chemo-

kine interactions with cell-surface GAGs (green) and CTD-mediated disruption of chemokine interactions with GPCRs (violet). The electrostatic potential 

is indicated by red (+) and blue ( � ) on chemokines and GAGs, respectively.   
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(M64I) and CXCL10 were cloned into a customized pET28 vector with a 

thrombin-cleavable C-terminal tag designed for site-specifi c biotinylation 

(courtesy of M. Miley, Washington University, St. Louis, MO). Proteins were 

expressed in  E. coli  as inclusion bodies, were refolded under oxidizing condi-

tions, and were purifi ed by ion exchange. The C-terminal tag was removed 

from CCL2 and CXCL10 before SPR analysis. 

 x-ray crystallography.   M3 – CCL2 crystallized in the space group P3 1 21 

(a = b = 99.23, c = 243.5), and M3 – XCL1 crystallized in the space group 

I2 1 2 1 2 1  (a = 85.44, b = 104.18, c = 290.85). Crystallographic data were col-

lected in the beamline 19-ID at the Advanced Photon Source. Diff raction 

intensities were integrated and scaled using the HKL2000 program suite, as 

previously described ( 54 ). The phase problem was solved by molecular re-

placement in AMoRe, as previously described ( 55 ), using M3 – CCL2 (P8A) 

(available from the Protein Data Bank under accession no.  1ML0 ) as a search 

model. For M3 – XCL1, prime-and-switch phasing was used to reduce model-

phase bias in the initial maps with RESOLVE, as previously described ( 56 ). 

Model building was undertaken with O, as previously described ( 57 ), and 

refi nement against 2.6- Å  resolution data was performed using the Crystallo-

graphy and Nuclear Magnetic Resonance System (CNS), as previously 

described ( 58 ), with a fi nal R-value of 22% and a free R-value of 27.3% (5% 

test set). The atomic model consists of a 2:2 complex related by noncrystal-

lographic symmetry (NCS), including residues 12 – 382 of M3 (chains A and B) 

and residues 7 – 67 and 7 – 72 of XCL1 (chains D and E, respectively). The 

fi rst 11 residues of M3 were not located, nor were the fi rst 6 and last 26 for 

XCL1 D, and the fi rst 6 and last 21 for XCL1 E. For the M3 – CCL2 com-

plex, refi nement was performed to a resolution of 2.3  Å , with a fi nal R-value 

of 23.2% and a free R-value of 29.9% (5% test set). The atomic model con-

sists of three M3 molecules (residues 12 – 382) and three CCL2 molecules 

(residues 8 – 71), representing one 2:2 complex (NCS) and a half complex 

completed by the crystallographic twofold symmetry axis (CS). 

 Structure analysis.   Structure analysis was performed for the 2:2 M3 – XCL1 

complex and for the NCS and CS complexes of M3 – CCL2. LSQKAB ( 59 ) 

was used to calculate RMSD between M3 C  α   atoms of AB (NCS) and 

X (CS) of M3 – CCL2 and M3 – CCL2 (P8A). RMSD between M3 (all atoms) 

in complex with XCL1 and CCL2 was calculated using CNS, as previously 

described ( 58 ). For RMSD on a per-residue basis, values were calculated for 

the two (XCL1) and three (CCL2) interfaces and subsequently averaged. 

SC, as previously described ( 60 ), was used to calculate the shape comple-

mentarity for each binding interface. NACCESS, as previously described ( 61 ), 

was used to analyze the BSA. HBPLUS, as previously described ( 62 ), was 

used to enumerate atomic contacts ( ≤ 4  Å ) and H-bonds. 

 Electrostatic analysis.   The  ln(k a  ) was plotted versus 1/1 +  �  a  over the 

range of salt concentrations studied to yield an estimate for the M3 – XCL1 

 k a  
app   at 150 mM NaCl of  � 10 8  M  � 1 s  � 1  (Supplemental materials and methods). 

In addition, to test the role of protein – ion binding in M3 – XCL1 interactions, 

measurements were conducted under the same ionic strength using either 

NaCl or MgCl 2  (Fig. S1 and Table S1, available at http://www.jem.org/

cgi/content/full/jem.20071677/DC1). The program APBS was used to cal-

culate potential maps and electrostatic interaction energies ( � G elec ) for the 

M3 – XCL1 interaction (Supplemental materials and methods). 

 SPR experiments.   SPR experiments were conducted using a biosensor 

(Biacore 2000; GE Healthcare). All experiments were conducted at 25 ° C 

under conditions of 20 mM Hepes (pH 7.4), 150 mM NaCl, and 0.005% 

Triton X-100, unless otherwise indicated. A detailed description of all SPR 

experiments is provided in Supplemental materials and methods. 

 For M3 – chemokine interaction analysis, M3 variants were immobilized 

on a Biacore CM5 sensor chip in 10 mM sodium acetate, pH 4.1, using standard 

amine coupling. To measure M3 – XCL1 binding kinetics as a function of NaCl, 

M3 was immobilized on the sensor chip and 80  	 l/min XCL1 was injected. 

Data were collected over the range from 200 mM to 1.5 M NaCl. To mea-

sure M3 BBXB  binding to XCL1, the mutant was immobilized and 40  	 l/min 

and NTD, respectively ( Fig. 5 F ). This parsing of roles allows 
M3 to recognize conserved chemokine structural elements 
through the CTD and, at the same time, imparts structural 
plasticity to the interface for adaptation of the NTD to diver-
gent chemokine features. With collaboration between the 
two domains of the interface, it is possible for each to make a 
unique contribution to the overall affi  nity of M3 – chemokine 
interactions. Our mutational analysis supports the notion that 
the NTD contributes long-range electrostatic interactions 
to rapidly steer chemokines into the binding niche, where 
short-range hydrophobic and H-bond interactions subsequently 
form with the CTD, ultimately resulting in a long-lived com-
plex. Indeed, the M3 BBXB  variant exhibits a dramatically at-
tenuated ability to recruit XCL1 compared with wild-type 
M3 (100-fold on-rate reduction) but is capable of stable 
 sequestration with equivalent complex half-lives. It will be 
of great interest in the future to assess whether short-range 
interactions contributed by the CTD play a role in determin-
ing the half-life for specifi c M3 – chemokine complexes. In 
the context of the extracellular milieu, where these compo-
nents are not likely to be in equilibrium, complex stability 
may in fact dictate whether a given chemokine will be eff ec-
tively targeted by M3. 

 Chemokines play a critical role in leukocyte recruitment, 
and therefore, antagonism of the chemokine system repre-
sents a promising antiinfl ammatory strategy relevant not only 
to viruses but also to medical therapeutics. The high degree 
of redundancy among individual ligands and receptors has 
classically presented an inherent diffi  culty in targeting the che-
mokine network. The M3 decoy receptor is an ideal agent in 
this regard, because it exhibits the most broad-spectrum inhibi-
tion of any known chemokine decoy receptor and is further 
capable of blocking both GPCR and GAG interactions. Not 
surprisingly, M3 has shown promise as an antiinfl ammatory 
therapeutic in several models, including tumor rejection ( 48 ), 
vascular injury ( 49 ), aortic allograft rejection ( 50 ), and CCL21-
induced lymphocytic infi ltration of pancreatic islets ( 51 ). 
More recent experiments have shown that islet-specifi c M3 
expression can also prevent infl ammatory recruitment, islet 
destruction, and subsequent diabetes in mouse insulitis mod-
els ( 52 ). This study describes in precise detail the structural 
basis for chemokine inhibition by the M3 viral decoy recep-
tor, revealing the importance of dual mimicry of both GPCRs 
and GAGs in the establishment of broad-spectrum antiinfl am-
matory activity. 

 MATERIALS AND METHODS 
 DNA constructs, protein expression, and purifi cation.   Full-length, 

untagged M3 protein was expressed in baculovirus-infected insect cells (SF9) 

and purifi ed as previously described ( 27 ). The M3 BBXB  ( 80 EELGQ/SRRGR 84 ) 

variant was created by quick-change site-directed mutagenesis (courtesy of 

V. van Berkel, Washington University, St. Louis, MO), expressed using 

 baculovirus, and elutes from size-exclusion chromatography with the same 

(dimeric) profi le as wild-type M3. Full-length synthetic human XCL1 (residues 

1 – 92) and  Escherichia coli  – produced human CCL2 (M64I) used in crystalliza-

tion (courtesy of T. Handel, University of California, San Diego, La Jolla, 

CA) were made as previously described ( 30, 53 ). For cell staining, CCL2 
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 Online supplemental material.   Supplemental materials and methods 

includes a detailed description of SPR experiments, with derivation of the 

equations used in binding analysis, and a detailed analysis and discussion 

of M3 – XCL1 electrostatic interactions. Fig. S1 depicts isoelectric focus-

ing experiments for M3 variants and M3 – chemokine complexes, results of 

a computational analysis of M3 – XCL1 interactions, and a comparison of 

salt-dependent binding kinetics for M3 – XCL1 conducted in the presence 

of NaCl versus MgCl 2 . Table S1 provides data from the analysis of ionic 

strength eff ects on M3 – XCL1 binding. Online supplemental material is available 

at http://www.jem.org/cgi/content/full/jem.20071677/DC1. 
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XCL1 was injected, and for wild-type M3 binding by competition, XCL1 

was preequilibrated with M3 and injected over the M3 BBXB  chip in the 

same manner. 

 To measure chemokine binding to heparin and M3 competition, heparin 

sensor chips were prepared by neutravidin capture of biotinylated heparin. 

Neutravidin (Thermo Fisher Scientifi c) was coupled to a CM5 chip in 10 mM 

sodium citrate, pH 4.5, using standard amine chemistry. 15-kD heparin-

biotin was injected at 5 mg/ml in Hepes running buff er with 300 mM NaCl 

and bound to a level of  � 150 – 300 RU. For heparin binding, chemokines 

were injected at 20  	 l/min CCL2, and 80  	 l/min XCL1 and CXCL10, 

and for M3 competition assays, chemokines were preequilibrated with M3 

and injected over the heparin chip in the same manner. The resulting esti-

mates for XCL1 and CXCL10 affi  nity by this assay are greater than CCL2, 

which is unexpected, because CCL2 is predicted to be much higher affi  nity. 

A likely explanation is that the K I  for CCL2 is beyond the limits of detection 

of the competition assay when conducted in the micromolar range (CCL2), 

and therefore, the K I  represents a lower limit for the true dissociation con-

stant in this case. 

 SPR competition assay.   It was of interest to develop an SPR competi-

tion assay based on an analysis of R eq  values, which are not subject to the 

same caveats as SPR-derived kinetic constants ( 63 ), which have been used 

in previously described assays ( 64 ). The competition assay was derived in 

a similar manner as reported for a fl uorescence-based assay (Supplemental 

materials and methods) ( 65 ). Competition titration curves were analyzed 

using the following equations, assuming a 1:1 interaction for both the 

receptor on the chip and the solution competitor, with A = total analyte, 

M = receptor on chip, M∗=competitor in solution, and affi  nities for the 

chip-bound receptor and the solution-phase competitor denoted as K M  and 

K M∗ , respectively: 
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 Competition titration curves were fi t to eqs. 1 and 2 (referred to as 

eqs. 1 and 6 in Supplemental materials and methods) using the program 

Scientist (Micromath) to yield K I  (1/K M∗ ) for M3 binding to chemokines 

in competition with the chip-bound receptor. The assay was conducted 

in the same manner for the M3 BBXB  or heparin competition assays, where 

M denotes M3 BBXB  or heparin on the chip and M∗ is M3 (competitor) 

in solution. 

 Flow cytometry.   XCL1 and VEGF (PeproTech) were nonspecifi cally bio-

tinylated with Sulfo-NHS-LC-Biotin (Thermo Fisher Scientifi c), and CCL2 

and CXCL10 were site-specifi cally biotinylated using BirA ligase (courtesy of 

M. Fremont, Washington University, St. Louis, MO) according to standard 

protocol (Avidity). Streptavidin-PE was purchased from BD Biosciences. 

CHO-K1 and -745 cell lines were a gift from L. Zhang (Washington Uni-

versity, St. Louis, MO) and cultured as previously described ( 66 ). To analyze 

chemokine binding to GAGs on CHO cells, 5  ×  10 5  cells were stained with 

1 – 2  	 g of each chemokine in 200  μ l PBS with 10% FBS. After washing, the 

cells were stained with 1  	 g streptavidin-PE. Flow cytometry was conducted 

on a fl ow cytometer (FACScan; BD Biosciences). For competition experi-

ments, the cells were incubated with chemokines in the presence of equal 

molar amounts of M3. 

 Coordinates.   The coordinates of M3 – CCL2 and M3 – XCL1 are available from 

the Protein Data Bank under accession nos.  2NZ1  and  2NYZ , respectively. 
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