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BRIEF DEFINITIVE REPORT

    Thrombosis and hemostasis depend on platelet 
function. Upon disruption of vascular integrity, 
platelets adhere to sites of injury and aggregate, 
thereby preventing excessive bleeding ( 1 ). 
Stable platelet adhesion to the injured blood 
vessel and subsequent aggregation in turn de-
pend on integrin adhesion receptors. This point 
is well illustrated in patients with genetic defects 
in integrin subunits  � IIb or  � 3 that cause the 
bleeding disorder Glanzmann thrombasthenia due 
primarily to defective platelet aggregation or in 
animals lacking all ( � 2 � 1,  � 5 � 1, and  � 6 � 1) ( 2 ) 
or certain ( � 2 � 1) ( 3 ) platelet  � 1 integrins that 
manifest milder bleeding defects due to reduced 
platelet adhesion to vascular surfaces ( 3, 4 ). 

 The ability of platelets to increase integrin af-
fi nity (operationally defi ned as integrin activation) 
is critical for normal platelet function. Circulating 
platelets are usually in a resting state. Upon 
stimulation through agonist receptors, such as 

those for ADP, collagen, or thrombin, signaling 
events within the platelet lead to complex bio-
logical eff ects including activation of  � 1 and  � 3 
integrins ( 5 ). Activated  � IIb � 3 then binds plasma 
proteins such as fi brinogen, leading to platelet 
aggregation, whereas activation of  � 1 integrins 
leads to adhesion of platelets to vessel wall com-
ponents such as collagen ( 1, 5 ). The molecular 
events that link agonist receptors to integrin 
activation are incompletely understood; however, 
experiments in cultured cells have indicated that 
this signaling results in increased association of 
the cytoplasmic protein talin with the integrin  �  
subunit cytoplasmic domain, inducing an increase 
in integrin affi  nity via a long-range allosteric 
change in the integrin ’ s conformation ( 6 ). The 
requirement of talin for integrin activation has 
been examined in vitro; however, its role in vivo 
remains to be determined. 

 Talin is a 270-kD protein composed of a 
50-kD head domain and a 220-kD rod domain. 
It was identifi ed in platelets where it comprises 
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 Integrins are critical for hemostasis and thrombosis because they mediate both platelet 

adhesion and aggregation. Talin is an integrin-binding cytoplasmic adaptor that is a central 

organizer of focal adhesions, and loss of talin phenocopies integrin deletion in  Drosophila . 

Here, we have examined the role of talin in mammalian integrin function in vivo by selec-

tively disrupting the  talin1  gene in mouse platelet precursor megakaryocytes. Talin null 

megakaryocytes produced circulating platelets that exhibited normal morphology yet 

manifested profoundly impaired hemostatic function. Specifi cally, platelet-specifi c deletion 

of talin1 led to spontaneous hemorrhage and pathological bleeding. Ex vivo and in vitro 

studies revealed that loss of talin1 resulted in dramatically impaired integrin  � IIb � 3-

mediated platelet aggregation and  � 1 integrin – mediated platelet adhesion. Furthermore, 

loss of talin1 strongly inhibited the activation of platelet  � 1 and  � 3 integrins in response 

to platelet agonists. These data establish that platelet talin plays a crucial role in hemosta-

sis and provide the fi rst proof that talin is required for the activation and function of 

mammalian  � 2 � 1 and  � IIb � 3 integrins in vivo. 
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embryonic days 8.5 and 9.5 due to defects in cell migration 
before and during gastrulation ( 14 ). Thus, based on studies in 
vitro and in invertebrates, talin is essential for the function of 
certain integrins and for integrin activation. To examine the 
role of talin in integrin function in vivo ,  we selectively de-
leted talin1 in platelets and megakaryocytes in mice and found 
that platelet talin1 is essential for hemostasis because it is re-
quired for the function and activation of platelet  � 2 � 1 and 
 � IIb � 3 integrins. 

  RESULTS AND DISCUSSION  

 Platelet-specifi c deletion of talin1 

 Global genetic deletion of talin1 in mice is lethal by embryonic 
day 9 ( 14 ). To circumvent this early embryonic lethality, we 
deleted talin1 specifi cally in platelet precursor megakaryocytes 

3 – 8% of total platelet protein ( 7 ). The head domain contains 
binding sites for  � 1A,  � 1D,  � 2,  � 3,  � 5, and  � 7 ( 8 ) integrin 
subunits and for another membrane protein, layilin ( 9 ). The 
rod domain contains binding sites for vinculin and F-actin. 
Thus, talin serves as a critical link between integrins and the 
actin cytoskeleton ( 10 ). Furthermore, in invertebrates, talin is 
necessary for formation of the integrin-associated cytoplas-
mic protein complex that includes proteins such as paxillin, 
vinculin, integrin-linked kinase, PINCH, and parvin ( 11 ). 
Lack of talin phenocopies lack of integrins in  Drosophila , 
probably due to disrupted linkage to the actin cytoskeleton 
( 11, 12 ). There are two mammalian talin isoforms encoded by 
distinct genes: talin1 is expressed ubiquitously, and talin2 is 
highly expressed in brain and striated muscle ( 13 ). In mice, global 
deletion of talin1 results in embryonic lethality between 

  Figure 1.     Deletion of talin1 in platelets and megakaryocytes.  (A) Scheme of the targeting strategy. Homologous recombination of the  Tln1  conditional 

targeting vector into the  Tln1  gene of embryonic stem cells introduced a loxP site (triangle) downstream of exon 4 and a fl oxed Neo cassette upstream of exon 

1 to generate the targeted Neo allele (fl N). Partial Cre-mediated recombination in vivo was used to delete only the fl oxed Neo cassette leaving fl oxed exons 1 – 4 

(conditional allele, fl ). In cells expressing both the  Tln1  conditional allele and PF4-Cre, Cre recombinase – mediated recombination will result in deletion of cod-

ing exons 1 – 4, generating the  Tln1 -deleted allele (2). E, EcoRI; probe, external probe for Southern analysis. Primers used for genotyping mice are indicated. 

(B) Demonstration of homologous recombination in embryonic stem cells by Southern blotting. Genomic DNA from embryonic stem clones was digested with 

EcoRI and probed with an external probe shown in A. The wild-type allele gives rise to a 13.8-kb band (wt/wt), whereas the targeted allele gives rise to a 7.6-kb 

band due to introduction of an internal EcoRI site (fl N/wt). (C) PCR genotyping of mice possessing the conditional allele. Genomic DNA isolated from ear bi-

opsies of  Tln1  fl /fl  ,  Tln1  fl /+ , and  Tln1  fl /+  mice was analyzed by PCR using the primer pair shown in A. (D) Coomassie blue – stained SDS-PAGE gel of platelet lysates 

from  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre 2  mice shows reduction of talin expression in  Tln1  fl /fl   Cre +  samples, whereas other protein bands are expressed at similar levels. 

(E) Immunostaining of freshly isolated bone marrow samples showing reduced talin expression in CD41 +  megakaryocytes from  Tln1  fl /fl   Cre +  mice. Bar, 20 mm.   
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hemorrhage, most often localized to the abdominal cavity, 
was observed in 8% of 1 – 2-d-old  Tln1  fl /fl   Cre +  mice ( Fig. 2 B ). 
By 3 wk of age, 45% fewer  Tln1  fl /fl   Cre +  than  Tln1  fl /fl   Cre  �   
mice were alive. In addition, 12 out of 76  Tln1  fl /fl   Cre +  mice 
were found dead between 3 and 9 wk of age compared with 
3 out of 139  Tln1  fl /fl   Cre  �   mice ( Fig. 2 B ).  Tln1  fl /fl   Cre +  mice 
that survived to 8 wk of age had a 95% incidence of gastroin-
testinal bleeding compared with 7% of  Tln1  fl /fl   Cre  �   litter-
mates as judged by an assay for fecal blood ( Fig. 2 C ). 
Gastrointestinal bleeding in  Tln1  fl /fl   Cre +  mice was associated 
with profound anemia as manifested by signifi cantly reduced 

by crossing mice harboring a fl oxed talin1 allele ( Tln1 ) ( Fig. 
1 A ) with platelet factor 4 – Cre (PF4-Cre) mice that express Cre 
recombinase selectively in platelets and megakaryocytes ( 15 ).  
Mice homozygous for the fl oxed  Tln1  allele and positive for 
the PF4-Cre transgene ( Tln1  fl /fl   Cre + ) had slightly reduced 
platelet counts compared with  Tln1  fl/fl  Cre  �   littermates 
(Table S1, available at http://www.jem.org/cgi/content/full/
jem.20071800/DC1) that were still in the normal range ( 16 ). 
SDS-PAGE analysis of platelet lysates revealed a selective loss 
in the band corresponding to talin in  Tln1  fl /fl   Cre +  platelets 
( Fig. 1 D ). In addition, loss of talin was observed by immuno-
fl uorescence in CD41 +  megakaryocytes from the bone mar-
row of  Tln1  fl /fl   Cre +  mice ( Fig. 1 E ). Deletion of talin in  Tln1  fl /fl   
Cre +  mice was only detectable in platelets and megakaryocytes 
as CD41  �   bone marrow cells from  Tln1  fl /fl   Cre +  mice showed 
similar low levels of talin immunofl uorescence as that from 
 Tln1  fl /fl   Cre  �   mice (not depicted), consistent with PF4-Cre –
 mediated recombination being selective for the megakaryocytic 
lineage as reported previously ( 15 ). 

 These results show that terminal megakaryocyte develop-
ment and platelet formation do not require talin. Large mega-
karyocytes from  Tln1  fl /fl   Cre +  mice were devoid of talin as 
judged by staining of bone marrow cells with the 8d4 mono-
clonal antibody. Importantly, we targeted the  talin1  allele and not 
 talin2 , an isoform that is very similar to talin1 ( 13 ). Nevertheless, 
hematopoietic cells express little talin2 ( 13 ). Furthermore, the 
8d4 antibody reacts with both talin isoforms, and thus the ab-
sence of 8d4 staining of megakaryocytes from  Tln1  fl /fl   Cre +  
mice confi rms the elimination of talin expression in mature 
megakaryocytes. Previous work establishes that the PF4-cre 
mice we used express Cre specifi cally in megakaryocytes, in-
cluding large megakaryocytes ( 15 ), and we observed that talin 
was still present in other cells of the hematopoietic lineage in 
the  Tln1  fl /fl   Cre +  mice. In spite of elimination of most of the 
talin, we observed abundant megakaryocytes in the bone mar-
row of the platelet talin1 – defi cient mice. Talin-defi cient platelets 
were present at normal abundance, indicating that talin is not 
required for the formation of platelets from megakaryocytes. 
It is noteworthy that there was a slight reduction in platelet 
count in  Tln1  fl /fl   Cre +  mice relative to  Tln1  fl /fl   Cre  �   littermates. 
This reduction was not due to the presence of the PF4-Cre 
transgene in the absence of the fl oxed  Tln1  allele because 
 Tln1  fl /+  Cre +  mice had platelet counts similar to that of  Tln1  fl /fl   
Cre  �   mice (755  ±  24 vs. 777  ±  74,  ×  10 9  platelets/ml  ±  SEM, 
 Tln1  fl /fl   Cre  �   vs.  Tln1  fl /+  Cre + ). Hence, it will be of interest in 
future work to examine the response of these animals to chal-
lenges to megakaryocytopoiesis. 

 Bleeding diathesis in platelet talin – defi cient mice 

 Despite normal platelet counts in adult  Tln1  fl /fl   Cre +  mice 
(Table S1), these mice showed dramatically impaired hemo-
stasis. In a tail bleeding assay,  Tln1  fl /fl   Cre +  mice bled contin-
uously for the 10-min duration of the assay, whereas  Tln1  fl /fl   
Cre  �   mice stopped bleeding an average of 4.6 min after tail 
resection ( Fig. 2 A ).  Platelet talin defi ciency was also associ-
ated with spontaneous bleeding. Lethal spontaneous internal 

  Figure 2.     Reduced survival and perinatal hemorrhage in  Tln1  fl /fl   

Cre +  mice.  (A)  Tln1  fl /fl   Cre +  mice have prolonged bleeding times in a tail 

bleeding assay. Time to cessation of bleeding after tail resection was re-

corded for up to 10 min, at which time bleeding was stopped by cauter-

ization. (B) Example of 1-d-old  Tln1  fl /fl   Cre +  pup found dead with visible 

internal hemorrhage (arrows). Table showing reduced survival of  Tln1  fl /fl   

Cre +  mice. The number of animals obtained from  Tln1  fl /fl   Cre 2   ×   Tln1  fl /fl   

Cre +  breeding at 3 wk of age is shown. (C) Incidence of fecal blood in 

 Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre 2  mice at 8 – 10 wk of age was determined by a 

guaiac-based hemoccult assay. (D) Peripheral red blood cell counts from 

10-wk-old  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre 2  littermates.   
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the common carotid artery. Complete occlusion of the carotid 
arteries of  Tln1  fl /fl   Cre  �   mice occurred 7.0  ±  0.9 min after 
injury, whereas none of the  Tln1  fl /fl   Cre +  mice tested showed 
reduced fl ow during the 20-min assay ( Fig. 3 ).  Histological 
examination of the carotid arteries of these animals after the 
thrombosis experiment indicated a similar extent of ferric 
chloride – induced vessel injury in  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre  �   
mice (Fig. S2, available at http://www.jem.org/cgi/content/
full/jem.20071800/DC1). Collectively, our results show that 
deletion of talin1 in platelets leads to markedly impaired 
hemostasis and thrombus formation in vivo. 

  � 2 � 1 integrin – mediated adhesion of platelets to exposed 
subendothelial collagen after vascular trauma is thought to be 
a key step in hemostasis. To examine the ability of  Tln1  fl /fl   Cre +  
platelets to adhere to collagen under physiological conditions, 
we measured platelet adhesion and thrombus formation to 

red blood cell counts and hemoglobin concentration ( Fig. 2 D  
and Table S1). 

 The hemostatic defects observed in  Tln1  fl /fl   Cre +  mice are 
at least as severe as those observed in  � 3 integrin null mice 
( 17 ). In our hands, 22.9% fewer  � 3  � / �   than  � 3 +/+  off spring 
from  � 3 +/ �   by  � 3 +/ �   matings survived to 3 wk of age, a 
smaller reduction in survival compared with  Tln1  fl /fl   Cre +  
mice (45% fewer  Tln1  fl /fl   Cre +  than  Tln1  fl /fl   Cre  �  ). However, 
because the  Tln1  fl /fl   and  � 3 null mice were both on mixed 
genetic backgrounds (C57BL/6-Sv129), it is not possible to 
make defi nitive statements regarding the relative hemostatic 
impairment in these mice. 

 Platelet talin is required for thrombus formation 

 Thrombus formation in mice with talin-defi cient platelets 
was examined in vivo by ferric chloride – induced injury of 

  Figure 3.     Impaired thrombus formation in  Tln1  fl /fl   Cre +  mice in vivo and ex vivo.  (A) Time to occlusion of the carotid artery was determined with a 

Doppler fl ow probe after a 3-min application of 10% ferric chloride. The experiment was stopped 20 min after injury in all animals. (B) Adhesion of  Tln1  fl /fl   

Cre + ,  Tln1  fl /fl   Cre 2 , and b3(L476A) platelets to collagen and subsequent thrombus formation in fl owing blood were analyzed by epifl uorescence and confo-

cal microscopy at a shear rate of 1,500 s 21 . Heparinized whole blood containing 10 mM mepacrine to render platelets fl uorescent was perfused over glass 

coated with fi brillar type I collagen for 2 min.  Tln1  fl /fl   Cre 2  platelets adhere to the collagen-coated surface and form thrombi (larger aggregates of bright 

fl uorescence). In contrast,  Tln1  fl /fl   Cre +  platelets form only transient contacts resulting in sparse coverage of platelets on the surface. b3(L746A) platelets 

form a monolayer that cover much of the surface but do not form thrombi, as seen by the lack of highly fl uorescent aggregates that form with  Tln1  fl /fl   

Cre 2  platelets. Images shown are single frames from a real-time recording (Video S1). Bar, 20 mm. (C) Percent of the collagen-coated surface covered with 

platelets was calculated as the number of fl uorescent pixels (due to adhesion of fl uorescently labeled platelets) divided by the total number of pixels (rep-

resenting the total surface). *, P  <  0.0005; NS, not signifi cant. (D) Quantifi cation of the volume of the thrombi formed on the collagen-coated surface 

after perfusion for 2 min with blood from  Tln1  fl /fl   Cre + ,  Tln1  fl /fl   Cre 2 , and b3(L746A) mice. Confocal serial Z-section reconstructions of the platelet thrombi 

were used to calculate the thrombi volume as described previously (reference  32 ). *, P  <  0.0005.   
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these data fi rmly establish talin as a critical regulator of  � IIb � 3 
integrin activation in vivo. 

 The impaired adhesion of  Tln1  fl /fl   Cre +  platelets to colla-
gen noted above suggests that  � 2 � 1 integrin activation may 
also be impaired in  Tln1  fl /fl   Cre +  platelets. To examine the 
activation of  � 1 integrins in  Tln1  fl /fl   Cre +  platelets, we mea-
sured the binding of the conformation-sensitive  � 1 integrin 
antibody 9EG7 to agonist-stimulated platelets.  Tln1  fl /fl   Cre  �   
platelets bound signifi cantly more 9EG7 upon stimulation. 
This response was largely ablated in platelets from  Tln1  fl /fl   
Cre +  mice ( Fig. 4 C ). These results show that talin expression 
is required for agonist-induced activation of both  � IIb � 3 and 
 � 2 � 1 integrins in platelets. In addition, these data suggest 
that impaired activation of  � 2 � 1 integrins contributes to the 
spontaneous bleeding observed in  Tln1  fl /fl   Cre +  mice. 

collagen in fl owing blood. Platelets from  Tln1  fl /fl   Cre  �   mice 
stably adhered to the collagen-coated surface and subse-
quently formed platelet-rich thrombi visible as highly fl uo-
rescent aggregates ( Fig. 3 B, middle ). In contrast,  Tln1  fl /fl   Cre +  
platelets formed only transient contacts with the collagen-
coated surface and did not form thrombi ( Fig. 3  and Video S1, 
which is available at http://www.jem.org/cgi/content/
full/jem.20071800/DC1). Interestingly, platelets from 
 � 3(L746A) mice, in which  � 3 integrin – talin interactions are 
selectively disrupted ( 18 ), formed stable adhesions to collagen 
indicated by the platelet monolayer shown in  Fig. 3 B  and 
quantifi ed in  Fig. 3 C . Nevertheless, the  � 3(L746A) plate-
lets failed to undergo the integrin  � IIb � 3 – mediated platelet –
 platelet interactions required for thrombus formation ( Fig. 3, 
B and D ). Thus, lack of platelet talin impairs  � 2 � 1 integrin –
 dependent adhesion to collagen in fl ow and integrin  � IIb � 3 –
 dependent platelet thrombus formation. 

 Platelet talin is required for integrin-mediated platelet 

adhesion to collagen and platelet aggregation 

 We examined platelet adhesion and aggregation in vitro to 
directly assess the eff ects of talin defi ciency on these integrin-
dependent processes. In static adhesion assays, the talin-defi -
cient platelets showed a marked defect in adhesion to soluble 
type I col lagen (Fig. S1 A, available at http://www.jem.org/
cgi/content/full/jem.20071800/DC1). Furthermore, like 
 � 3(L746A) platelets ( 18 ), talin-defi cient platelets manifested 
profoundly impaired aggregation in response to stimulation with 
ADP or PAR4 peptide (Fig. S1 B). Thus, the talin-defi cient 
platelets manifest virtual absence of platelet functions mediated 
by both  � 2 � 1 and  � IIb � 3 integrins, thus accounting for their 
profound hemostatic defect. 

 Talin is required for activation of platelet  � 2 � 1 

and  � IIb � 3 integrins 

 Agonist-induced increase in integrin  � IIb � 3 affi  nity (activa-
tion) is required for platelet aggregation ( 19 ). Indeed,  � 3(L746A) 
mice, in which  � IIb � 3 – talin interactions are disrupted, have 
impaired  � IIb � 3 integrin activation and platelet aggrega-
tion ( 18 ). To test the requirement of talin for the activation 
of  � IIb � 3, we measured binding of FITC-labeled fi brinogen 
to the surface of washed  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre  �   plate-
lets by fl ow cytometry. Stimulation of  Tln1  fl /fl   Cre  �   platelets 
with a combination of ADP/epinephrine (100  � M each) 
or PAR4 peptide (1 mM) led to an increase in the amount of 
bound fi brinogen. In contrast, the amount of agonist-induced 
fi brinogen binding was greatly reduced in  Tln1  fl /fl   Cre +  plate-
lets ( Fig. 4 A  and Fig. S3, which is available at http://www
.jem.org/cgi/content/full/jem.20071800/DC1).  In the pres-
ence of 0.5 mM MnCl2, however,  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   
Cre  �   platelets bound similar amounts of fi brinogen, indicat-
ing that the  � IIb � 3 present on  Tln1  fl /fl   Cre +  platelets is capa-
ble of binding fi brinogen if activated exogenously ( Fig. 4 B  and 
Fig. S3). Thus, with regards to  � IIb � 3 activation, platelet ta-
lin defi ciency phenocopies the  � 3(L746A) mutation in which 
the  � 3 integrin – talin interaction is disrupted. Collectively, 

  Figure 4.     Impaired agonist-induced activation of b3 and b1 inte-

grins in  Tln1  fl /fl   Cre +  platelets.  (A) The amount of FITC-labeled fi brinogen 

bound to platelets from  Tln1  fl /fl   Cre +  or  Tln1  fl /fl   Cre 2  mice was measured by 

fl ow cytometry and expressed as the amount of fi brinogen bound to 

platelets in each group relative to the amount of fi brinogen bound to 

platelets in the presence of 0.5 mM MnCl 2 . *, P  <  0.001. (B) Fibrinogen 

binding to  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre 2  platelets was similar in the pres-

ence of 0.5 mM MnCl 2 . (C) Activation of b1 integrin in  Tln1  fl /fl   Cre + ,  Tln1  fl /fl   

Cre 2 , and b3(L746A) platelets after stimulation with 1 mM PAR4, 100 mm 

ADP, and 100 mM epinephrine was measured by binding of the confor-

mation-sensitive antibody 9EG7 and expressed relative to total b1 integ-

rin surface expression measured by the conformation-insensitive antibody 

HMb1-1. *, P  <  0.05; **, P  <  0.0005.   
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cytometry, was not signifi cantly diff erent in  Tln1  fl /fl   Cre +  and 
 Tln1  fl /fl   Cre  �   platelets ( Fig. 5 C ). Of particular importance, 
the quantity of surface P-selectin was similar on both resting 
and stimulated  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre  �   platelets, con-
fi rming the presence of platelet  �  granules in the absence of 
talin. Furthermore, both platelet genotypes exhibited a similar 
fourfold increase in P-selectin surface expression in response 
to ADP/epinephrine/PAR4 peptide stimulation, confi rming 
that the mutant platelets were capable of responding to plate-
let agonists. Collectively, these data demonstrate that talin is 
dispensable for the formation of platelets that can respond to 
platelet agonists and manifest a normal complement of granule 

 Thus, the principle that talin is required for activation of 
 � 1 and  � 3 integrins, which was suggested by in vitro studies 
( 20 ), applies in vivo. Furthermore, the central role of talin in 
integrin function in invertebrates ( 11, 12, 21 ) extends to ver-
tebrates. A  � 3(L746A) mutation that selectively disrupts the 
ability of  � 3 integrin to bind talin leads to impaired agonist-
induced activation of platelet  � IIb � 3 ( 18 ). Together with the 
present fi nding of impaired agonist-induced activation of 
 � IIb � 3 in talin-defi cient platelets, these data show that talin 
binding to integrin  �  cytoplasmic domains is a fi nal common 
step in integrin activation in vivo, and that disruption of this 
interaction has a profound impact on integrin-dependent ad-
hesive functions in mammals. 

 Talin-defi cient platelets are nearly completely defi cient in 
hemostatic function. It is noteworthy that the pathological 
bleeding observed in  Tln1  fl /fl   Cre +  mice is absent in  � 3(L746A) 
mice despite having comparable impairments in  � IIb � 3 
activation and platelet aggregation ( 18 ). One obvious ex-
planation for this more severe phenotype in the platelet 
talin-defi cient animals is the impairment in the activation and 
function of platelet  � 1 integrins. Furthermore, in  Drosophila , 
talin deletion results in marked weakening of the connections 
of integrins with the actin cytoskeleton; hence, a defect in 
the connection of  � 1 and  � 3 integrins to the actin cytoskel-
eton may also contribute to the severe phenotype observed. 
Deletion of platelet  � 1 integrins or point mutations that would 
disrupt  � 1 – talin interactions can result in defects in platelet 
function and in hemostasis ( 4, 22 ). Given the hemostatic de-
fects that result from lack of platelet  � 3 or  � 1 integrins, and 
our fi nding that platelet integrin function is virtually com-
pletely dependent on talin, it is likely that the hemostatic de-
fect in  Tln1  fl /fl   Cre +  mice is ascribable largely to the lack of 
integrin function. 

 Morphology and surface receptor expression is normal 

in talin-defi cient platelets 

 To examine the eff ect of deleting talin on platelet structure, 
we examined  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre  �   platelet mor-
phology by electron microscopy. Platelet shape,  �  granules, 
mitochondria, open canalicular system, and microtubule coils 
appeared similar in  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre  �   platelets 
( Fig. 5 A ).   Tln1  fl /fl   Cre +  mice had slightly larger platelets than 
 Tln1  fl /fl   Cre  �   mice as judged by fl ow cytometry (forward 
scatter, 13.9  ±  0.2 vs. 15.3  ±  0.4 arbitrary units,  Tln1  fl /fl   Cre  �   
vs.  Tln1  fl /fl   Cre + , P  <  0.005) and by measurement of the area 
of at least 140 randomly selected electron microscopic plate-
let profi les (0.67  ±  0.03  � m 2  vs. 0.97  ±  0.4  � m 2 ,  Tln1  fl /fl   
Cre  �   vs.  Tln1  fl /fl   Cre +  , P  <  0.005). As noted above, the  Tln1  fl /fl   
Cre +  mice have active gastrointestinal bleeding, suggesting 
that the slightly increased platelet size could be due to an in-
creased proportion of circulating young platelets. In contrast 
to  � 3 integrin null platelets ( 17 ), talin-defi cient platelets had 
normal fi brinogen content, suggesting that talin-dependent 
activation of  � IIb � 3 in mature megakaryocytes is not required 
for fi brinogen uptake ( Fig. 5 B ). In addition, the surface ex-
pression of several adhesion receptors, as measured by fl ow 

  Figure 5.     Platelets from  Tln1  fl /fl   Cre +  mice are structurally normal 

and express normal levels of surface receptors.  (A) Electron micro-

graphs showing normal structural features of  Tln1  fl /fl   Cre +  platelets. Plate-

lets from  Tln1  fl /fl   Cre +  (top left) and  Tln1  fl /fl   Cre 2  (bottom left) mice both 

display a discoid shape characteristic of resting platelets and similar gran-

ular contents. Insets show microtubule coils in platelets from both  Tln1  fl /fl   

Cre +  and  Tln1  fl /fl   Cre 2  mice. Equatorial section of a  Tln1  fl /fl   Cre +  platelet (top 

right) shows circumferential microtubule coil (arrow heads). Bars, 1 mm. 

(B) Platelet fi brinogen content was determined by Coomassie blue staining 

of platelet lysates separated by SDS-PAGE. 5 mg of purifi ed human fi brinogen 

served as a marker for the prominent protein band corresponding to 

fi brinogen in the platelet lysate samples. Consistent with previous reports 

(reference  17 ), fi brinogen content is reduced in platelets from b3 integrin 

null mice. (C) Surface expression of integrin aIIb, a2, b1, b3, and P-selectin 

was measured by flow cytometry. For P-selectin expres sion, platelets 

were incubated with or without PAR4/ADP/epinephrine (1 mm/100 mM/

100 mM) for 5 min before the addition of an FITC-conjugated 

P-selectin antibody.   
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Thus, talin is necessary for the activation of  � 2 � 1 and  � IIb � 3 
integrins in vivo, and platelet talin is absolutely required for 
hemostasis because it is necessary for the adhesive functions 
of these integrins. 

 MATERIALS AND METHODS 
 Generation of mice.   Conditional talin1 knockout mice were generated by 

introducing loxP sites fl anking coding exons 1 – 4 of the  Tln1  gene by gene 

targeting. Targeting of the  Tln1  locus was confi rmed by Southern blot of 

EcoR1-digested genomic DNA hybridized with a 5 �  cDNA probe. Mice 

were genotyped by PCR using the following primers indicated in  Fig. 1 A : 

primer a: 5 � -aagcaggaacaaaagtaggtctcc-3 �  and primer b: 5 � -gcatcgtcttcacca-

cattcc-3 � . Mice homozygous for the  Tln1  fl oxed allele ( Tln1  fl /fl  ) on a mixed 

C57BL/6-Sv129 genetic background were crossed with PF4-Cre (Cre + ) 

mice on a C57BL/6 background ( 15 ). To obtain mice with talin1-defi cient 

platelets,  Tln1  fl /fl   Cre +  males were bred with  Tln1  fl /fl   Cre  �   females. In all 

experiments,  Tln1  fl /fl   Cre +  mice were compared with  Tln1  fl /fl   Cre  �   sex-

matched littermates. The generation of  � 3(L746A) mice has been recently 

described ( 18 ). Mice were housed in the University of California, San Diego, 

animal facility, and experiments were approved by the university ’ s Institu-

tional Animal Care and Use Committee. 

 SDS-PAGE.   For examination of platelet talin protein content, washed 

platelets were lysed by adding 1 vol of 2X modifi ed RIPA buff er (300 mM 

NaCl, 100 mM Tris, pH 7.4, 0.2% SDS, 2% Triton X-100, 2% sodium de-

oxycholate, 2 mM PMSF, 2 mM NaVO4, 2 mM NaF, 2 mM EDTA, and 

complete protease inhibitor; Roche), and samples were clarifi ed by centrifu-

gation at 13,000  g  for 10 min at 4 ° C. Laemmli buff er containing 10 mM 

DTT was added to 10  � g of protein lysates, and samples were boiled for 

5 min before being separated on 6% Tris-glycine gels (Invitrogen) and stained 

with Coomassie blue. For analysis of platelet fi brinogen content, platelets 

were lysed in Laemmli buff er in the absence of any reducing agent and sepa-

rated on a 6% Tris-glycine gel. Fibrinogen was identifi ed as a Coomassie 

blue – stained band migrating with an apparent molecular mass of 340,000. 

 Immunofl uorescence.   After lysing red blood cells with RBC lysis buff er 

(155 mM NH4Cl, 10 mM KHCO 3 , and 0.1 mM EDTA) bone marrow cells 

from the femurs of 6 – 9-wk-old mice were fi xed in 3.7% formaldehyde/PBS 

and applied to fi brinogen-coated (100  � g/ml) glass slides by Cytospin prep-

aration (Thermo Fisher Scientifi c). Cells were permeabilized with 0.1% Triton 

X-100/PBS containing 5% BSA for 1 h at room temperature and incubated 

with talin antibody 8d4 (1:50 dilution; Sigma-Aldrich) overnight at 4 ° C. 

After washing with PBS, cells were incubated with 2.5  � g/ml FITC-conjugated 

anti-CD41 (BD Biosciences) and 5  � g/ml Alexa-568 goat anti – mouse IgG 

for 2 h at room temperature. After washing, slides were mounted with coverslips 

using Vectashield anti-fade media (Vector Laboratories) and observed on a 

Leica DM LS fl uorescence microscope. Images were captured with a spot 

color digital camera (National Instruments) using manual exposure settings 

that were identical for  Tln1  fl /fl   Cre +  and  Tln1  fl /fl   Cre  �   samples. 

 Hemostasis assays.   The presence of fecal blood was detected with a 

guaiac-based hemoccult detection assay (Helena Laboratories) on freshly 

obtained stool samples. 

 Tail bleeding assays were performed by resecting 1 mm of the tail, fol-

lowed by immersion in 37 ° C isotonic saline as described previously ( 17 ). All 

experiments were terminated at 10 min by cauterizing the tail. 

 Platelet isolation and functional assays.   Washed platelets were obtained 

as described previously ( 30 ). Soluble fi brinogen binding was measured by 

incubating platelets for 20 min with 150  � g/ml FITC-labeled fi brinogen, 

followed by fi xation with 1% formaldehyde for 10 min at room tempera-

ture. Specifi c fi brinogen binding was determined by subtracting the amount 

of fi brinogen bound in the presence of 5 mM EDTA. Bound fi brinogen 

constituents and adhesion receptors. Thus, the observed adhe-
sion defects in  Tln1  fl /fl   Cre +  mice are ascribable to loss of talin-
mediated integrin functions and not a general disruption of 
platelet structure and function. 

 Platelet shape has been proposed to depend on the corti-
cal actin cytoskeleton. Platelet fi lamin and spectrin play im-
portant roles in this cortical cytoskeleton ( 23 ), whereas talin 
is cytoplasmic in resting platelets and only recruited to the 
cortical cytoskeleton after platelet activation ( 24, 25 ). The 
normal shape of the talin-defi cient platelets provides direct 
proof that platelet talin makes little if any contribution to 
the integrity of the cortical cytoskeleton in resting platelets. 
Furthermore, the talin-defi cient platelets contained normal-
appearing  �  granules and comparable contents of fi brinogen 
and P-selectin to littermate control mice. P-selectin is syn-
thesized by megakaryocytes, whereas the bulk of platelet fi -
brinogen is taken up from the plasma; that uptake depends 
on integrin  � IIb � 3 ( 26 ). The ability of talin-defi cient mega-
karyocytes to package fi brinogen into  �  granules is notewor-
thy in light of the defect in activation of integrin  � IIb � 3 in 
these platelets. It is possible that residual talin in early mega-
karyocytes may permit normal fi brinogen uptake; however, 
we have also observed normal platelet fi brinogen in the 
 � 3(L746A) platelets that have a similar defect in  � IIb � 3 
integrin activation (unpublished data), and human platelets 
with a  � 3(S752P) mutation also contain normal quantities 
of fibrinogen in spite of manifesting defective  � IIb � 3 acti-
vation ( 27 ). Thus, even though integrin  � IIb � 3 ligand bind-
ing function is required for normal fibrinogen uptake in 
megakaryocytes ( 26 ), activation of the integrin is not needed. 
In addition, talin-defi cient platelets increased their surface 
expression of P-selectin in response to platelet agonists, indi-
cating that the platelets could respond to the agonists, a 
conclusion supported by the normal shape change in the 
platelet aggregation tracings. Similarly, the increased surface 
P-selectin suggests that  �  granule secretion does not depend 
on talin; notably, this process is PIP2 dependent ( 28 ), and ta-
lin can recruit and regulate one isoform of PI5 kinase ( 29 ), a 
rate-limiting step in PIP2 synthesis. In summary, the talin-
defi cient platelets exhibit normal morphology and respond to 
platelet agonists. 

 Here, we have shown that platelet talin is essential for 
platelet-dependent hemostasis because it is required for the 
function and activation of  � 1 and  � IIb � 3 integrins. Despite 
 Tln1  fl /fl   Cre +  mice having normal platelet counts, these ani-
mals exhibited both lethal spontaneous bleeding and resis-
tance to induced thrombosis. These in vivo findings were 
ascribable to profound defects in the function of multiple 
platelet integrins, as platelets from  Tln1  fl /fl   Cre +  mice failed 
to adhere to collagen or to form platelet-rich thrombi ex vivo. 
In vitro studies documented the profound impairment of 
integrin-mediated adhesion and platelet aggregation in talin1-
defi cient platelets and showed that these platelets were de-
fi cient in the agonist-induced activation of both  � 2 � 1 and 
 � IIb � 3 integrins, despite maintaining the capacity to respond 
to the agonists as indicated by surface display of P-selectin. 
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was detected with a FACScan flow cytometer (Becton Dickinson). 

 � 1 integrin activation was measured by the binding of an FITC-labeled 

confi rmation-sensitive  � 1 integrin antibody 9EG7 (BD Biosciences), or the con-

fi rmation-insensitive PE-conjugated  � 1 antibody HM � 1-1 (BD Biosciences). 

Washed platelets were incubated with or without agonists for 10 min at 

room temperature, followed by the addition of 3  � g/ml of either 9EG7 or 

HM � 1-1 for 20 min and detected by fl ow cytometry. Similarly, surface ex-

pression of P-selectin was measured by the binding of FITC – anti – P-selectin 

(BD Biosciences) following the same protocol as described above for 

measuring  � 1 integrin activation. Surface expression of  � 3,  � IIb, and  � 2 

integrins were measured by fl ow cytometry with the following antibodies: 

FITC – anti-CD61, FITC – anti-CD41 (BD Biosciences), and PE – anti- � 2 

integrin (eBioscience). 

 For analysis of static adhesion of platelets to collagen, 96-well plates (Im-

mulon HB2; Dynex Technologies) were coated with 2  � g of acid-soluble 

type I collagen from rat tail (Sigma-Aldrich) in 100  � l PBS overnight at 4 ° C. 

After two washes with PBS and blocking with 5% BSA/PBS for 2 h at room 

temperature, 5  ×  10 6  washed platelets suspended in platelet incubation buff er 

were added to each well and allowed to adhere for 1 h at room temperature. 

Wells were then washed three times with platelet incubation buff er, and 

adherent platelets were quantifi ed by acid-phosphatase assay ( 18 ). Percent plate-

let adhesion was calculated as the number of adherent platelets relative to the 

number of platelets in wells that were not washed (total platelets per well). 

Platelet aggregation was performed as described previously ( 18 ) using platelet-

rich plasma (PRP) diluted to a platelet concentration of 3  ×  10 8  platelets/ml 

with platelet-poor plasma. 

 Ex vivo adhesion to collagen.   Adhesion and thrombus formation in fl ow-

ing blood was performed and analyzed as described previously ( 31, 32 ). 

 Transmission electron microscopy.   Blood was drawn by cardiac puncture 

into 0.1 vol of 0.13 M sodium citrate. After adding 1 vol modifi ed Tyrode ’ s 

buff er (140 mM NaCl, 2.7 mM KCl, 0.4 mM NaH 2 PO 4 , 10 mM NaHCO 3 , 

5 mM dextrose, and 10 mM Hepes) samples were centrifuged for 5 min at 200  g  

at room temperature to obtain PRP. The PRP was incubated for 30 min at 

37 ° C before fi xing by the addition of 1 vol of 2X fi xative (3% gluteraldehyde 

and 6% paraformaldehyde in 0.2 M cacodylate buff er plus 10% sucrose, pH 7.4) 

and incubated for 15 min at room temperature. Platelets were centrifuged at 

700  g  for 5 min and resuspended and stored overnight in 1X fi xative. Samples 

were processed as described previously ( 33 ), and images were obtained with a 

JEOL 1200 EX II electron microscope. 

 Ferric chloride – induced thrombosis.   Ferric chloride – induced thrombosis 

was performed as described previously ( 18 ) by applying a 1.2 X 1.2 – mm piece 

of fi lter paper soaked in 10% ferric chloride to each side of the common 

carotid artery of a mouse under isofl urane anesthesia. 

 Statistics.   Statistical analyses of mouse survival and spontaneous death were 

performed with  �  2  and Fisher ’ s exact tests, respectively. The statistical signifi -

cance of all other data were determined using Student ’ s  t  test. A p-value of 

 < 0.05 was considered statistically signifi cant. All error bars represent standard 

error of the mean. 

 Online supplemental material.   Video S1 shows adhesion of fl uorescently 

labeled platelets to fi brillar type I collagen in fl owing blood. Time shown is 

from the beginning of fl ow over the collagen-coated surface. Video S1 is avail-

able at http://www.jem.org/cgi/content/full/jem.20071800/DC1. 
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