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Abstract
Polycyclic aromatic hydrocarbon (PAH)-DNA adducts may induce mutations that contribute to
carcinogenesis. We evaluated potential associations between smoking and polymorphisms in PAH
metabolism [CYP1A1 Ile462Val, CYP1B1 Ala119Ser and Leu432Val, microsomal epoxide hydrolase
(mEH) Tyr113His and His139Arg, CYP3A4 A(−392)G] and conjugation [glutathione S-transferase
(GST) M1 null deletion, GSTP1 Ile105Val] genes and PAH-DNA adduct levels (measured by
immunohistochemistry) in tumor and nontumor prostate cells in 400 prostate cancer cases. Although
no statistically significant associations were observed in the total sample, stratification by ethnicity
revealed that Caucasian ever smokers compared with nonsmokers had higher adduct levels in tumor
cells (mean staining intensity in absorbance units ± SE, 0.1748 ± 0.0052 versus 0.1507 ± 0.0070;
P = 0.006), and Caucasians carrying two mEH 139Arg compared with two 139His alleles had lower
adducts in tumor (0.1320 ± 0.0129 versus 0.1714 ± 0.0059; P = 0.006) and nontumor (0.1856 ±
0.0184 versus 0.2291 ± 0.0085; P = 0.03) cells. African Americans with two CYP1B1 432Val
compared with two 432Ile alleles had lower adducts in tumor cells (0.1600 ± 0.0060 versus 0.1970
± 0.0153; P = 0.03). After adjusting for smoking status, carrying the putative “high-risk” genotype
combination, the faster metabolism of PAH-epoxides to PAH-diol-epoxides (CYP1B1 432Val/Val
and mEH 139Arg/Arg) with lower PAH-diol-epoxide conjugation (GSTP1 105Ile/Ile), was associated
with increased adducts only in Caucasian nontumor cells (0.2363 ± 0.0132 versus 0.1920 ± 0.0157;
P = 0.05). We present evidence, for the first time in human prostate that the association between
smoking and PAH-DNA adducts differs by race and is modified by common genetic variants.
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Introduction
Although prostate cancer is the most commonly diagnosed nonskin cancer and the third leading
cause of cancer death among men in the United States (1), increasing age, ethnicity, and family
history are the only established risk factors for this disease (2,3). African Americans, in
particular, present at an earlier age and with more advanced disease and have higher mortality
rates compared with Caucasians (4). Having a strong family history suggests the presence of
a highly penetrant gene, but, to date, no single gene which can account for the majority of
prostate cancers has been identified. Thus, the pathogenesis of prostate cancer likely involves
a complex interplay between multiple low penetrant genetic and environmental factors.

Polycyclic aromatic hydrocarbon (PAH) exposure from cigarette smoke (5-7), grilled meats
(8), and various petroleum-related occupations (9-11) may play a role in prostate cancer.
Although associations between smoking and these other PAH sources and prostate cancer have
been equivocal, PAH require metabolic activation and subsequent binding to DNA (forming
bulky “PAH-DNA adducts”) to exert their carcinogenic action (12). Therefore, functional
polymorphisms in genes that metabolize PAHs and detoxify their reactive derivatives should
be considered when evaluating potential effects of PAH exposure sources. Furthermore, many
prior studies have relied upon self-reported measures from a single source; however, PAH-
DNA adducts serve as a biological marker of the effective PAH dose from all sources,
particularly when quantified in the target tissue. We previously observed that PAH-DNA
adducts are present in human prostate cancer cells and vary with tumor characteristics (13).

In terms of PAH metabolism, parent compounds, such as benzo(a)pyrene, are initially
metabolized by CYP1A1 or CYP1B1 (14,15) to an epoxide [benzo(a)pyrene-7,8-epoxide] and
subsequently hydrolyzed by microsomal epoxide hydrolase (mEH) to a dihydrodiol [benzo
(a)pyrene-7,8-dihydrodiol]. CYP1A1, CYP1B1, or CYP3A4 (16) can then transform the
dihydrodiol to a highly reactive diol-epoxide [benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide,
BPDE] that can covalently bind to DNA, creating a PAH [BPDE]-DNA adduct which may, in
turn, induce mutation(s), predominantly in the form of G to T transversions (17). Although
mEH (18) and CYP1B1 (19) are expressed in the prostate, CYP1A1 may only be induced under
androgen dependency (20) and CYP3A4 may require vitamin D receptor mediation (21).
Interestingly, CYP1B1 is highly expressed in the peripheral zone where most prostate cancers
arise (22). The CYP1A1 Ile462Val and CYP3A4 A(−392)G polymorphisms have variant alleles
with higher enzymatic activity compared with their respective wild-type alleles (23,24), and
the activity of the CYP1B1 Ala119Ser and Leu432Val variants is substrate dependent
with 432Val/119Ala, having slightly higher activity in metabolizing benzo(a)pyrene-7,8-
dihydrodiols but slightly lower activity in metabolizing parent benzo(a)pyrene
than 432Leu/119Ala (15). Effects of the mEH Try113His and mEH His139Arg polymorphisms
remain unclear; an earlier study reported that 113Tyr/139Arg had the most activity in
hydrolyzing benzo(a)pyrene-epoxides to benzo(a)-pyrene-dihydrodiols (25), but recent work
shows the 113Tyr/139His combination may be the most active (26). The CYP1A1 Ile462Val,
CYP1B1 Leu432Val, CYP3A4 A(−392)G polymorphisms have been equivocally associated
with prostate cancer (27-31), which may be attributed, in part, to heterogeneity in PAH
exposure. In prostate cancer, only one (null) finding has been reported for the mEH His139Arg
polymorphism (32) and no studies have examined the mEH Tyr113His polymorphism.

Before a PAH-diol-epoxide metabolite can adduct DNA, it may be detoxified by enzymes in
the glutathione S-transferase (GST) family. In particular, GSTM1 and GSTP1 exhibit substrate
specificity for PAH-diol-epoxides (33) and are expressed in the prostate (34-36). Although
GSTT1 is highly expressed in the prostate (37), it does not seem to be involved in PAH
metabolite conjugation (38). GSTP1 has two polymorphisms: Ile105Val and Ala114Val
(Ile105Val is located near the hydrophobic binding site and has more influence on activity; ref.
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39). The effect of the GSTP1 Ile105Val polymorphism is substrate dependent with the 105Val
allele having a higher affinity for conjugating the most reactive PAH-diol-epoxides (40,41).
GSTM1 has a polymorphism that leads to complete loss of protein (GSTM1 null deletion), and
this polymorphism, as well as GSTP1 Ile105Val, has been associated with increased prostate
cancer risk in some studies (42-44) but decreased risk in others (45-47), which may also be
due, in part, to heterogeneity in PAH exposure.

Although associations between a few of the aforementioned polymorphisms in metabolism
and conjugation genes and PAH-DNA adduct levels have been examined in human lung (48)
and breast (49,50) cancer tissues and differences in PAH-DNA adduct levels by race in
mononuclear cells have been reported (51), no prior studies have evaluated effects of these
polymorphisms on adduct levels in human prostate cancer tissues. Therefore, in this study, we
extend our earlier work (13) by evaluating the potential association between smoking and
polymorphisms in genes that metabolize PAHs (CYP1A1 Ile462Val, CYP1B1 Ala119Ser and
Leu432Val, mEH Tyr113His and His139Arg, CYP3A4 A(−392)G) and detoxify their reactive
derivatives (GSTM1 null deletion, GSTP1 Ile105Val) and PAH-DNA adduct levels in tumor
and adjacent nontumor prostate cells in 400 men with prostate cancer.

Materials and Methods
Study Population

The study design and population have been described elsewhere (13). Briefly, the study
population was composed of men from a larger case (n = 637) and control (n = 244) study who
were diagnosed with prostate cancer and underwent radical prostatectomy (n = 395; 62.0%)
or transure-thral resection (n = 5; 0.7%) for treatment within the Henry Ford Health System,
a network of facilities comprising an 800-bed hospital in the City of Detroit, Michigan, three
smaller hospitals in surrounding suburbs, and 31 medical clinics located throughout the
Metropolitan Detroit area. Potential cases that indicated primary adenocarcinoma of the
prostate were identified through the Henry Ford Health System pathology reports. Two of the
395 cases used in this study were initially enrolled as controls. Cases were eligible for the larger
case-control study if they used the Henry Ford Health System as their primary source of health
care, lived in the study area at time of recruitment (2001-2004), and had no previous history
of prostate cancer.

Subjects who agreed to participate were also asked to complete a two-part interviewer-
administered risk factor questionnaire (the first part was conducted over the phone; the second
part was done in person) and donate a blood sample. All study protocols were approved by the
Henry Ford Hospital Institutional Review Board. Clinical characteristics were obtained from
medical records, and demographic, general health, and habit information (age, ethnicity,
smoking) were determined from the questionnaire. Alcohol was estimated from a standardized
food frequency questionnaire originally developed for two studies investigating the
associations of dietary supplements and cancer risk: Vitamin and Lifestyle Cohort Study (52)
and Selenium and Vitamin E Cancer Prevention Trial (53).

Genotyping
Standard venipuncture was used to collect blood samples from all study participants in tubes
with EDTA as an anticoagulant. Genomic DNA was extracted from buffy coats using QIAmp
DNA Blood kit (Qiagen Inc., Valencia, CA). All purified DNA samples were diluted to a
constant DNA concentration in 10 mmol/L Tris, 1 mmol/L EDTA buffer (pH 8).

mEH His139Arg (rs2234922) and CYP1B1 Leu432Val (rs1056836) were assayed by RFLP
using primer and assay conditions that have been previously described (26,54). Digestion
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products were separated on a 2% agarose gel. CYP1A1 Ile462Val (rs1048943), CYP1B1
Ala119Ser (rs1056827) and mEPHx (mEH) Tyr113His (rs1051740) polymorphisms were
assayed using the GenomeLab SNP-Primer Extension assay (Beckman Coulter, Fullerton, CA)
and analyzed on a CEQ 8000 Genetic Analysis System (Beckman Coulter). PCR was done
using the primers (Invitrogen, Carlsbad, CA) 5′-GAACTGCCACTTCAGCTG-3′ (forward)
and 5′-CTGGCTGCCCAACCAGA-3′ (reverse) for CYP1A1, 5′-
GTGCTGGCCACTGTGCATGT-3′ (forward) and 5′-ACACGGCACTCATGACGTTG-3′
(reverse) for CYP1B1, and 5′-GATCGATAAGTTCCGTTTCACC-3′ (forward) and 5′-
TCATTGGACTGGATGGTGCATT-3′ (reverse) for mEH. PCR was done in a 20-μL reaction
with 40 ng DNA, 20 pmol of forward and reverse primers, 1.5 mmol/L MgCl2, 0.25 mmol/L
deoxynucleotide triphosphate, and 1.5 units AmpliTaq Gold DNA polymerase (Applied
Biosystems, Foster City, CA). For CYP1B1 amplification, 2 μL DMSO was added to each
reaction. PCR conditions were 10 min at 95°C, followed by 30 cycles of 95°C for 30 s, 61°C
(CYP1A1) or 60°C (CYP1B1119 and mEH113) for 35 s, and 72°C for 1 min, followed by a 6-
min extension at 72°C. PCR reactions (6 μL) were cleaned with 2 units of shrimp alkaline
phosphatase (Promega, Madison, WI) and 1 unit of Exonuclease I (New England Biolabs,
Ipswich, MA) for 2 h at 37°C, followed by heat inactivation at 75°C for 30 min. The SNP
primer extension assay was done using the GenomeLab SNP-Primer Extension kit (Beckman
Coulter) according to manufacturer’s instructions. SNP interrogation primers used were 5′-
ATGGGCAAGCGGAAGTGTATCGGTGAGACC-3′ (forward) and 5′-
AAAGACCTCCCAGCGGGCAA-3′ (reverse) for CYP1A1 Ile462Val, 5′-
AAAAAGGCCCTGGTGCAGCAGGGCTCGGCCTTCGCCGACCGGCCG-3′ (forward)
and 5′-AAAAAAAAAAGACACCACACGGAAGGAGGCGAAGG-3′ (reverse) for
CYP1B1 Ala119Ser, and 5′-AAAAAAGGTGGAGATTCTCAACAGA-3′ (forward) and 5′-
AAAAAAAAAATCAATCTTAGTCTTGAAGTGAGGGT-3′ (reverse) for mEH Tyr113His.

The GSTP1 Ile105Val (rs947894) polymorphism was detected using the Invader assay with
reagents developed by Third Wave Technologies, Inc. (Madison, WI) (55). Each plate
contained the following controls for the GSTP1 codon 105: (a) Ile/Ile homozygous, (b) Ile/Val
heterozygous, (c) Val/Val homozygous, and (d) a no-target blank. The GSTM1 polymorphism,
which results in the presence (nondeleted) or absence (null deletion) of the enzyme, was
detected by a PCR product coamplified with β-globin as a positive internal control within a
multiplex PCR as previously described (42).

To ensure quality control of all genotyping results, 5% of the samples were randomly selected
and genotyped by a second investigator and 1% of the samples were sequenced using a 377
ABI automated sequencer.

PAH-DNA Adduct Scoring
H&E stained slides of study cases were reviewed by the study pathologist (Adnan T. Savera)
to confirm the diagnosis and to identify a paraffin block with sufficient prostate tumor and
nontumor prostate tissue from the radical prostatectomy for staining. For each patient sample,
we used a microtome to cut five consecutive sections (5-μmol/L thick) from the tissue block.
One slide was H&E stained and examined by the study pathologist who circled separate areas
of prostate tumor and nontumor prostate cell populations to be used for subsequent PAH-DNA
adduct scoring. The immunohistochemical assay for PAH-DNA adducts was carried out as
described previously (13,49,56). This chemical assay uses the monoclonal 5D11 antibody,
which in cell culture studies has been shown to produce strongly correlated staining levels (r
= 0.99; P = 0.011) with the treatment dose of benzo(a)pyrene diol epoxide (57,58). Consistent
with our previous (13) and other prior studies (49,59) using immunohistochemical assays to
measure PAH-DNA adducts, we report our results in absorbance units which provides a
measure of the relative intensity of staining.
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For each prostate specimen, two technicians independently scored 50 epithelial cells (five fields
with 10 cells per field scored) in the two areas (tumor and nontumor) circumscribed by the
study pathologist. Scored cells were selected to be representative, in terms of intensity, of the
cells in the field, and the mean of the two technicians’ scores was used. The dual scoring
technique has proved to yield a high test-retest reliability in prostate cells (13). PAH-DNA
adduct data were standardized across experiments using a series of two prostate “control” slides
(taken from two separate prostate specimens provided by men with prostate cancer who
underwent radical prostatectomy but were not part of the study population) that were run across
all batches.

Statistical Analysis
We tested the distribution of PAH-DNA adduct levels in prostatic epithelial tumor and adjacent
nontumor cells for normality using the Shapiro-Wilk test statistic. Paired t tests were used to
determine if PAH-DNA adduct levels between tumor and nontumor cells deviated significantly
from zero. Correlations between explanatory variables and PAH-DNA adduct levels in tumor
and nontumor cells were calculated using the parametric Pearson or nonparametric Spearman
statistic if the variable deviated from normality. We calculated genotype frequencies and tested
for Hardy Weinberg equilibrium within controls (prostate cancer–free men) in the larger study
within major ethnic groups. We also calculated linkage disequilibrium between CYP1B1
Ala119Ser and Leu432Val and mEH Tyr113His and His139Arg alleles using epoxide hydrolase
(60). We then used generalized linear regression models to estimate the association between
genotypes and PAH-DNA adduct levels in prostate tumor cells and adjacent nontumor cells in
the total study population and in Caucasians and African Americans, separately. Potential
confounding by other factors including smoking, alcohol, and tumor characteristics [primary
and total Gleason score, tumor volume, grade, prostate specific antigen (PSA) at diagnosis]
was also evaluated. Models examining interactions included main effect terms (ethnicity;
smoking; polymorphism under a dominant, recessive, or additive genetic model) and a
multiplicative interaction term (e.g., ethnicity × genotype). All P values are from two-sided
tests. All analyses were undertaken with SAS (version 8.2, SAS Institute Inc., Cary, NC).

Results
Characteristics of the study population are provided in Table 1. Approximately, 52.5% of the
prostate cancer cases were Caucasian patients and 44.3% were African American patients. The
mean age at diagnosis was 60.2 years with African American men diagnosed at a slightly
younger age than Caucasian men. Approximately, 45.7% of the cases had a total Gleason score
of 7 and 19.4% had a total Gleason score of >7. Although African Americans tended to present
with a higher Gleason score and have greater tumor volume than Caucasians, these differences
were not statistically significant. Similar to our earlier work that used 130 (13) of the 400
specimens in the present study, the distributions of PAH-DNA adduct levels in paired tumor
and adjacent nontumor prostate specimens fell into two separate highly symmetrical normal
distributions. Also consistent with our previous report (13), we observed a strong correlation
between adduct levels in prostate tumor and nontumor prostate cells (r = 0.51; P < 0.001) and
significantly higher levels of PAH-DNA adducts in nontumor cells compared with tumor cells
(mean absorbance units ± SD, 0.23 ± 0.09 versus 0.16 ± 0.06; P < 0.001). No statistically
significant differences in adduct levels between Caucasians and African Americans were
observed in tumor or nontumor prostate cells. Among controls, genotype frequencies did not
deviate significantly from Hardy-Weinberg equilibrium within major ethnic groups
[Caucasians, P = 0.33 (GSTP1 Ile105Val) to P = 0.80 (mEH His139Arg); African Americans,
P = 0.12 (GSTP1 Ile105Val) to P = 0.71 (CYP3A4 A(−392)G)]. We also examined linkage
disequilibrium between alleles in the CYP1B1 Ala119Ser and Leu432Val (Caucasians, D’ ≤
0.37; African Americans, D’ ≤ 0.24) and the mEH Tyr113His and His139Arg (Caucasians, D’
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≤ 0.24; African Americans, D’ ≤ 0.56) polymorphisms. Significant differences in genotype
(and allele) frequencies between Caucasian and African American cases in this study were
observed for several polymorphisms (Table 1).

Neither ever or current smoking nor any of the PAH metabolism or conjugation
polymorphisms, when examined individually, were statistically significantly associated with
PAH-DNA adduct levels in the total sample (Table 2). However, stratifying by race revealed
that Caucasian ever smokers (Table 3) had significantly higher adducts than nonsmokers in
tumor cells (0.1748 ± 0.0052 versus 0.1507 ± 0.0070; P = 0.006). Moreover, Caucasians
carrying two copies of the mEH 139Arg allele had decreased PAH-DNA adduct levels in tumor
(0.1320 ± 0.0129 versus 0.1714 ± 0.0059; P = 0.006) and nontumor (0.1856 ± 0.0184 versus
0.2291 ± 0.0085; P = 0.03) cells. Having the A-G genotype compared with the A-A genotype
of the CYP3A4(−392) promoter was also positively associated with adduct levels in Caucasian
tumor (0.1970 ± 0.0148 versus 0.1648 ± 0.0044; P = 0.04) but not Caucasian nontumor cells.
In African Americans, carrying one or two CYP1B1 432Val compared with two 432Leu alleles
significantly increased adduct levels in tumor cells (0.1970 ± 0.0153 versus 0.1621 ± 0.0076;
P = 0.04 or 0.1600 ± 0.0060; P = 0.03). Carrying one copy of the GSTP1 105Val allele
significantly decreased PAH-DNA adduct levels in Caucasian nontumor cells (0.2059 ± 0.0090
versus 0.2362 ± 0.0092; P = 0.02) and marginally increased adduct levels in African American
nontumor cells (0.2461 ± 0.0088 versus 0.2176 ± 0.0124; P = 0.06).

We also tested for joint effects between ethnicity, smoking, and genotypes by including an
ethnicity × smoking (or genotype) interaction term in the model (Table 3). Using Caucasians
as the reference group and African Americans as the risk group, we observed significant
interactions between ethnicity and ever smoking [P value for interaction term (Pint) = 0.02]
and between ethnicity and the mEH His139Arg (Arg/Arg versus His/His or His/Arg; Pint =
0.02) polymorphisms in tumor cells. In nontumor cells, we found significant interactions
between ethnicity and the mEH His139Arg (Arg/Arg versus His/His or His/Arg; Pint = 0.05)
and GSTP1 Ile105Val (Ile/Val or Val/Val versus Ile/Ile; Pint = 0.004) polymorphisms.

We next examined joint PAH metabolism and conjugation genotype combinations on adduct
levels based upon the function of the polymorphic alleles in key steps of the PAH metabolic
pathway (Table 4). For example, carrying the mEH 113 Tyr/Tyr and mEH 139His/His or His/
Arg genotype combination, which may have increased PAH-epoxide to PAH-dihydrodiol
hydrolysis compared with the mEH 113Tyr/His or His/His and mEH 139Arg/Arg genotype
combination (26), increased adducts in Caucasian tumor (0.1692 ± 0.0050 versus 0.1252 ±
0.0220; P = 0.05) and nontumor (0.2349 ± 0.0082 versus 0.1603 ± 0.0317; P = 0.02) cells (data
not shown). When pairing the higher metabolizing mEH 113Tyr/Tyr and mEH His/His or His/
Arg genotypes with the lower conjugating GSTP1 105Ile/Ile genotype compared with the
mEH 113 Tyr/His or His/His and mEH 139 Arg/Arg and GSTP1 105Ile/Val or Val/Val genotype
combination, we observed a significant increase in adduct levels in the nontumor cells of all
study subjects (0.2472 ± 0.0130 versus 0.1537 ± 0.0331; P = 0.01), but when we stratified by
race, this association only remained significant in Caucasian nontumor cells (0.2625 ± 0.0157
versus 0.1433 ± 0.0351; P = 0.01; data not shown). Similar effects were seen when combining
the mEH His139Arg and GSTP1 Ile105Val polymorphisms (Table 4). Finally, carrying the
“high-risk” genotype combination, the faster metabolism of PAH-diols to the most reactive
PAH-diol-epoxide forms (CYP1B1 432Val/Val and mEH 139His/His or His/Arg) with lower
capacity to conjugate these PAH-diol-epoxides (GSTP1 105Ile/Ile), was associated with
significantly increased adduct levels in the nontumor cells of Caucasians (0.2363 ± 0.0132
versus 0.1920 ± 0.0157; P = 0.05), but decreased adduct levels in non-tumor cells of African
Americans (0.2121 ± 0.0175 versus 0.3060 ± 0.0408; P = 0.05). Cell sizes, however, continued
to diminish with increasing genotype combination complexity and models with four or more
polymorphisms were not estimable.
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We also examined the potential joint effects of ever (Table 5) and current smoking and PAH
metabolism and conjugation genes on PAH-DNA adduct levels. Increased adducts were
observed in tumor cells of Caucasian ever smokers carrying the potentially faster PAH-epoxide
metabolizing mEH 139His/His or His/Arg genotype compared with nonsmokers with the
mEH 139Arg/Arg genotype (0.1798 ± 0.0056 versus 0.1358 ± 0.0182; P = 0.02), and Caucasian
ever smokers carrying the lower PAH-diol-epoxide conjugating GSTP1 105Ile/Ile genotype
had higher adducts compared with nonsmokers with the GSTP1 105Ile/Val or Val/Val genotype
(0.1783 ± 0.0071 versus 0.1538 ± 0.0088; P = 0.03). The mEH 139His/Arg or His/His genotype
association became more pronounced in Caucasian current smokers’ tumor (0.1937 ± 0.0147
versus 0.1342 ± 0.0132; P = 0.003) and nontumor cells (0.2567 ± 0.0207 versus 0.1890 ±
0.0187; P = 0.02; data not shown) as did the effects of the GSTP1 105Ile/Ile genotype (0.2667
± 0.0248 versus 0.2099 ± 0.0082; P = 0.003). In African Americans, nonsmokers who carried
the potentially lower conjugating GSTP1 105Ile/Ile genotype compared with non-smokers with
GSTP1 Ile/Val or Val/Val genotype had lower adducts in nontumor cells (0.1960 ± 0.0210
versus 0.2497 ± 0.0121; P = 0.03). Similar effects for GSTP1 105Ile/Ile (0.2137±0.0132 versus
0.2430±0.0082; P=0.06) were observed in African Americans when examining current
smoking (data not shown).

Although cell sizes became even smaller when examining the joint effects of smoking and
combinations of polymorphisms, several notable associations were observed (Table 5). Ever
smokers with the faster PAH-epoxide metabolizing mEH 113Tyr/Tyr and mEH 139His/His or
His/Arg genotype combination had higher adducts in tumor (0.1697 ± 0.0046 versus 0.1295 ±
0.0161; P = 0.02) and nontumor (0.2377 ± 0.0065 versus 0.1725 ± 0.0232; P = 0.008) cells,
but when we stratified by race, this effect only remained significant in Caucasian tumor (0.1740
± 0.0070 versus 0.1349 ± 0.0182; P = 0.05) and nontumor cells (0.2318 ± 0.0098 versus 0.1703
± 0.0255; P = 0.03; data not shown). Caucasian ever smokers with the faster metabolizing
mEH 139His/His or His/Arg and lower conjugating GSTP1 Ile/Ile genotype compared with
nonsmokers with the mEH 139Arg/Arg and GSTP1 Ile/Val or Val/Val genotype had higher
adduct levels in nontumor cells (Table 5), but this effect was only statistically significant in
current smokers (0.2667 ± 0.0257 versus 0.1796 ± 0.0230; P = 0.01; data not shown). In
Caucasians, after adjusting for smoking status carrying the putative high-risk genotype, the
faster metabolism of PAH-epoxides to PAH-diol-epoxides (CYP1B1 432Val/Val and
mEH 139His/His or His/Arg) with lower PAH-diol-epoxide conjugation (GSTP1 105Ile/Ile),
was associated with marginally increased adducts in nontumor cells compared with carriers of
the CYP1B1 Leu/Leu or Leu/Val, mEH 139Arg/Arg and GSTP1 Ile/Val or Val/Val genotype
(0.2363 ± 0.0132 versus 0.1920 ± 0.0157; P = 0.05; data not shown).

Discussion
When stratifying by major ethnic group, we observed significant associations between
smoking, polymorphisms in PAH metabolism [CYP1B1 Leu432Val, CYP3A4 A(−392)G and
mEH His139Arg] and conjugation (GSTP1 Ile105Val) genes and PAH-DNA adducts in tumor
and adjacent nontumor prostate cells. Specifically, Caucasians who reported ever smoking had
significantly increased PAH-DNA adduct levels compared with nonsmokers, but this effect
was not observed in African Americans. The mEH 139Arg/Arg genotype, which may
potentially metabolize PAH-epoxides to PAH-dihydrodiols, more slowly (26) decreased
adduct levels in both prostate tumor and nontumor prostate cells of Caucasians, but this effect
was not found in African Americans. In addition, having one or two copies of the
GSTP1 105Val allele, which may more effectively conjugate the most reactive PAH-diol
epoxides (40,41), was inversely associated with adduct levels in the tumor cells of Caucasians.
Finally, carrying the putative high-risk genotype combination, the faster metabolism of PAH-
dihydrodiols to their most reactive PAH-diol-epoxide forms (CYP1B1 432Leu/Leu or Leu/Val
and mEH 139His/His or His/Arg) with lower capacity to conjugate these PAH-diol-epoxides
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(GSTP1 105 Ile/Ile), was associated with increased adduct levels in nontumor cells of
Caucasians, but was associated with decreased adduct levels in non-tumor cells of African
Americans.

Our results are generally biologically plausible, given the expected activity of the alleles in
key steps of the PAH metabolic pathway; however, functional studies are not entirely consistent
and have focused on variation in one enzyme at a time, making it difficult to anticipate how
variation in multiple enzymes affects PAH-DNA adduct levels. An initial in vitro study
reported that the mEH 113Tyr/139Arg combination exhibits the highest protein expression
(25); however, a recent study concluded the rate of hydrolysis by mEH 113Tyr/139His was ~2-
fold greater than that measured in the other allelic combinations (26). In our observational
study, we found that prostate cancer cases, particularly Caucasians, who smoke and carry two
copies of the mEH 113Tyr and/or one or more 139His alleles have significantly higher PAH-
DNA adducts in their tumor and nontumor cells, which is consistent with the most recent
functional study. Although CYP1B1 432Val (with 119Ala) has slightly higher activity in
metabolizing benzo(a)pyrene-7,8-diols and other PAH metabolites [e.g., dibenzo(a,l)pyrene-
diols], it has lower activity in metabolizing parent benzo(a)pyrene than 432Leu (with 119Ala),
and the presence of the CYP1B1 119Ser variant seems to enhance activity in several substrates
(15). We did not find any statistically significant associations with CYP1B1 Ala119Ser
polymorphism alone or in combination with Leu432Val. Thus, additional functional studies in
prostate cells, ideally with multiple polymorphic enzyme combinations, are needed to confirm
our findings.

Consistent with our prior smaller study (13), PAH-DNA adducts were higher in adjacent
nontumor prostate cells compared with prostate tumor cells, irregardless of ethnicity. Similar
effects have not been observed in other organs. For example, Rundle et al. (49) reported that
tumor cells of breast cancer cases had slightly higher PAH-DNA adducts compared with
adjacent nontumor cells. As we reported previously (13), our results suggest that adducts
diminish as prostate cancer foci grow and become more poorly differentiated, which may be
due, in part, to loss of estrogen receptor expression in tumor cells.

Differences between ethnic groups were not totally unexpected, because African Americans,
compared with Caucasians generally present with prostate cancer at an earlier age and with
more advanced disease, have higher prostate cancer mortality rates (4) and higher PAH-DNA
adduct levels in mononuclear cells (51). Associations between genetic polymorphisms and
PAH-DNA adducts may differ by race due to differences in PAH exposure. Although we did
not find a significant difference in smoking frequency between Caucasians and African
Americans, PAH-DNA adduct levels, which measure the biologically effective PAH dose,
were significantly increased in tumor cells of Caucasian, but not African American, ever
smokers. Further stratification by genotype after adjusting for smoking status revealed that a
putative high-risk genotype combination (CYP1B1 432Val/Val and mEH 139His/His or His/
Arg and GSTP1 Ile/Ile) significantly increased adducts in Caucasians, but not African
Americans who carried this genotype combination, suggesting that other PAH-exposure
sources (e.g., diet and/or occupation) may contribute to adducts in the prostate. Furthermore,
why some associations varied by cell type within an ethnic group is not entirely clear. Tumor
characteristics may contribute to these varying results, and in our prior (13) and current work,
PAH-DNA adduct levels tended to be lower in malignant cells, but those less-differentiated
measures of tumor differentiation (primary and total Gleason score), tumor volume, tumor
stage, and PSA at diagnosis into the multivariable models did not materially alter results.
Alternatively, differences in the cellular microenvironment, such as aberrant methylation, may
lead to differential expression of these enzymes, which are within tumor and nontumor cells
and between Caucasians and African Americans, potentially affecting the importance of a
polymorphism. For example, silencing of GSTP1 through hypermethylation has been observed
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in prostate cancer cells but not normal cells (61), and GSTP1 hypermethylation has been
observed to differ significantly between Caucasians and African Americans (62). Interestingly,
smoking, which contains substantial quantities of carcinogenic PAHs (63), modifies GSTP1
methylation in prostate cancer cells with current smokers having a significantly higher
frequency than former or nonsmokers (64). GSTP1 hypermethylation has been shown to
modify 2-amino-1-methyl-6-phenylimi-dazo[4,5-b]pyridine–DNA adduct levels in the
prostate (65), although in a recent study involving tumor and adjacent nontumor cells from
hepatic carcinoma patients, no association between GSTP1 hypermethylation and PAH-DNA
adducts was found (66). Hypomethylation of the CYP1B1 promoter has been shown to increase
its expression in prostate cancer but not normal cells (67), although reports on how CYP1B1
hypomethylation affects PAH-DNA adduct levels are lacking.

No prior studies have examined the effects of polymorphisms in PAH metabolism and
conjugation genes and PAH-DNA adducts in prostate cancer cells; therefore, we can only
compare our results to those from other tissues. Because immunoassay methods are more
specific to PAH [BPDE and other similar structured]-DNA adducts whereas 32P-postlabeling
methods measure all hydrophobic DNA adducts (68) and results differ considerably between
these two methods (69), we restrict our comparison to those studies using immunoassay
methods similar to the one we used. In lung tumor tissue, the variant alleles of the CYP1A1
1*/2* (includes CYP1A1 Ile462Val) and the GSTM1 null deletion polymorphisms have been
positively associated with (+)anti –BPDE–DNA adduct levels, and the effect was more
pronounced in individuals with both polymorphisms (48). In addition, carrying the GSTM1
null deletion has been shown to be positively associated with PAH-DNA adducts in tumor and
adjacent nontumor cells obtained from breast cancer cases (49), but this effect was not found
in another study (50). We did not find an effect with the GSTM1 null deletion polymorphism;
however, we did observe significant individual and joint gene associations with the
GSTP1 105Val allele which may be more efficient than GSTM1 in conjugating the most reactive
PAH-diol-epoxides (33).

Strengths of our study include its large sample size for this type of molecular evaluation and
nearly equal distribution of Caucasians and African Americans. However, even larger samples
are needed for effectively evaluating joint effects, particularly those involving two or more
polymorphisms. Furthermore, we have treated ethnicity as a dichotomous variable when, in
fact, it is really a continuous trait given the large degree of racial admixture in the United States.
Incorporating and adjusting for ancestry informative markers in the analyses would help
minimize any error induced by dichotomizing and help clarify interpretation of results. To
obtain a more complete understanding of the underlying mechanisms of PAH-induced DNA
damage in prostate cells, future work should include prostate specimens from “healthy” men
without prostate cancer and should evaluate the influence of other sources of PAH exposure
and DNA methylation and repair mechanisms on PAH-DNA adduct formation.

In summary, this is the first report describing the individual and joint associations between
smoking and polymorphisms in PAH metabolism and conjugation genes and PAH-DNA
adduct levels in tumor and nontumor prostate cells. Our results suggest that the association
between smoking and PAH-DNA adducts differs by race and is modified by common genetic
variants lending further insight to potential gene-environment interactions in prostate
carcinogenesis.
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Table 1
Prostate cancer study population characteristics and genotype frequencies for polymorphisms in PAH metabolism
and conjugation genes

Characteristic or genotype All subjects (N =
400)

Caucasians (n =
210)

African Americans
(n = 177)

P*

Age (y) 60.2 (6.7)† 61.0 (6.4)† 59.2 (7.0)† 0.01
Total Gleason score
 <7 138 (34.9%) 71 (34.1%) 64 (36.6%) 0.76
 7 181 (45.7%) 98 (47.1%) 76 (43.4%) —
 >7 77 (19.4%) 39 (18.8%) 35 (20.0%) —
Tumor volume‡ 21.1 (16.3)† 20.2 (15.8)† 21.5 (16.7)† 0.44
Tumor stage
 ≤T2b 299 (75.5%) 154 (74.0%) 138 (78.9%) 0.27
 ≥T2c 97 (24.5%) 54 (26.0%) 37 (21.1%) —
PSA at diagnosis 7.05 (6.26)† 7.02 (6.81)† 6.98 (4.97)† 0.94
Ever smoker 252 (63.0%) 136 (64.7%) 109 (61.6%) 0.51
Current smoker 43 (10.8%) 21 (10.0%) 20 (11.3%) 0.68
Alcohol (g) 11.91 (24.78)† 13.41 (24.74)† 10.69 (25.56)† 0.29
PAH-DNA adducts levels§
 Prostate tumor cells 0.16 (0.06)† 0.17 (0.06)† 0.16 (0.06)† 0.59
 Prostate nontumor cells 0.23 (0.09)† 0.22 (0.09)† 0.23 (0.09)† 0.15
PAH metabolism genes
 CYP1A1 462Ile/Ile 358 (95.7%) 183 (94.3%) 163 (97.0%) 0.21
 CYP1A1 462Ile/Val 16 (4.3%) 11 (5.7%) 5 (3.0%) —
 CYP1A1 462Val/Val 0 0 0 —
 CYP1B1 119Ala/Ala 159 (42.7%) 109 (55.9%) 44 (26.8%) <0.01
 CYP1B1 119Ala/Ser 158 (42.5%) 68 (34.8%) 84 (51.2%) —
 CYP1B1 119Ser/Ser 55 (14.8%) 18 (9.2%) 36 (22.0%) —
 CYP1B1 432Leu/Leu 87 (21.9%) 66 (31.7%) 16 (9.1%) <0.01
 CYP1B1 432Leu/Val 164 (41.3%) 98 (47.1%) 61 (34.7%) —
 CYP1B1 432Val/Val 146 (36.8%) 44 (21.2%) 99 (56.2%) —
 CYP3A4 (-392)A/A 225 (57.7%) 186 (89.9%) 32 (18.8%) <0.01
 CYP3A4 (-392)A/G 94 (24.1%) 16 (7.7%) 75 (44.1%) —
 CYP3A4 (-392)G/G 71 (18.2%) 5 (2.4%) 63 (18.8%) —
 mEH 113Tyr/Tyr 194 (55.3%) 88 (48.9%) 99 (62.2%) 0.02
 mEH 113Tyr/His 136 (38.7%) 77 (42.8%) 54 (40.0%) —
 mEH 113His/His 21 (6.0%) 15 (8.3%) 6 (3.8%) —
 mEH 139His/His 188 (49.6%) 106 (53.3%) 72 (43.1%) 0.11
 mEH 139His/Arg 150 (39.6%) 71 (35.7%) 77 (46.1%) —
 mEH 139Arg/Arg 41 (10.8%) 22 (11.1%) 18 (10.8%) —
PAH conjugation genes
 GSTM1 nondeleted∥ 214 (61.0%) 104 (49.5%) 133 (75.6%) <0.01
 GSTM1 null 154 (39.0%) 102 (50.5%) 43 (24.4%) —
 GSTP1 105Ile/Ile 145 (36.3%) 91 (43.3%) 49 (27.7%) 0.01
 GSTP1 105Ile/Val 196 (49.0%) 92 (43.8%) 98 (55.4%) —
 GSTP1 105Val/Val 59 (14.7%) 27 (12.9%) 30 (16.9%) —

*
P value comparing Caucasians to African Americans from t test or χ2 test as applicable.

†
Mean and SD (values in parentheses) of the mean.

‡
Expressed as a percentage of the gland with tumor.

§
Expressed as absorbance units. Adduct levels in prostate tumor and nontumor prostate cells were strongly correlated (r = 0.51; P < 0.0001).

∥
Includes subjects with at least one copy of the nondeleted (+) allele.
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Table 2
Mean PAH-DNA adduct levels in prostate tumor and adjacent nontumor prostate cells for smoking and genotypes
in PAH metabolism and conjugation genes

Variable/genotype Tumor cells Nontumor cells

Mean ± SE* P† Mean ± SE* P†

Ever smoker
 No 0.1585 ± 0.0049 — 0.2244 ± 0.0072 —
 Yes 0.1680 ± 0.0038 0.13 0.2284 ± 0.0055 0.66
Current smoker
 No 0.1632 ± 0.0033 — 0.2256 ± 0.0048 —
 Yes 0.1749 ± 0.0094 0.25 0.2407 ± 0.0131 0.30
CYP1B1 Ala119Ser
 Ala/Ala 0.1671 ± 0.0048 — 0.2294 ± 0.0069 —
 Ala/Ser 0.1638 ± 0.0049 0.62 0.2252 ± 0.0070 0.67
 Ser/Ser 0.1671 ± 0.0083 0.99 0.2383 ± 0.0121 0.53
CYP1B1 Leu432Val
 Leu/Leu 0.1663 ± 0.0064 — 0.2136 ± 0.0094 —
 Leu/Val 0.1686 ± 0.0046 0.51 0.2300 ± 0.0068 0.16
 Val/Val 0.1602 ± 0.0049 0.69 0.2340 ± 0.0072 0.09
CYP1A1 Ile462Val
 Ile/Ile 0.1651 ± 0.0032 — 0.2284 ± 0.0047 —
 Ile/Val 0.1746 ± 0.0149 0.54 0.2287 ± 0.0219 0.98
 Val/Val —‡ — —‡ —
CYP3A4 A(-392)G
 A/A 0.1624 ± 0.0040 — 0.2227 ± 0.0059 —
 A/G 0.1737 ± 0.0062 0.12 0.2347 ± 0.0091 0.27
 G/G 0.1598 ± 0.0072 0.76 0.2305 ± 0.0105 0.52
mEH Tyr113His
 Tyr/Tyr 0.1699 ± 0.0043 — 0.2383 ± 0.0063 —
 Tyr/His 0.1695 ± 0.0051 0.96 0.2246 ± 0.0075 0.16
 His/His 0.1786 ± 0.0129 0.52 0.2500 ± 0.0189 0.56
mEH His139Arg
 His/His 0.1687 ± 0.0045 — 0.2272 ± 0.0064 —
 His/Arg 0.1660 ± 0.0049 0.68 0.2227 ± 0.0071 0.57
 Arg/Arg 0.1521 ± 0.0096 0.12 0.2220 ± 0.0138 0.73
GSTM1 null deletion
 +/− or +/+ 0.1631 ± 0.0039 — 0.2283 ± 0.0057 —
 −/− 0.1694 ± 0.0048 0.31 0.2275 ± 0.0071 0.94
GSTP1 Ile105Val
 Ile/Ile 0.1613 ± 0.0050 — 0.2283 ± 0.0073 —
 Ile/Val 0.1650 ± 0.0043 0.57 0.2264 ± 0.0063 0.84
 Val/Val 0.1709 ± 0.0078 0.30 0.2250 ± 0.0114 0.81

NOTE: All analyses were adjusted for age, smoking, alcohol, ethnicity, Gleason score, tumor stage, and PSA at diagnosis.

*
Mean absorbance units and SE of mean.

†
P value for tests comparing wild-type/variant to wild-type/wild-type and variant/variant to wild-type/wild-type. P value shown is not corrected for

multiple tests.

‡
Not estimated because no subjects had this genotype.
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