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Many human diseases are caused by mutations in ion channels. Dissecting the pathogenesis
of these ‘channelopathies’ has yielded important insights into the regulation of vital biological
processes by ions and has become a productive tool of modern ion channel biology. One of
the best examples of a synergism between the clinical and basic science aspects of a modern
biological topic is cystic fibrosis. Not only did the identification of the ion channel mutated in
cystic fibrosis pinpoint the root cause of this disease, but it also has significantly advanced our
understanding of basic biological processes as diverse as protein folding and epithelial fluid and
electrolyte secretion. The list of confirmed ‘channelopathies’ is growing and several members of
the TRP family of ion channels have been implicated in human diseases such as mucolipidosis
type IV (MLIV), autosomal dominant polycystic kidney disease (ADPKD), familial focal
segmental glomerulosclerosis (FSG), hypomagnesemia with secondary hypocalcaemia (HSH),
and several forms of cancer. Analysing pathogenesis of the diseases linked to TRP dysregulation
provides an exciting means of identifying novel functions of TRP channels.

(Resubmitted 14 August 2006; accepted after revision 23 November 2006; first published online 30 November 2006)
Corresponding author K. Kiselyov: Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue,
Pittsburgh, PA 15260, USA. Email: kiselyov@pitt.edu

Pathogenesis of some ‘TRPpathies’, such as HSH, appears
straightforward. HSH manifests as low blood Mg2+ due
to deficient renal and intestinal Mg2+ re-absorption
(reviewed in Konrad et al. 2004). HSH has been linked
to several mutations in the gene TRPM6 , which codes
for the TRPM6 channel (Schlingmann et al. 2002; Walder
et al. 2002) (chromosomal localization of this and other
TRP coding discussed in this review can be found in
Table 1). This Mg2+-selective channel is predominantly
expressed in the intestinal epithelium and in the kidney
(Schlingmann et al. 2002; Walder et al. 2002), and some of
the mutations shown to induce HSH result in an inactive
channel in recombinant system (Voets et al. 2004). Some
other HSH-linked mutations affect TRPM6 interaction
with TRPM7 (Chubanov et al. 2004), its close relative
linked to Guamanian amyotrophic lateral sclerosis and
parkinsonism dementia (Hermosura et al. 2005). Since
many TRP channels hetero-multimerize in order to form
functional channels (Strubing et al. 2001; Goel et al.
2002; Strubing et al. 2003), the loss of TRPM6–TRPM7
interaction results in the loss of channel function
(Chubanov et al. 2004).

Perhaps the best-known example of a pathologically
relevant TRP channel is TRPV1. Cloned as a result of
a search for molecular determinants of perception of
heat and the noxious compound in hot pepper, capsaicin

(Caterina et al. 1997; Tominaga et al. 1998), TRPV1 seems
to be involved in an array of functions involving perception
of heat and chemical pain (Table 1, see also (Clapham,
2003; Nilius et al. 2005)). TRPV1 is clearly a promising
target for pharmacological interventions into pain, cough,
inflammation and urinary problems (reviewed in Nagy
et al. 2004; Szallasi & Appendino, 2004; Jia et al. 2005).

The causal relationships between dysregulation of TRP
channels and the corresponding genetic diseases remain
obscure for several human TRPpathies. Some diseases,
such as ADPKD, attracted enormous interest in recent
years, which resulted in a significant degree of under-
standing of the physiology of the corresponding TRP
channels if not of the exact connection between the channel
dysregulation and the disease. As discussed below, the
same is largely true for TRPC6, TRPV6 and cancer as well
as for TRPC6 and FSG. Very limited information exists
about localization, permeation properties or regulation of
TRPM1, despite clearly documented links to skin cancer.
Several recent reports, focused on the function of the
lysosomal ion channel TRP-ML1, mutations in which are
responsible for lysosomal storage disorder MLIV, have
suggested several possible roles of this ion channel in
regulating lysosomal function. The present review will
focus on these TRPpathies, and will specifically discuss
some unanswered questions pertaining to pathogenesis
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Table 1. TRP channels implicated in genetic disorders

Chromosomal
TRP localization Causative
channel Gene (human/mouse) Associated disorder Effect of mutation relationship References

TRP channels linked to human diseases
TRP-ML1 MCOLN1 19p13.3-p13.2 MLIV Down/change in Yes (Bassi et al. 2000;

8 A1.1 selectivity or localization Sun et al. 2000;
Bach, 2001;
Slaugenhaupt, 2002;
LaPlante et al. 2004;
Manzoni; et al. 2004
Raychowdhury et al. 2004;
Cantiello et al. 2005;
Kiselyov et al. 2005)

TRPP2 PKD2 4q21-q23 ADPK2 Down Yes (Koptides & Deltas, 2000;
5 E5 Boucher & Sandford, 2004)

TRPC6 TRPC6 11q21-q22 Prostate cancer Up ? (Buess et al. 1999;
9 A1 Thebault et al. 2006)

— — — FSG Up/? Yes/? (Reiser et al. 2005;
Winn et al. 2005)

TRPV6 TRPV6 7q33-q34 Prostate Up Increased (Peng et al. 2001;
cancer proliferation Wissenbach et al. 2001;

Fixemer et al. 2003;
Wissenbach et al. 2004;
Schwarz et al. 2006)

TRPM1 TRPM1 15q13-q14 Cutaneous melanoma Down ? (Duncan et al. 1998;
7 C Fang & Setaluri, 2000)

TRPM6 TRPM6 9q21.13 Hypomagnesemiawith Down or disrupted Yes (Schlingmann et al. 2002;
19 B secondary interaction Walder et al. 2002;

hypocalcaemia with TRPM7 Chubanov et al. 2004;
Voets et al. 2004;
Schlingmann et al. 2005)

TRPM7 TRPM7 15q21 Guamanian amyotrophic Mutations that Yes (Hermosura et al. 2005)
2 F2 lateral sclerosis, increase inhibition

parkinsonism dementia by Mg

TRPM8 TRPM8 2q37.1 Prostate, breast, colon, Up/Down Increased cell (Tsavaler et al. 2001;
1 D lung, and skin tumers survival (Fuessel et al. 2003;

Henshall et al. 2003;
Zhang & Barritt, 2004, 2006)

Phenotypes in mice with altered TRP channels
TRPC2 TRPC2 11p15.4-p15.3 Altered sexual Knock-out Pheromone (Leypold, 2002;

(pseudogene) and social behaviour recognition Stowers et al. 2002)
7 F1

TRPC3 TRPC3 4q27 Cardiac hypertrophy Transgenic expression Ca2+ entry (Nakayama et al. 2006)
3 B or cardiomyopathy of human TRPC3

in mouse heart

TRPC4 TRPC4 13q13.1-q13.2 Impaired regulation Knock-out Ca2+ entry (Freichel et al. 2001;
3 D of vascular tone Tiruppathi et al. 2002;

and vascular permeability Freichel et al. 2004)

TRPC6 TRPC6 11q21-q22 Blood pressure Knock-out Regulation of (Dietrich et al. 2005b)
9 A1 regulation smooth muscle

contractility in mice

TRPM5 TRPM5 11p15.5 Suppressed taste; impaired Knock-out Taste sensation, (Zhang et al. 2003;
7 F5 thermal sensitivity of taste Thermosensation Talavera et al. 2005;

Damak et al. 2006)
— — — Beckwith-Wiedemann ? Aberrant imprinting (Enklaar et al. 2000;

syndrome (BWS) in the gene cluster Prawitt et al. 2000)
containing TRPM5∗

TRP-ML3 MCOLN3 1p22.3 Pigmentation defects, Mutations (knock-out ? (Di Palma et al. 2002)
3 H2 hearing loss due to is perinatal lethal)

hair cell degeneration

TRPP2 PKD2 4q21-q23 Kidney cysts, liver Knock-out Mechanically (Wu et al. 1998;
5 E5 lesions, cerebral induced Qian et al. 2003;

arterial lesions Ca2+ influx Thomson et al. 2003;
Gallagher et al. 2006)

C© 2007 The Authors. Journal compilation C© 2007 The Physiological Society



J Physiol 578.3 TRPpathies 643

Table 2. Continued

TRPP3 PKD2L1 10q24 Kidney and Deletion in the region ? (Nomura et al. 1998)
19 C3 retinal defects containing PKD2L1∗∗

TRPV1 TRPV1 17p13.3 Abnormal bladder. Knock-out, Down Mechanosensation?, (Caterina et al. 2000;
11 B3 contractions. Diminished Thermosensation Davis et al. 2000;

heat sensation, Kamei et al. 2001;
thermal hyperalgesia, Birder et al. 2002;
fever production,allodynia, Walker et al. 2003;
neuropathic pain Karai et al. 2004;

Iida et al. 2005;
Jhaveri et al. 2005;
Kanai et al. 2005;
Christoph et al. 2006)

TRPV2 TRPV2 17p11.2 Dystrophic patients Increase in sarcolemma Mechanosensation, (Iwata et al. 2003)
11 B2 and animal models Thermosensation

TRPV3 TRPV3 17p13.3 Deficient response to Knock-out/? (Smith et al. 2002;
11 B4 noxious and non-noxious Xu et al. 2002;

heat; dermatitis Moqrich et al. 2005;
and hairlessness Asakawa et al. 2006)

TRPV4 TRPV4 12q24.1 Hearing impairments, Knock-out Mechanosensation, (Mizuno et al. 2003;
5 F Abnormal thermal selection Thermosensation Todaka et al. 2004;

and osmotic regulation Lee et al. 2005;
Tabuchi et al. 2005)

TRPV5 TRPV5 7q35 Hypercalciuria Knock-out Ca2+ reabsorbtion (Hoenderop et al. 2003)

TRPA1 TRPA1 8q13 Impaired cold, Antisense Thermosensation, (Story et al. 2003;
1 A3 mechanical and chemical knockdown, Knock-out mechanosensation Obata et al. 2005;

nociception Bautista et al. 2006;
Katsura et al. 2006;
Kim et al 2006;.
Kwan et al. 2006)

Only the channels with confirmed involvement in human diseases or the channels whose mouse knock-out models show clear
aberrant physiological function are listed. ∗Although TRPM5 is known to reside within a cluster of genes affected in BWS, no
clear connection between BWS and TRPM5 up/down-regulation has been shown. ∗∗ Krd (kidney and retinal defects) mice have a
deletion in the region containing PKD2L1 gene and show kidney agenesis or cysts and retinal degeneration. TRPP3 is deleted in Krd mice.

of these diseases and the roles of the corresponding ion
channels in maintaining normal cellular function.

To illustrate the broad physiological roles of TRP
channels, Table 1 lists the physiological functions of
TRP channels derived from genetic diseases, in in
vitro experiments and from knock-out mice. Additional
information on the biology, physiological functions and
therapeutic potential of TRP channels can be found in
several excellent recent reviews (Clapham, 2003; Nilius
et al. 2005) and a series of reviews published in Cell
Calcium (volume 33, issues 5–6, 2003) and Pflugers Archiv
(volume 451, number 1, 2005).

Mucolipin 1 and MLIV

MLIV is a neurodegenerative disorder with an early
onset. Patients with MLIV display severe psychomotor
retardation and a developmental delay (reviewed in Bach,
2001; Slaugenhaupt, 2002). Other clinical manifestations
of MLIV include achloridia and hypergastrinaemia
(Schiffmann et al. 1998; Lubensky et al. 1999). At the
cellular level, MLIV is a classic lysosomal storage disease
with accumulation, in virtually all tissues and cells,
of electron-dense vesicles and membranous inclusions

containing phospholipids (Bach & Desnick, 1988; Bargal
& Bach, 1989) and gangliosides (Zeigler & Bach, 1986).
Proteolysis defects have not been shown in MLIV.

MLIV is caused by nonsense or missense mutations
in the gene MCOLN1, which codes for TRP-ML1, a
member of the TRP-ML subfamily (Bassi et al. 2000; Sun
et al. 2000). The mutations result in deletion or affect
cellular localization or ion selectivity and permeability
of TRP-ML1 (LaPlante et al. 2004; Manzoni et al. 2004;
Raychowdhury et al. 2004; Cantiello et al. 2005; Kiselyov
et al. 2005).

TRP-ML1 is a lysosomal ion channel (Manzoni et al.
2004; Kiselyov et al. 2005; Miedel et al. 2006; Soyombo
et al. 2006; Vergarajauregui & Puertollano, 2006), and
is therefore expected to regulate lysosomal ion content,
although its role in lysosomal function is still not known in
full. TRP-ML1 was reported to be a Ca2+ channel (LaPlante
et al. 2002, 2004), or an outwardly rectifying monovalent
cation channel regulated by either Ca2+ (Cantiello et al.
2005) or pH (Raychowdhury et al. 2004). Our recent
work shows that TRP-ML1 limits lysosomal acidification
by providing a lysosomal H+ leak pathway (Soyombo
et al. 2006) (Fig. 1). H+ is a critical lysosomal ion that
regulates numerous lysosomal functions. The acidification
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of the lysosomal lumen is mediated by a vacuolar H+

pump (Beyenbach & Wieczorek, 2006) and ClC family Cl−

channels (Jentsch et al. 2005). A H+ leak mechanism that
limits lysosomal acidification has been proposed but not
identified. We suggest that in the absence of TRP-ML1
the lysosomes are chronically overacidified. In contrast
with our findings, Bach et al. (1999) reported normal
lysosomal pH in MLIV fibroblasts. The reason for the
different findings is not known. However, we note that
(a) we used two different techniques to estimate lysosomal
pH, (b) MLIV cells are particularly sensitive to the weak
base chloroquine (Goldin et al. 1999; Soyombo et al. 2006),
which can only be if their lysosomes are more acidic
than the normal lysosomes, (c) TRP-ML1 is permeable
to H+ and (d), the MLIV phenotype can be reversed by
dissipating lysosomal pH (Soyombo et al. 2006).

TRP-ML1 has also been suggested to modulate
lysosomal biogenesis by mediating fusion of lysosomes
with late endosomes or fission of lysosomes from hybrid

TRP-ML1

Cl-

TRP-ML1

H+

TRP-ML1-/-

H+

In normal cells, the H+ leak
through TRP-ML1  provides
a feedback loop that
periodically reduces
lysosomal acidity

The loop is broken in TRP-
ML1-deficient cells, which
results in over-acidification
of the lysosomes

Cl- H+

H+

Cl-
H+

H+

Figure 1. Function of TRP-ML1 as a lysosomal H+ leak valve
Lysosomal acidification is mediated by V-type H+ pumps and ClC Cl−
channels. At moderate lysosomal pH (top), TRP-ML1 provides a H+
leak to limit lysosomal acidification. Cleavage of TRPML1 by a
Cathapsin B-mediated mechanism leads to further acidification of the
lysosomes (middle). Arrival of a new TRP-ML1 increases lysosomal H+
leak to reestablish the moderate acidic state (top). The cycle is
repeated resulting in oscillation in lysosomal pH between the moderate
and acidic states. In the absence of TRP-ML1, the H+ leak valve does
not work, which results in chronically over-acidified lysosomes.

organelles (LaPlante et al. 2004; Piper & Luzio, 2004;
Treusch et al. 2004). The biogenesis model integrates
results obtained in human MLIV fibroblasts and in
C. elegans deficient in the TRP-ML1 homologue CUP-5.
An exchange between lysosomal and late endosomal
content was reported to be affected in MLIV fibroblasts
(LaPlante et al. 2002), which was taken to indicate
that down-regulation of TRP-ML1 impedes the fusion
of lysosomes with endosomes. On the other hand, the
ablation of CUP-5 in C. elegans increased retention of
lysosomal markers in late endosomes, which could be
reversed by knocking-in the human TRP-ML1 (Treusch
et al. 2004). This was interpreted as delayed reformation of
lysosomes from the late endosomes in TRP-ML1-deficient
cells and TRP-ML1 was suggested to promote the
fission of lysosomes from late endosomes. Although an
elegant hypothesis, several findings are not consistent
with a primary role of TRP-ML1 in regulation of
fusion/fission of endosomes/lysosomes. A primary role
of TRP-ML1–membrane interaction events predicts that
the loss of TRP-ML1 has to result in (a) accumulation
of undigested lipids in pre-lysosomal compartments and
(b) a marked change in the number of lysosomes (Fig. 2).
Several reports, however, showed accumulation of lipids in
the lysosomes of MLIV cells (Chen et al. 1998; Jansen et al.
2001; Soyombo et al. 2006), with no dramatic change in
the lysosomal numbers (Treusch et al. 2004; Soyombo et al.
2006). It is likely that abnormal membrane trafficking in
MLIV is secondary to accumulation of undigested material
in these cells.

A particularly interesting aspect of TRP-ML1 physiology
is its proteolytic cleavage in the lysosomes (Kiselyov et al.
2005; Miedel et al. 2006; Vergarajauregui & Puertollano,
2006). Since the full length TRP-ML1 seems to be the active
form (Raychowdhury et al. 2004; Kiselyov et al. 2005), it is
reasonable to propose that the cleavage is the major form
of regulation of the channel. The full-length TRP-ML1
appears to be constitutively active (Raychowdhury et al.
2004; Kiselyov et al. 2005). The ‘always-on’ modus operandi
of TRP-ML1 is consistent with its role in H+ leak, or a
shunt-like activity. Thus, the cleavage may be a mechanism
to limit its activity to a selective subset of organelles
in the lysosomal degradation pathway. The only other
form of TRP-ML1 regulation discovered so far is by
divalent ions (Cantiello et al. 2005; Soyombo et al. 2006),
raising the possibility that changes in cytoplasmic Ca2+

([Ca2+]i) during cell stimulation may acutely regulate
channel activity.

Polycystin 2 and ADPKD

Autosomal dominant polycystic kidney disease (ADPKD)
is an inherited late onset renal disorder characterized
by formation of kidney cysts leading to renal failure.
ADPKD also has extrarenal effects that include formation
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of cysts in the pancreas, liver and spleen, hypertension
and brain aneurisms. About 20% of the cases of ADPKD
are associated with mutations in the gene PKD2, which
codes for the ion channel polycystin 2 (TRPP2) (reviewed
in Koptides & Deltas, 2000; Boucher & Sandford, 2004).
TRPP2 physically interacts with polycystin 1 (PC1), which
is probably involved in cell–cell communication and
establishment of cellular junctions. Mutations in the gene
coding for PC1 are responsible for the remaining cases of
ADPKD.

TRPP2 is a cation channel with limited selectivity for
Ca2+ (Gonzalez-Perrett et al. 2001; Koulen et al. 2002).
Depending on cell type and expression system, TRPP2
localizes at the endoplasmic reticulum (Koulen et al. 2002),
the primary cilia (Yoder et al. 2002; Nauli et al. 2003;
Raychowdhury et al. 2005; Geng et al. 2006), the apical pole
(Gonzalez-Perrett et al. 2001) or the basolateral surface of
epithelial cells (Foggensteiner et al. 2000).

Why mutations in TRPP2 lead to formation of the
fluid-filled kidney cysts is unclear. Localization of TRPP2
in the primary cilia led to a model in which TRPP2
reads the mechanical disturbance of the cilial apparatus
in response to flow (Nauli et al. 2003; Ong & Wheatley,
2003; Nauli & Zhou, 2004). TRPP2 responds to mechanical
stimulation (Montalbetti et al. 2005) and the association
of TRPP2 with the cytoskeletal elements tropomyosin-1
(Li et al. 2003a), troponin I (Li et al. 2003b), α-actinin
(Li et al. 2005a) and HS1-Associated Protein X1 (Hax-1)

LE

EE

Lyso

LE

EE

Aberrant lysosomal-endosomal
fusion/fission in TRP-ML1-
deficient cells should lead to:

1. Accumulation  of
endocytosed
material in pre-
lysosomal
compartments

2. A significant change in the
number of lysosomes

Lyso

Regulation of lysosomal pH
and lipolysis by TRP-ML1 is
expected to result in:

1. Accumulation  of
endocytosed material
in lysosomes

2. A decrease in
lysosomal lipolysis

Lipid traffic

Figure 2. A comparison of the expected consequences of a role of TRP-ML1 in regulation of lysosomal
biogenesis (left) or reduction in lysosomal acidity and hydrolytic activity (right)
The biogenesis model proposes that TRP-ML1 regulates fusion of lysosomes (Lyso) with late endosomes (LE) or
reformation of lysosomes from hybrid organelles and their accumulation in the cytoplasmic pool. Consequently,
in the absence of TRP-ML1 the exchange of endocytosed material between late endosomes and the cytoplasmic
pool of lysosomes would be impaired and the endocytosed material would accumulate in late endosomes. This
should lead to a significant change in the numbers of lysosomes. Regulation of lysosomal pH by TRP-ML1 leads
to an alternative model in which lysosomal overacidification in the absence of TRP-ML1 affects lysosomal lipolysis
and perhaps proteolysis. This model predicts accumulation of endocytosed material in lysosomes and a significant
decrease in lysosomal hydrolytic activity.

Gallagher et al. 2000) further supports the role of TRPP2
in mechanotransduction. The sensitivity of TRPP2 to
mechanical stimuli is probably regulated by hormones,
neurotransmitters and growth factors since stimulation of
phospholipase C-coupled receptors activates TRPP2 (Ma
et al. 2005).

The mechanotransduction model postulates that
activation of TRPP2 by mechanical deflection of the
cilia induces local Ca2+ influx, which propagates into
the cell interior by Ca2+-induced Ca2+ release through
activation of ryanodine- and inositol (1,4,5) trisphosphate
receptors (Nauli et al. 2003), or perhaps by activation
of the endoplasmic reticulum resident TRPP2 (Koulen
et al. 2002). The flow-induced Ca2+ responses in tubular
epithelial cells mediated by TRPP2 are probably necessary
for reporting changes in flow rate and fluid osmolarity.
This can explain the particular susceptibility to ADPKD
of the kidney, pancreatic and biliary duct and spleen, all
of which experience large fluctuations in fluid flow and
osmolarity.

How the TRPP2-mediated Ca2+ fluxes translate to the
downstream cellular response has not been elucidated.
The TRPP2-mediated Ca2+ fluxes probably have acute and
long-term effects. The latter may include gene activation
and regulation of cell proliferation.

TRPP2 was shown to be a cofactor in PC-1-dependent
cell cycle arrest induced by activation of the JAK-STAT
signalling pathway (Bhunia et al. 2002). Furthermore, the
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C terminus of TRPP2 binds the transcriptional suppressor
Id2 (Li et al. 2005b), a member of an ‘inhibitor of
DNA binding’ (Id) helix–loop–helix transcription factor
subfamily. The Id family proteins lack DNA binding
domains but they bind helix–loop–helix transcription
factors, and inhibit their binding to DNA. Depending on
cell type, this may inhibit or promote cell differentiation
and proliferation (reviewed in Perk et al. 2005). In the
absence of TRPP2 or PC1 most of Id2 is found in
the nucleus. TRPP2 sequesters Id2 in the cytosol (Li
et al. 2005b), which up-regulates a cyclin-dependent
kinase (CDK) inhibitor p21 and down-regulates Cdk2.
These findings suggest that the predominantly nuclear
localization of Id2 in TRPP2- (or PC1-) deficient cells
affects the p21-CDK cell cycle regulation cascade and
results in aberrant cell growth (Li et al. 2005b). The role of
TRPP2 Ca2+ transport function in either of these processes
is unknown. Both effects, however, can account for the
inverse relation between the levels of TRPP2 in kidney
tissues and cell growth rates (Chang et al. 2006; Grimm
et al. 2006).

Melastatin and cutaneous melanomas

A search for molecular correlates of the metastatic
potential of human cutaneous melanomas has led to
the identification of another TRP member, melastatin 1
(TRPM1). A loss of TRPM1 mRNA in metastasizing skin
cancer is as robust a predictor of melanoma progression
as any of the commonly accepted criteria (Duncan et al.
1998).

Normal and benign melanocytes express the full-length
TRPM1 mRNA of approximately 5.4 kb along with
some shorter products (Duncan et al. 1998; Fang &
Setaluri, 2000). Metastatic melanomas and pigmented
metastatic melanoma cell lines lack the full-length
transcript, but express several short fragments of TRPM1
mRNA (Duncan et al. 1998; Fang & Setaluri, 2000). The
anticancer drug hexamethylene bisacetamide (HMBA)
reverses the loss of the full-length TRPM1 mRNA (Fang
& Setaluri, 2000). Although the latter observation links
melanoma progression to the loss of TRPM1, it does not
establish a causative relation between the two.

TRPM1 mRNA levels in melanocytes and melanoma
cell lines seem to depend on the melanocyte-specific
transcription factor MITF as the TRPM1 promoter is
under the MITF control and overexpression of MITF
increases expression of TRPM1 (Miller et al. 2004; Zhiqi
et al. 2004).

The channel properties and physiological function
of TRPM1 have not been explored methodically.
The only recording of TRPM1 activity was obtained
with recombinant channel expressed in HEK 293 cells,
where expression of the full-length TRPM1 dramatically
increased resting [Ca2+]i (Xu et al. 2001). When expressed

alone, the full-length channel was targeted to the plasma
membrane, while coexpression of the full-length and the
short isoforms resulted in retainment of the full-length
TRPM1 in the endoplasmic reticulum (Xu et al. 2001). It
is currently unknown whether expression of TRPM1 in
metastasizing lines inhibits their growth. The situation is
further complicated by the fact that the native TRPM1
protein has not been identified and it was reported
that normal melanocytes do not express noticeable
levels of the predicted full-length TRPM1. A series of
smaller products is detected instead, which was attributed
to proteolysis of the full length protein (Zhiqi et al. 2004).

The properties and cellular localization of other
TRP channels involved in cancer are somewhat better
established. TRPC6 is a plasma membrane channel
permeable to monovalent cations, modestly selective for
Ca2+ and involved in Ca2+ influx induced by activation of
G protein-coupled receptors (Estacion et al. 2004, 2006).
TRPC6 was reported to be down-regulated in a murine
autocrine tumour model (Buess et al. 1999) and to mediate
the Ca2+ influx that maintains growth of prostate cancer
epithelial cells (Thebault et al. 2006).

The highly Ca2+-selective TRP channel, TRPV6, a
vanilloid receptor homologue, is up-regulated in prostate
cancer (Peng et al. 2001; Wissenbach et al. 2001, 2004;
Fixemer et al. 2003; Schwarz et al. 2006) and in
breast, thyroid, colon, and ovarian carcinomas (Zhuang
et al. 2002). Chronic overexpression of TRPV6 reversibly
increases proliferation of HEK 293 cells (Schwarz et al.
2006).

Another TRP channel associated with cancer is TRPM8.
TRPM8 is a non-selective cation channel, that mediates
cold sensation and response to menthol in neuronal cells
(Peier et al. 2002) is also up-regulated in prostate cancer
(Tsavaler et al. 2001; Fuessel et al. 2003; Henshall et al.
2003; Zhang & Barritt, 2006). Strikingly, TRPM8 seems
to be lost at the very advanced stages of prostate cancer
(Henshall et al. 2003). TRPM8 expression is regulated by
androgen (Henshall et al. 2003; Zhang & Barritt, 2004;
Bidaux et al. 2005) and is required for the survival of
the androgen-sensitive LNCaP cell line (Zhang & Barritt,
2004).

Although a connection between apoptosis, cancer and
[Ca2+]i has been established, it is not clear why up- or
down-regulation of these specific TRP channels induce
cell transformation towards the cancerous phenotype.
The remarkable plasticity of the cellular Ca2+ signalling
machinery (Zhao et al. 2001) would probably allow
the cells to adapt to a change in TRP channel activity
in order to maintain normal Ca2+ signalling. It is
likely that these TRP channels have a specific role in
a regulatory protein complex in which they reside. For
example, by colocalizing at the cell junctional complexes,
TRP channels may participate in the regulation of cell
adhesion and neighbour sensing. Studying the role of the
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cancer-associated TRP channels in their cellular context
should test these possibilities.

TRPC6 and familial focal segmental glomerulosclerosis

Recent studies linked mutations in TRPC6 to familial
focal segmental glomerulosclerosis (FSG), a form of
nephropathy due to aberrant glomerular filtration (Reiser
et al. 2005; Winn et al. 2005). FSG causes proteinuria,
nephritic syndrome and a progressive loss of renal
function, often resulting in end-stage renal disease
(Daskalakis & Winn, 2006). Glomerular filtration is
regulated by the slit diaphragm, which forms the renal
filtration barrier. The glomerular podocytes with their foot
processes are central component of the slit diaphragm
(Somlo & Mundel, 2000). The podocytes are contractile
cells that actively regulate glomerular permeability. Several
structural proteins of podocytes participate in assembly
or regulation of the slit diaphragm. Among them are
nephrin, a 185 kDa single transmembrane spanning
protein, localizing at signalling domains in the podocyte
foot structure (Ruotsalainen et al. 1999) and podocin, a
42 kDa single transmembrane spanning protein that is
found at the base of the podocyte foot structure (Roselli
et al. 2002). Podocin interacts with nephrin and with
a CD2-associated protein CD2AP (Schwarz et al. 2001).
Mutations in these structural proteins and in α-actinin 4
(Mathis et al. 1998; Kaplan et al. 2000) have been linked
to the familial forms of FSG. Mutations in NPHS1 that
codes for nephrin and in NPHS2 that codes for podocin
are responsible for the autosomal recessive forms of FSG
(Kestila et al. 1998), whereas mutations in ACTN4 coding
for α-actinin 4 cause autosomal dominant form of FSG
(Mathis et al. 1998).

Another autosomal dominant form of FSG was,
unexpectedly, linked to mutations in TRPC6. In the
glomerulus, TRPC6 is expressed at high levels in the
podocyte foot structure, which determines glomerular
permeability to macromolecules, including proteins. In
the podocytes, TRPC6 interacts with nephrin and podocin,
but not with CD2AP (Reiser et al. 2005; Winn et al. 2005).
Mutations in TRPC6 associated with FSG were found in
several cohorts and appear to fall into two categories:
mutations that result in channel activation (Reiser et al.
2005; Winn et al. 2005), and mutations that had no
apparent effect on channel activity (Reiser et al. 2005).
The activating mutation P112Q was shown to increase the
surface expression of TRPC6 (Reiser et al. 2005; Winn et al.
2005). The mechanism by which the R895C and E897K
increase TRPC6 activity is not known.

It is possible that the activating mutations in TRPC6
result in an increased basal [Ca2+]i to cause a tonic
contraction of the podocytes and a persistent increase in
glomerular permeability to macromolecules. The cause
and effect for the mutations that do not increase TRPC6

activity is still to be determined. These mutations may
boost TRPC6 sensitivity to stimulation, alter protein
turnover or alter interaction with nephrin, podocin or with
other TRPC channels. Podocytes express TRPC1, TRPC5
and TRPC6 (Reiser et al. 2005). TRPC6 function within
a hetero-multimeric TRPC channels complex (Strubing
et al. 2003; Bandyopadhyay et al. 2005; Dietrich et al.
2005a). It is thus possible that mutations that did not affect
the activity of heterologously expressed TRPC6 may affect
Ca2+ influx when TRPC6 is present in hetero-multimers.

It is unclear why some of the probands analysed by Reiser
et al. were positive for such mutations, but did not show the
kidney pathology (Reiser et al. 2005). The latter, and the
lack of a clear kidney phenotype in the TRPC6 knock-out
mice (Dietrich et al. 2005b), suggests that an unidentified
genetic modifier is also involved in FSG pathogenesis.
Indeed, it has been known since the 1970s that a circulating
humoral factor is associated with FSG (Shalhoub, 1974).
The involvement of a circulating factor was postulated
based on the observations of recurrent proteinuria in
transplant patients who were diagnosed with FSG (Ohta
et al. 2001), induction of proteinuria in rats injected with
serum from patients with FSG (Zimmerman, 1984) and
remission of the proteinuria by removal of serum proteins
by treatment with protein A–Sepharose (Dantal et al.
1994). It is possible that variations in the levels of the
circulating factors between patients or with time may
account for variability of manifestations of the disease
and its timing among patients carrying mutations in
TRPC6.

In conclusion, several human diseases highlight the key
role that TRP channels play in cellular physiology. Tracing
mutations in ion channels that are associated with human
diseases provides an excellent tool to reveal their cellular
function. Such studies can also identify the signalling
pathway that interprets signals initialed by the ion channels
in the specific cellular environment in which they function.
An invaluable advantage of these systems is that they have
very distinct phenotypes, which facilitates testing novel
models and hypotheses.
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