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A RT I C L E

Palytoxin-induced Effects on Partial Reactions of the Na,K-ATPase

Nadine Harmel and Hans-Jürgen Apell

Department of Biology, University of Konstanz, 78457 Konstanz, Germany

The interaction of palytoxin with the Na,K-ATPase was studied by the electrochromic styryl dye RH421, which mon-
itors the amount of ions in the membrane domain of the pump. The toxin affected the pump function in the state 
P-E2, independently of the type of phosphorylation (ATP or inorganic phosphate). The palytoxin-induced modifi -
cation of the protein consisted of two steps: toxin binding and a subsequent conformational change into a trans-
membrane ion channel. At 20°C, the rate-limiting reaction had a forward rate constant of 105 M−1s−1 and a 
backward rate constant of about 10−3 s−1. In the palytoxin-modifi ed state, the binding affi nity for Na+ and H+ was 
increased and reached values between those obtained in the E1 and P-E2 conformation under physiological condi-
tions. Even under saturating palytoxin concentrations, the ATPase activity was not completely inhibited. In the 
Na/K mode, �50% of the enzyme remained active in the average, and in the Na-only mode 25%. The experimen-
tal fi ndings indicate that an additional exit from the inhibited state exists. An obvious reaction pathway is a slow 
dephosphorylation of the palytoxin-inhibited state with a time constant of �100 s. Analysis of the effect of blockers 
of the extracellular and cytoplasmic access channels, TPA+ and Br2-Titu3+, respectively, showed that both access 
channels are part of the ion pathway in the palytoxin-modifi ed protein. All experiments can be explained by an ex-
tension of the Post-Albers cycle, in which three additional states were added that branch off in the P-E2 state and 
lead to states in which the open-channel conformation is introduced and returns into the pump cycle in the oc-
cluded E2 state. The previously suggested molecular model for the channel state of the Na,K-ATPase as a conforma-
tion in which both gates between binding sites and aqueous phases are simultaneously in their open state is 
supported by this study.

I N T R O D U C T I O N

The lethal marine toxin palytoxin (PTX) can be extracted 

from polyps of the genus Palythoa (Moore and Scheuer, 

1971). It was found to depolarize mammalian cells by 

causing cation conductance with relatively low ion selec-

tivity (Weidmann, 1977). Small unselective cation chan-

nels with a single-channel conductance on the order of 

10 pS were identifi ed as origin of the electric currents 

(Ikeda et al., 1988; Muramatsu et al., 1988; Tosteson 

et al., 1991; Hirsh and Wu, 1997), and fi nally clear evi-

dence was shown that these cation channels were formed 

upon interaction of PTX with the Na,K-ATPase (Ozaki 

et al., 1985; Habermann, 1989; Wang and Horisberger, 

1997). A large series of experimental studies identifi ed 

some details of the mechanism (Grell et al., 1988; Ikeda 

et al., 1988; Muramatsu et al., 1988; Scheiner-Bobis and 

 Schneider, 1997;  Guennoun and Horisberger, 2000, 

2002; Farley et al., 2001; Wu et al., 2003; Horisberger 

et al., 2004), nevertheless a molecular concept of the ac-

tion of the toxin could not be formulated. A signifi cant 

step forward in the understanding of the PTX action on 

the Na,K-ATPase was obtained by recent electrophysi-

ological experiments and their interpretation on the 

basis of the pump cycle of the Na,K-ATPase (Artigas and 

Gadsby, 2003b; Artigas and Gadsby, 2004).

The Na,K-ATPase is a housekeeping enzyme of al-

most all animal cells and belongs to the family of P-type 

ATPases, which share common features of the ion trans-

port mechanism. Stimulated by the presentation of the 

structure with atomic resolution of the Ca-ATPase of 

the sarcoplasmic reticulum (Toyoshima et al., 2000; 

Toyoshima and Inesi, 2004), the discussion of structure–

function relations of the Na,K-ATPase led to a consis-

tent model of the transport on the basis of the generally 

accepted Post-Albers cycle of the P-type ATPases (Apell, 

2004). The main features are as follows: (a) a ping-pong 

mechanism, i.e., both transported ion species are trans-

ferred successively and in opposite direction across the 

membrane; (b) the transport process for each ion spe-

cies consists of a sequence of reaction steps, which are 

ion binding, ion occlusion, conformational transition 

of the protein, successive deocclusion of the ions, and 

release to the other side of the membrane; and (c) re-

cent experimental evidence showed that the ion bind-

ing sites are placed inside the transmembrane section 

of the proteins and that ion movements occur preferen-

tially during the ion binding and release processes.

Because the binding sites are located in the middle 

of the membrane domain, the ions have to migrate 

through so-called access channels before they bind to, 

or after they dissociate from, their sites. And convincing 

evidence has provided support for this charge movement 
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(de Weer et al., 2000; Apell, 2003). To prevent a chan-

nel-like, electric short circuiting by the Na,K-ATPase 

 under physiological conditions, conformations of the 

protein have to be strictly prohibited in which the bind-

ing sites have simultaneous access to both aqueous com-

partments. This is achieved by the existence of gates 

between the central binding sites and the protein sur-

face, and by a rigorous control of the gates during the 

progress of the pump process in a way that at least one 

gate is always closed. An obvious consequence of this 

constraint is the existence of “occluded states” in which 

both gates are closed simultaneously, and the bound 

ions are trapped inside the membrane domain (Forbush, 

1988; Glynn and Karlish, 1990).

On the basis of this mechanistic concept, Artigas 

and Gadsby (2003a,b) proposed that the effect of PTX 

is a modifi cation of the gating condition of the Na,K-

ATPase in the P-E2 conformation. In the P-E2 state, the 

outside gate (i.e., the gate between binding sites and 

extracellular aqueous phase) is opened and allows the 

exchange of the three Na+ ions against two K+ ions, 

according to the physiological task of the pump. The 

toxin interacts with this state in a way that allows the 

cytoplasmic gate (i.e., the gate between binding sites 

and cytoplasm) to also be opened, and thus establishes 

a relatively nonselective cation channel. This channel is 

the reason for the toxicity of PTX. By patch-clamp ex-

periments, single-channel properties of the Na,K-pump 

channels were analyzed, and their conductance and 

voltage dependence determined under various condi-

tions (Artigas and Gadsby, 2003b; Artigas and Gadsby, 

2004). Single-channel recordings also showed burst-

like behavior in which single channels were opened for 

several seconds and showed conductance fl ickering by 

short closure events on the order of 50 ms (Artigas and 

Gadsby, 2004).

An experimental method alternative to electrophysi-

ological studies to investigate partial reactions of the 

Na,K-ATPase is the application of electrochromic styryl 

dyes, such as RH421, which are a convenient approach 

to study the presence and movements of cations in the 

membrane domain of P-type ATPases (Heyse et al., 

1994; Pedersen et al., 2002). Due to the mechanism of 

the dye molecules, which are dissolved in the lipid phase 

of the membrane bilayer and detect changes of the lo-

cal electric fi elds, entry and binding of cations can be 

monitored by a fl uorescence decrease. The time course 

reveals the kinetics and the fl uorescence level reveals 

the amount of charge in the binding sites. This method 

was already applied to determine the occupancy of the 

binding sites by ions in the case of the ouabain-inhibited 

sodium pump (Stürmer and Apell, 1992), and to explain 

the apparent electroneutrality of K+ binding in the E1 

conformation of the Na,K-ATPase (Apell and Diller, 

2002). Therefore, it could be expected that the prop-

erties of the styryl dye RH421 may be used to investigate 

the effects of PTX on the ion transport pathway of the 

Na,K-ATPase.

M AT E R I A L S  A N D  M E T H O D S

Materials
Phosphoenolpyruvate (PEP), pyruvate kinase (PK), lactate dehy-
drogenase (LDH), NADH, BSA, and ATP (disodium salt, special 
quality) were from Boehringer. PTX was bought from Calbio-
chem (Palythoa toxica, lot B32897) and Sigma-Aldrich (Palythoa 
 tuberculosa, lot 22K1357; Palythoa caribaeorum, lot 61K1637). The 
electrochromic styryl dye RH421 was ordered from MoBiTec. All 
other reagents were purchased from Merck or Sigma-Aldrich at 
the highest quality available. 1,3-dibromo-2,4,6-tris(methylisoth io-
uronium)benzene (Br2-Titu3+) was a gift from S.D. Karlish 
 (Weizmann Institute of Science, Rehovot, Israel).

Membrane Preparations
Purifi ed membrane preparations with a high concentration of 
Na,K-ATPase (�5.000 pumps per μm2) were prepared from the outer 
medulla of rabbit kidneys using the procedure C of  Jørgensen 
(1974). The enzyme activity of the Na,K-ATPase (Schwartz et al., 
1971) was determined in buffer containing 25 mM imidazole (pH 
7.2), 100 mM NaCl, 10 mM KCl, 5 mM MgCl2, 1.5 mM Na2ATP, 
2 mM PEP, 450 U/ml of pyruvate kinase (PK) and lactate de-
hydrogenase (LDH), and initially 80 μM NADH. The specifi c 
ATPase activity was in the range of 2,000–2,400 μmol Pi per hour 
and mg protein at 37°C, ouabain-insensitive activity was <1%. 
The enzyme activity could be completely blocked in the pres-
ence of 1 μM ouabain. For comparison, some experiments were 
 performed with a purifi ed membrane preparation from duck salt 
gland. The crude microsomal preparation from duck was provided 
by O.D. Lopina (Moscow State University, Moscow, Russia).

Fluorescence Experiments with Styryl Dye RH421
RH421 is an amphiphilic styryl dye that dissolves in lipid mem-
branes with a partition coeffi cient of 2.5 × 105 (Bühler et al., 
1991), with its negatively charged sulfonyl residue directed to-
ward the aqueous phase. By light absorption at the red edge of 
the absorption spectrum, the dye is excited with its delocalized 
positive charge shifted from the pyridine unit of the chromo-
phore toward the more interior placed aniline unit (Pedersen 
et al., 2002). The spectral changes of the styryl dye predominantly 
result from an electrochromic effect, i.e., a shift of the absorption 
band occurs when the energy difference between ground state 
and excited state depends on electric fi eld strength. The electric 
fi eld may also affect the fl uorescence quantum yield.

The local electric fi eld strength is modifi ed by charge transloca-
tions in the course of the pump cycle of the Na,K-ATPase, and the 
styryl dye responds with shifts of the emission spectra to longer 
(red) or shorter (blue) wavelength corresponding to changes of 
the (local) electric potential inside the membrane to more nega-
tive or more positive values, respectively (Bühler et al., 1991).

The fl uorescence measurements in equilibrium-titration ex-
periments were performed with a self-constructed setup using a 
HeNe laser with a wavelength of 594 nm (Laser 2000) to excite 
the fl uorescence of RH421. The emitted light was collected per-
pendicularly to the incident light, fi ltered by a narrow-band inter-
ference fi lter (λmax = 660 nm, half width 15 nm) and detected by 
a head-on photo multiplier (R2066, Hamamatsu). The photo cur-
rent was amplifi ed by a Keithley current amplifi er 427 (Keithley 
Instruments) and collected by a data acquisition board of a PC 
(PCI-T112, Imtec) with sampling frequencies between 1 and 10 Hz. 
The experimental data were displayed on the monitor, stored, 
and analyzed on the PC. The temperature in the permanently 
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stirred cuvette (2 ml) was maintained by a thermostat at 20°C, if 
not mentioned otherwise.

The raw data obtained from a fl uorescence experiment stored 
in arbitrary units were normalized according to the function 
∆F/F0 = (F − F0)/F0, with respect to the initial fl uorescence level, 
F0, so that different experiments can be easily compared.

R E S U LT S

Detection of ion movements in the Na,K-ATPase by the 

electrochromic styryl dye RH421 was applied success-

fully to study the effect of inhibitors of the ion pump 

and identify the affected reaction steps of the pump 

cycle and to analyze the mechanism of cardiac glyco-

sides (Stürmer and Apell, 1992), and recently that of 

the so-called MCS derivatives (Stimac et al., 2005). 

 Accordingly, the technique was applied to learn new 

 details of the mechanism of PTX when interacting with 

the Na,K-ATPase.

Identifi cation of Affected Partial Reactions
The fl uorescent dye RH421 monitors the amount of 

charge (proportional to the number of ions) present in 

the binding sites of the Na,K-ATPase, which are located 

inside the membrane domain of the ion pump (Stimac 

et al., 2005). Well-defi ned enzyme states can be stabi-

lized by an appropriate choice of buffer compositions 

(Stürmer et al., 1991), as shown in Fig. 1 A. When Na,K-

ATPase (9 μg/ml) of a purifi ed membrane preparation 

is equilibrated in standard buffer (25 mM histidine, 

0.1 mM EDTA, 1 mM MgCl2, 0.1 mM H3BO3, 28 μg/ml 

BSA, pH 7.2) and 200 nM RH421, the resulting fl uo-

rescence level, F0, corresponds to the state H2E1 (Apell 

and Diller, 2002). When successive solutions of NaCl 

(50 mM), ATP (500 μM), and KCl (20 mM) are added, 

transition into the states Na3E1, P-E2, and (ATP·E2[K2] + 

Na3E1) are induced, respectively. Addition of KCl gener-

ates the buffer composition in which the Na,K-ATPase 

works under turnover condition. Therefore, the ion 

pumps are distributed mainly between the two states, 

(Na3E1-P and E2[K2]), which precede the rate-limiting 

steps of the cycle. The state Na3E1-P is expected to be 

preferentially populated at the chosen high ATP con-

centration. This sequence of additions we call our 

“standard experiment.” A typical standard experiment 

is shown in Fig. 1 B. It can be seen that the ion pumps 

react within a short time, controlled by the mixing time 

after addition of microliter aliquots to the buffer. When 

100 nM PTX was added under turnover conditions, no 

signifi cant fl uorescence change was observed (Fig. 1 B).

Such standard experiments were repeated with 

 modifi cations. PTX was added in defi ned protein states. 

In Fig. 1, the effects of the toxin on the pump function 

can be seen when added in states E1 (Fig. 1 C), Na3E1 

(Fig. 1 D), and P-E2 (Fig. 1 E). When 100 nM PTX was 

added in state E1 (Fig. 1 C), no signifi cant modifi cations 

of the fl uorescence signal in states E1 and Na3E1 were 

detected. But in both cases, after addition of ATP, the 

fl uorescence level corresponding to P-E2 was no longer 

stable but decayed exponentially with a time constant of 

�100 s to a level that matched the condition of a state 

believed to contain two monovalent cations bound to 

the binding sites. When KCl was added subsequently, 

the fi rst third of the fl uorescence change happened 

rapidly (τ < 5 s) while the rest decayed with a single 

 exponential function with a time constant of �100 s. 

Figure 1. Standard experiments with addition of 100 nM PTX at 
four defi ned states of the Na,K-ATPase. (A) Post-Albers cycle of 
the Na,K-ATPase under physiological conditions. E1 and E2 are 
conformations of the ion pump with ion binding sites facing the 
cytoplasm and extracellular medium, respectively. Three Na+ and 
two K+ are transported out of and into the cytoplasm of the cell, 
respectively. (Na3)E1-P, E2(K2), and ATP·E2(K2) are occluded 
states in which the ions bound are unable to exchange with either 
aqueous phases. In the absence of Na+ and K+, the E1 state is actu-
ally a H2E1 state (Apell and Diller, 2002). The pump states num-
bered 1–4 in the scheme of A can be stabilized by appropriate 
substrate additions, as shown in B except that no ATP was present 
in the beginning of the experiments shown in B–E and that, 
therefore, states 1 and 2 did not carry ATP. When all substrates 
are present, the pump will run through the cycle and most of the 
pumps are accumulated in the states before the two rate-limiting 
steps, labeled by “4.” In B–E, the initial state is always H2E1, with 
the normalized fl uorescence level ∆F/F0 = 0. Subsequently, 
50 mM NaCl, 0.5 mM ATP, and 20 mM KCl were added, which sta-
bilize the states listed in A. PTX was added at different states of 
the protein, as indicated by an arrow: (B) Na3E1-P + ATP·E2(K2), 
(C) H2E1, (D) Na3E1, (E) P-E2. 
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The fi nal fl uorescence level corresponded to the level 

obtained under turnover condition in the absence of 

PTX. When PTX was added in state Na3E1 (Fig. 1 D), no 

signifi cant fl uorescence change was observed in this 

state and the behavior upon addition of ATP was identi-

cal to the results in Fig. 1 C. In the last version of the 

standard experiment, PTX was added in state P-E2 (Fig. 

1 E). Again, an exponential fl uorescence decay with a 

time constant of 100 s was found, and the K+-induced 

change was the same as in Fig. 1 (C and D).

The fi rst and obvious result from this set of experi-

ments is that PTX modifi es the Na,K-ATPase–induced 

fl uorescence signal only in state P-E2. This modifi cation 

is a rather slow reaction when compared with time con-

stants of the unaffected pump cycle, and, in the absence 

of K+, the new steady state obtained upon interaction of 

pump and toxin was always with the level corresponding 

to two positive charges inside the membrane domain of 

the Na,K-ATPase, probably two Na+ ions. Addition of K+ 

ions led to a fl uorescence level that corresponded to that 

observed with ion pumps under turnover conditions.

Rate Constants of the PTX-induced Effect
The fl uorescence decay of the state P-E2 upon addi-

tion of PTX was investigated in two different sets of 

 experiments. In one series, the Na,K-ATPases were 

transferred from the E1 state in standard buffer to pre-

dominantly the P-E2 state by addition of 50 mM NaCl 

and 500 μM ATP, then PTX was added (as shown in 

Fig. 1 E) in concentrations between 50 and 500 nM. 

The fl uorescence decay could be well fi tted by a single 

exponential function, F(f) = ∆F·exp(−k·t), and the rate 

constant, k, determined. Such experiments were per-

formed with PTX commercially available from three dif-

ferent species of Palythoa and with various purifi ed 

Na,K-ATPase preparations, including those from duck 

salt gland. The rate constants k were plotted as function 

of the PTX concentration (Fig. 2). The observed sta-

tionary fl uorescence level after the toxin-induced tran-

sition was independent of the PTX concentration and 

corresponded in all cases to the level with two monova-

lent cations bound in the binding sites.

In all experiments, the PTX concentration depen-

dence of the rate constant resulted in a linear relation 

that is consistent with a chemical reaction of fi rst order,

 ⎯⎯⎯⎯→←⎯⎯⎯⎯
PTX

2 2
bind

diss
P-E + PTX P-E

k

k
. (1)

The reaction is controlled by two rate constants, kbind 

and kdiss, which characterize the forward and backward 

reaction step, respectively, of toxin and ion-pump inter-

action. According to the principles of chemical kinetics, 

the slope of the line through the data points in Fig. 2 

represents the value of kbind, and the intercept with the 

y axis ([PTX] = 0) provides the value of kdiss. The quan-

titative analysis is summarized in Table I, and the results 

of the experiments with the different preparations of 

Na,K-ATPase showed that the binding constant, kbind, 

differed by about a factor of 2 (between 0.9 × 105 s−1M−1 

for rabbit enzyme and 1.9 × 105 s−1M−1 for salt gland 

enzyme). The deviation in the case of the experiments 

with PTX from P. tuberculosa with kbind = 0.57 × 105 

s−1M−1 (Fig. 2 A) may be caused by an inaccurate fi lling 

of the delivered sample. We had no means to verify the 

accuracy of the “25 μg” printed on the label. The disso-

ciation rate constant, kdiss, varied between 9.0 × 10−4 s−1 

(rabbit kidney) and 19.5 × 10−4 s−1 (salt gland). This 

value corresponds to a time constant for the backward 

reaction in the order of 1,000 s for the renal enzyme in 

a buffer with 50 mM NaCl and pH 7.2.

The values of kbind and kdiss determined from the ex-

periments can be used to calculate the half-saturating 

PTX concentration for the Na,K-ATPase, Km = kdiss/ 

kbind, to be 10 ± 3 nM (50 mM NaCl) and 13.4 nM 

(5 mM NaCl). In addition, equilibrium titration experi-

ments were performed in the presence of 5, 50, and 

200 mM NaCl, in which the enzyme was phosphorylated 

by 500 μM ATP. After a steady-state fl uorescence level 

was obtained, PTX was added in small aliquots up to 

300 nM and the toxin-induced fl uorescence decrease 

Figure 2. Kinetics of the PTX-induced transition from P-E2 into 
the toxin-modifi ed state, PTX

2 2P-E Na . The fl uorescence decrease 
upon addition of PTX as shown in Fig. 1 E could be perfectly fi t-
ted by a single exponential function, ∆F·exp(−kt). The rate con-
stant k was determined for PTX concentrations between 100 and 
600 nM for different Na,K-ATPase preparations and PTX sources. 
(A) PTX from P. caribaeorum (1 and 2) and two different prepara-
tions from rabbit kidney, (3) PTX from P. tuberculosa and the same 
enzyme as in trace 1. (B) PTX from P. caribaeorum, (1) rabbit kid-
ney Na,K-ATPase and (2) duck salt gland Na,K-ATPase.
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was detected (unpublished data). The respective fl uo-

rescence levels were plotted against the PTX concentra-

tions, and the resulting concentration dependence 

could be fi tted by a binding isotherm with Km = 34.5 ± 

6 nM (5 mM NaCl), Km = 31.8 ± 6 nM (50 mM NaCl), 

and Km = 25 ± 4 nM (200 mM NaCl).

Reversibility of PTX-induced Modifi cation 
of the Na,K-ATPase
To study the effect of PTX on the turnover rate of the 

Na,K-ATPase in its Na-only mode, the following series of 

experiments was performed. The Na-only mode is a 

noncanonical mode of the pump in which Na+ ions are 

pumped in the absence of K+ ions. A standard RH421 

experiment was started as shown in Fig. 1 B, up to the 

point where ATP was added. This time, however, only 

1 μM ATP was added. In these experiments, the cuvette 

volume was 2 ml, and thus nATP = 2 × 10−9 mol. The 

amount of protein was 9 μg (or nprot = 6 × 10−11 mol). 

Therefore, such a small amount of ATP provided sub-

strate for nATP/nprot = �33 turnovers per ATPase as an 

average. Under this condition the buffer was depleted 

of ATP after �100 s (Fig. 3); the Na,K-ATPases stopped 

cycling and were trapped in the Na3E1, the proximate 

state of the pump cycle before enzyme phosphorylation. 

The experiment was then continued in the manner of 

Fig. 1 D, when 50 nM PTX was added, followed �1 min 

later by another aliquot of 1 μM ATP. After the ATP was 

completely hydrolyzed and the pumps returned again 

to Na3E1, another 50 nM PTX was added followed by 

1 μM ATP �1 min later. This procedure was repeated 

three more times. The resulting fl uorescence trace is 

shown in Fig. 3. The modifi cation of the pump function 

by PTX can be seen best at the highest (here 200 nM) 

PTX concentration. After addition of 1 μM ATP, all 

pumps proceeded to the P-E2 state (represented by the 

highest fl uorescence level) in which the inhibitor inter-

acts with the protein by transforming it into a channel 

with higher ion-binding affi nities, and thereupon Na+ 

ions bound and caused the observed exponential fl uo-

rescence decrease. The subsequent plateau phase rep-

resents the condition when the Na,K-ATPase molecules 

were preferentially in the PTX-modifi ed state in which 

they nevertheless were able to hydrolyze ATP, as will be 

shown below. With increasing depletion of ATP in the 

buffer, more and more pumps that left the PTX-modifi ed 

state were trapped in the state before enzyme phosphor-

ylation, Na3E1. This transition can be seen in the third 

phase of the fl uorescence signal when it returned to the 

low level before addition of ATP.

Three signifi cant modifi cations in the time course of 

the fl uorescence signals were found in the presence of 

PTX: (1) with increasing PTX concentrations, the time 

taken for all pumps to return to the Na3E1 state became 

longer, (2) with increasing PTX concentrations, an in-

termediate state developed with a fl uorescence level 

corresponding to two cations bound in the membrane 

Figure 3. Effect of PTX on the P-E2 state of the Na,K-ATPase. 
 After the Na,K-ATPase was equilibrated in standard buffer at 
20°C, the fl uorescence level, F0, represents the state H2E1. Addi-
tion of NaCl (50 mM) induced the transition to Na3E1 and the 
subsequent addition of ATP (1 μM) led to enzyme phosphoryla-
tion, transition into the P-E2 conformation, and release of the 
Na+ ions bound. Due to the fact that the amount of ATP present 
was so small, within �100 s, all ATP was hydrolyzed and all pumps 
returned into the equilibrium state, Na3E1, under this buffer 
 condition. Then 50 nM PTX was added as well as another 1 μM 
ATP. In the presence of PTX, the time course of the fl uorescence 
signal was slightly modifi ed. Repetitive additions of 50 nM PTX 
and 1 μM ATP up to a fi nal PTX concentration of 200 nM led to 
a distinct fl uorescence pattern with an intermediate fl uorescence 
level, which corresponded approximately to the level of the ion 
pump with two monovalent cations bound. After each reaction 
sequence, however, the fi nal equilibrium state was Na3E1.

TA B L E  I

Overview of the Kinetic Parameters of the PTB Binding Kinetics

Toxin, experimental 

condition

kbind/s−1M−1 kdiss/s−1 Km/nM

P. carib., renal enz., 

 50 NaCl

(0.90 ± 0.05) 105 (9.0 ± 3) 10−4 10 ± 3

P. toxica, renal enz., 

 50 NaCl

(0.80 ± 0.04) 105 (13.0 ± 4) 10−4 16 ± 4

P. tuberc., renal enz., 

 50 NaCl

(0.58 ± 0.01) 105 (12.6 ± 5) 10−4 22 ± 5

P. carib., salt gland, 

 50 NaCl

(1.87 ± 0.13) 105 (19.5 ± 8) 10−4 10 ± 8

P. carib., renal enz., 

 5 NaCl

ND ND 34.5 ± 6 

P. carib., renal enz., 

 50 NaCl

ND ND 31.8 ± 6

P. carib., renal enz, 

 200 NaCl

ND ND 25.0 ± 4

P. carib., renal enz, 

 0 NaCl, Pi 

(0.208 ± 0.02) 105 (29.6 ± 6) 10−4 142 ± 6

Three sources of PTX were used: from Palythoa caribaeorum (P. carib.), Palythoa 
toxica (P. toxica), and Palythoa tuberculosa (P. tuberc.). In the time-solved experiments, 

kbind and kdiss were obtained from experiments and the equilibrium dissociation 

constant calculated as Km = kdiss/kbind. The Na+ concentration dependence of 

PTX binding was performed as equilibrium titration experiments.
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domain, and (3) as already shown (Fig. 2), the transition 

from the initial P-E2 state immediately following phos-

phorylation by ATP is also dependent on PTX, its time 

constant being shorter the higher the toxin concentra-

tion. The latter fact is not strikingly evident in Fig. 3, but 

exponential fi ts to the initial parts of the fl uorescence 

decay curves showed that the dependence of their rate 

constants on PTX concentration was indistinguishable 

from that shown in Fig. 2.

After the last addition of PTX, the total concentration 

was 200 nM. A corresponding return into the state Na3E1 

after �1,100 s was also observed in the presence of 

700 nM (not depicted). This fact indicates that even at 

a saturating concentration of the toxin, all pumps even-

tually end up in a state in which PTX does alter fl uores-

cence. Since the fi nal fl uorescence level following ATP 

exhaustion is identical to that of Na3E1 before PTX 

 addition, we can discard the hypothesis that only the 

enzyme fraction unaffected by PTX consumed the ATP. 

If that were the case, the higher fl uorescence of the 

PTX-modifi ed enzyme, with two cations bound, would 

have raised the overall fl uorescence above the Na3E1 level 

in the steady state. In consequence, the conclusion is that 

PTX modifi cations of the Na,K-ATPase are reversible.

In the presence of 50 mM NaCl and 200 nM PTX, 

a steady state occurs in which �86% (assuming Km = 

31.8 nM; Table I) to 95% (assuming Km = 10 nM) of 

the enzyme molecules to be in the PTX-bound state. 

As discussed above, an average of 33 turnovers per 

pump must occur to consume the 1 μM ATP added 

at the start of the experiment. Given a PTX “off” time 

constant in the order of 1,000 s (Table I), this complete 

consumption of ATP, requiring 33 turnovers, could not 

have taken place within 1,000 s (Fig. 2) unless the PTX-

modifi ed enzyme, in a state with two bound cations as 

inferred from its fl uorescence, still participates in ATP 

hydrolysis. To check this, the effect of the Na+ concen-

tration in the buffer on Na,K-ATPase modifi cation by 

PTX was investigated. Experiments were performed 

in which the ion pump was phosphorylated by 1 μM 

ATP in the presence of various concentrations of NaCl 

(5–50 mM) and 100 nM PTX. One series of experi-

ments is shown in Fig. 4. One interesting result was that 

in the investigated Na+ concentration range, the tran-

sition kinetics into the PTX-modifi ed state at a concen-

tration of 100 nM PTX was not signifi cantly affected. 

The average rate constant of the fi tted exponential de-

cays was 0.015 ± 0.0004 s−1. The second result was that 

duration of the PTX-modifi ed state until the pumps 

became dephosphorylated and returned to the Na3E1 

state became shorter with increasing Na+ concentra-

tion, i.e., ATP was consumed faster, or in other words, 

Na+ destabilized the toxin-induced state. The overall 

reduced fl uorescence amplitude in the presence of 

5 mM NaCl (Fig. 4, trace a) can easily be explained by 

the fact that at this concentration below half-saturating 

cytoplasmic Na+ binding affi nity, part of the enzyme 

did not participate in ion pumping, thus reducing the 

fl uorescence amplitude.

The duration between PTX addition (at t = 0) and 

the return to the “resting” state, Na3E1, was defi ned as 

the time period, ∆tr, until the fl uorescence amplitude 

returns halfway from the state 
PTX

2 2P-E Na  to Na3E1 

(indicated by diamonds on the fl uorescence traces in 

Fig. 4). It is obvious that Na+ binding speeds up the turn-

over rate and thus ATP consumption. To quantify the 

Na+ concentration dependence, the following estimate 

was performed. The reciprocal time period, 1/∆tr, was plot-

ted against the Na+ concentration in the inset of Fig. 4. 

Since the pump rate may be defi ned as v = nATP/∆t, in 

a fi rst rough approximation we introduced a mean turn-

over rate vr = nATP/∆tr. Such a treatment may be justifi ed 

by the fact that in all experiments the same amount of 

ATP and ATPases was used. Given that the PTX-modifi ed 

enzyme hydrolyzes ATP with the rate v0 when no Na+ 

ions are in the binding sites, and with the rate v∞ when 

both sites are occupied by Na+, then a Na+ concentra-

tion–dependent turnover rate can be assumed to be

 
[ ]

[ ]∞= ⋅ +
+ 0

Na

Na m

v v v
K

, (2)

where [Na] is the Na+ concentration and Km is the Na+ 

concentration for half-maximal activation. With this 

approximation, and under the assumption that the cal-

culated v is proportional to vr, the Na+ concentration 

Figure 4. Dependence of the PTX-modifi ed state of the Na,K-
ATPase on the Na+ concentration in the buffer. The NaCl con-
centrations were 5 mM (a), 10 mM (b), 15 mM (c), 20 mM (d), 
25 mM (e). The fi nal fl uorescence level represents state Na3E1 in 
all experiments and it was achieved faster the higher the Na+ con-
centration was. The time, ∆tr, at which the fl uorescence level re-
turned halfway from the intermediate PTX-inhibited level to the 
fi nal level is indicated by diamonds. The reciprocal value, 1/∆tr, is 
plotted in the inset against the respective Na+ concentration in 
the buffer. The data points were fi tted with Eq. 2 as described in 
the text.
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dependence of vr was fi tted (Fig. 4, inset). The fi t of 

the data was obtained with v∞/v0 = 10.1, which means 

that Na+ ions in the binding sites reduce the stability 

of the PTX-modifi ed state by more than a factor of 10. 

Km was estimated to be 20.1 mM, which is signifi cantly 

smaller than the value obtained for the native enzyme, 

�400 mM (Heyse et al., 1994). This difference in ap-

parent binding affi nity explains well why the RH421 

fl uorescence decreased upon addition of PTX: Na+ 

ions are more readily able to bind to the toxin-modifi ed 

Na,K-ATPase.

When Na+ and K+ titration experiments were per-

formed in the P-E2 state in the absence and presence of 

100 nM PTX, the effect of the toxin on the affi nity of 

the ion-binding sites could be determined. In these 

 experiments, Na,K-ATPase was equilibrated in standard 

buffer and 200 nM RH421. Then the following were 

added: 100 nM PTX (or left out in the control experi-

ments), 5 mM NaCl, and 0.5 mM ATP (similar to Fig. 1 C). 

After a steady-state fl uorescence level was reached, small 

aliquots of NaCl and KCl were added and the fl uores-

cence change recorded. When the normalized fl uores-

cence levels were plotted against the respective cation 

concentration, a fl uorescence decrease corresponding 

to the occupation of the binding sites was obtained, 

which was fi tted by a binding isotherm (unpublished 

data). In the case of Na+ additions, the half-saturation 

concentrations were 18.1 ± 2.0 mM (≥100 nM PTX) 

and �400 mM (0 PTX). When the binding sites were 

 titrated with K+, the obtained Km values were 0.14 ± 

0.02 mM, the same in the absence and presence of 

100 nM PTX.

Temperature Dependence of the PTX-induced Effect
Na,K-ATPase was incubated in standard buffer at  various 

temperatures between 5°C and 38°C. 50 mM NaCl and 

0.5 mM ATP were added to transfer the ion pumps pref-

erentially into state P-E2. Then 100 nM PTX was added 

and the fl uorescence decay was recorded (similar to the 

experiment in Fig. 1 E). The rate constant of the mono-

exponential fi t of the fl uorescence signal was derived 

from the experiments and plotted as Arrhenius diagram 

(Fig. 5). In this plot, two regions with a linear relation of 

ln(k) vs. 1/T were found. On the basis of the underlying 

theory, the linear slope, m, of an Arrhenius plot is pro-

portional to the activation energy, EA, of the rate-limiting 

reaction step EA = m·R. R is the gas constant. The two 

activation energies determined by linear regression 

from the data points were EA,1 = 28.5 ± 8.2 kJ/mol 

above 23°C, and EA,2 = 71.0 ± 3.1 kJ/mol below this 

temperature. Such an abrupt change of the activation 

energy suggests a sharp cooperative phase change such 

as the lipid phase of the purifi ed microsomal prepara-

tion of the Na,K-ATPase used in these experiments.

Due to the high activation energy at low tempera-

tures, this fi nding indicates that at least two separate 

 reaction steps have to exist in the reaction 
+ PTX

2 2P-E PTX P-E , since a Q10 of �2.5 corresponds 

in the case of the Na,K-ATPase to a conformation transi-

tion rather than to substrate binding. This observation 

leads to the following mechanistic proposal:

  (3)

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯ ←⎯⎯⎯⎯⎯⎯
PTX PTX

2 2 2

binding conform. change

(low affinity) (high affinity)

P-E + PTX P-E P-E .

 

According to the well-accepted concept of the pump 

mechanism, the extracellular gate is able to open in the 

P-E2 conformation. Upon binding of PTX, the toxin-

 induced conformational modifi cation enhanced the af-

fi nity of the ion-binding sites for cations. According to 

electrophysiological studies, this conformational rear-

rangement may also allow the second, cytoplasmic gate to 

open, which creates the ion channel as reported recently 

(Artigas and Gadsby, 2003b; Artigas and Gadsby, 2004).

Effect of PTX on the Enzyme Activity
The enzyme activity was determined with the standard 

PK/LDH assay as described in Materials and Methods. 

The activity was determined in the absence and in the 

presence of various concentrations of PTX up to 1500 nM. 

The specifi c activity, AE([PTX]), was normalized to the 

value in the absence of PTX, AE (0). These experiments 

were repeated with three different preparations of 

 rabbit kidney enzyme and one preparation from duck 

salt gland enzyme. The results are shown in Fig. 6. 

When the experiments were performed in buffer con-

taining 10 mM KCl (curve a), PTX inhibited the enzyme 

Figure 5. Temperature dependence of the PTX-induced transi-
tion from P-E2 into the toxin-modifi ed state. The fl uorescence de-
crease upon PTX addition was measured at various temperatures 
between 5°C and 38°C, and fi tted by a single exponential func-
tion, ∆F·exp(−kt). The rate constant, k, was plotted against the 
temperature in form of an Arrhenius plot. The data show differ-
ent temperature dependences below and above 23°C (1/T = 
3.378 × 10−3 K−1). The dashed lines through the data represent 
(1) 71 kJ/mol and (2) 28.5 kJ/mol.
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activity signifi cantly less than in buffer without KCl 

(curve b). When the data were fi tted by a binding iso-

therm, the PTX concentration for half-maximal inhibi-

tion, Km, was found to be 812 nM in the Na/K mode 

and 283 nM in the Na-only mode. Maximum inhibition 

of the Na,K-ATPase at saturating PTX concentrations 

was extrapolated to be 52% in the Na/K mode and 75% 

in the Na-only mode. This result agrees well with the 

PTX inhibition of detergent-activated kidney micro-

somes with a Km of 800 nM as obtained by Böttinger and 

Habermann (1984). In previously published work, the 

Km of guinea pig heart enzyme was found to be �3 μM 

in the Na/K mode and an estimated maximum inhibi-

tion of >80% was found (Ishida et al., 1983).

The observed, limited inhibition of the Na,K-ATPase 

by PTX is another indicator that the PTX-modifi ed state 

of the ion pump can be drained by a reaction pathway 

different from the back reaction of Eq. 1. If the only 

exit from state PTX
2P-E  would be the back reaction to 

P-E2, then a high enough concentration of PTX would 

have to inhibit enzyme activity completely, as is known 

for cardiac glycosides. The second interesting result 

was that in the presence of KCl, even less of the ion 

pump can be kept in the inhibited state and that an ap-

proximately three-times higher concentration of PTX 

is necessary to reach a half-maximal inhibition of the 

enzyme activity. An obvious explanation is that binding 

of K+ in the membrane domain of the pump destabilizes 

the PTX-modifi ed state even stronger than Na+ ions. 

 Possible suggestions for such a destabilizing reaction 

 sequence would be either the dephosphorylation step 

or the reversal of the PTX modifi cation fi rst (see Eq. 4).

After two monovalent cations (X+ = Na+, K+, H+) are 

bound, two different pathways are plausible. The ions 

in the binding site either trigger a dephosphorylation, 

which causes a closing of the occlusion gate on the ex-

tracellular side (indicated by the unpaired “)” in Eq. 4). 

This step is followed by a reversal of the PTX-induced 

conformation change and a closing of the cytoplasmic 

gate. An alternative reaction sequence could be the re-

verse order of the above described sequence. Binding 

of the two cations causes fi rst a reversal of the PTX-

 induced conformation change and a closing of the cyto-

plasmic gate (indicated by the unpaired “(” in Eq. 4), 

then followed by dephosphorylation of the enzyme with 

a complete occlusion of the ions. The third step could 

be accompanied in both cases by a complete dissocia-

tion of the PTX molecule or only by dissociation from 

its direct reaction partner on the protein while remain-

ing attached to the pump, as assumed in Eq. 4. In both 

cases, the last step would be the conformation transi-

tion back to E1 resuming the normal pump cycle. The 

data of Tosteson et al. (2003) support the possibility 

that PTX remains attached to the protein.

Backdoor Phosphorylation and Effects of PTX
So far, all PTX-induced reactions were performed in 

the presence of at least Na+, one of the physiologically 

transported cations. To study the interaction of PTX in 

the absence of Na+ and K+ ions, experiments were per-

formed in standard buffer without monovalent cations 

other than protons (pH 7.2). Addition of Tris phos-

phate (0.5 mM Pi) produced an RH421 fl uorescence 

 increase corresponding to a release of the two positive 

elementary charges, i.e., two H+, which are bound to 

the Na,K-ATPase in E1 when no Na+ or K+ are present 

(Apell et al., 1996; Apell and Diller, 2002). As shown in 

the inset of Fig. 7 A, subsequent addition of 200 nM 

PTX induced an exponential decrease of the fl uores-

cence with a time constant on the order of 120 s and 

reached an equilibrium state at a fl uorescence level 

 corresponding to the initial level before addition of Pi. 

Experiments of this kind were repeated with PTX con-

centrations between 25 and 350 nM. The observed 

Pi-induced fl uorescence rise was the same in the ab-

sence and presence of PTX (unpublished data), indi-

cating that the same partial reaction E2(H2)→P-E2H2→
P-E2 was triggered by addition of Pi.

The analysis of the PTX-induced fl uorescence de-

crease is shown in Fig. 7. The linear dependence of the 

relaxation rate, k, is consistent with a fi rst-order binding 

process of PTX (Eq. 1), and the rate constants obtained 

from Fig. 7 A were kbind = 0.22 × 105 M−1s−1 and kdiss = 

35 × 10−4 s−1. The binding constant, kbind, is a factor of 

four smaller than in the case of the ATP-phosphorylated 

rabbit kidney enzyme, while the kdiss is larger by a factor 

Figure 6. Effect of PTX on the enzyme activity of the Na,K-ATPase. 
The ATP-hydrolyzing activity was measured with the standard PK/
LDH assay and set to 100% in the absence of PTX. The inhibiting 
action of PTX was studied in buffer containing 100 mM Na+ and 
10 mM K+ (a, Na,K-mode) or in 110 mM Na+ (b, Na-only mode). 
In the Na,K mode, no difference was found in enzyme from rabbit 
kidney (solid circles) and duck salt gland (open squares). In the 
presence of 10 mM K+, a signifi cantly lower level of inhibition was 
observed. When the data were fi tted by a single binding isotherm 
(solid lines), the fraction of inhibition at saturating PTX was 52% 
in the Na,K mode and 75% in the Na-only mode.
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of four. The equilibrium dissociation constant for PTX 

in the case of backdoor-phosphorylated pumps, Km, is 

160 nM. The steady-state amplitude of the fl uorescence 

decrease was also analyzed as a function of the PTX con-

centration (Fig. 7 B). Fitting the data with a binding iso-

therm, a half-saturating PTX concentration, Km = 25.8 ± 

5.8 nM was obtained, and a match of the fi nal fl uores-

cence level and the initial (before Pi addition) was 

found. Comparable experiments were also performed 

at pH 6.0 and pH 8.0. While at low pH the binding rate 

constant, kbind = 0.20 × 105 M−1s−1, was the same as in 

buffer of pH 7.2, it was signifi cantly increased at high 

pH, kbind = 0.80 × 105 M−1s−1. The rate of the reverse 

reaction step, kdiss, varied between 15·10−4 s−1 (pH 6) 

and 60 × 10−4 s−1 (pH 8). In summary, these results 

demonstrate by the low steady-state fl uorescence level 

that the PTX-modifi ed Na,K-ATPase binds two H+ ions 

in the absence of other monovalent cations, and the 

rate constant of the transformation into the open chan-

nel is slowed down in the presence of H+, while the 

 reversal is accelerated.

Role of the Access Channels on the PTX-modifi ed State
The concept of PTX modifi cation of the Na,K-ATPase is 

that both occlusion gates may be open at the same time 

and, therefore, that the pump may behave as an ion 

channel. The role of both the cytoplasmic and extracel-

lular access channels may be tested by specifi c blockers 

of each half channel. In the literature, those blockers 

were introduced before. To block the extracellular ac-

cess channel, tetrapropylammonium (TPA+) was used 

(Gatto et al., 2005; Kropp and Sachs, 1977), and on the 

cytoplasmic side, access to the binding sites was pre-

vented effectively by the large organic cation Br2-Titu3+ 

(Hoving et al., 1995).

When RH421 experiments were performed to investi-

gate the effect of TPA+ on the extracellular access chan-

nel in the absence of PTX, it was found (unpublished 

data) that (a) up to 20 mM TPA+, the RH421 fl uores-

cence in standard experiments was not affected by 

TPA+, (b) the half-saturating K+ concentration in-

creased from 0.13 mM (0 TPA+) to 1.77 mM (20 mM 

TPA+), and (c) the enzyme activity in the Na/K mode 

of the Na,K-ATPase was reduced to <5% in the pres-

ence of 20 mM TPA+. At concentrations of 30 mM and 

above, the property of TPA+ as a hydrophobic cation 

(similar to TPP+) came into play; therefore, no data 

were collected above 30 mM. The fact that TPA+ did 

not modify the RH421 fl uorescence at a concentration 

at which >95% of the pumps were inhibited shows that 

the organic cation does not penetrate signifi cantly into 

the membrane domain of the protein but acts on the 

extracellular outside of the Na,K-ATPase more like a 

bottle cap.

Figure 7. Modifi cation of the Na,K-ATPase by PTX under the 
condition of backdoor phosphorylation. When 0.5 mM inorganic 
phosphate (Pi) is added to the Na,K-ATPase in the absence of Na+ 
and K+ ions, the following reaction sequence is triggered: 
(H2E1→)E2(H2)→P-E2H2→P-E2 (Apell and Diller, 2002), and the 
dissociation of the two protons leads to an increase of the RH421 
fl uorescence as shown in the inset of A. Addition of 100 nM PTX 
produced an exponential decay of the fl uorescence intensity 
whose rate constant, k, and fl uorescence amplitude, ∆Fmax, was 
determined. When plotted as function of the applied PTX con-
centration (A), a linear dependence of k on PTX concentration 
was found from which kbind = 0.22 × 105 M−1s−1 and kdiss = 35 × 
10−4 s−1 were determined. (B) The concentration dependence of 
∆Fmax could be fi tted by a binding isotherm with a half-saturating 
binding concentration of Km = 25.8 nM.

  (4)
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The action of PTX on the Na,K-ATPase in the pres-

ence of TPA+ was studied in the kind of experiments 

shown in Fig. 3. Na,K-ATPase was equilibrated in stan-

dard buffer, then 50 mM Na+, 200 nM PTX, and 1 μM 

ATP were added. The experiments were repeated with 

10 or 20 mM TPA+ added to the standard buffer before 

addition of Na+ (Fig. 8 A). The time course of the PTX-

induced fl uorescence change in P-E2 was similar at all 

TPA+ concentrations. The initial, exponential fl uores-

cence decay had the same rate constant, k, of 0.031 ± 

0.002 s−1 irrespective of the TPA+ concentration. The 

time period until 1 μM ATP was hydrolyzed was in-

creased by �15% when TPA+ was increased from 0 to 

20 mM. The most signifi cant change was, however, the 

elevated intermediate fl uorescence level in the pres-

ence of TPA+, which with 20 mM TPA+ corresponded 

to an average occupation of one elementary charge in 

the binding sites.

Assuming that TPA+ produces an all-or-none effect 

on the extracellular access channel, the higher fl uores-

cence level in the presence of 20 mM TPA+ (Fig. 8 A) 

would account for a condition in which access to the 

binding sites was blocked by TPA+ on average in 50% of 

the pumps. If in the presence of PTX the cytoplasmic 

occlusion gate of the Na,K-ATPase is open while access 

from the external side is blocked by TPA+, and under 

this condition still a lesser occupation of the binding 

sites is found as shown in Fig. 8 A, this fact indicates that 

the access to the binding sites through the cytoplasmic 

channel must be somehow restricted, possibly due to 

the repelling Coulomb force of TPA+ in the entrance of 

the extracellular access channel.

To study the properties of the cytoplasmic access 

channel, experiments similar to that shown in Fig. 8 A 

were performed; however, Br2-Titu3+ was added instead 

of TPA+. Results are shown in Fig. 8 B. The main fi nd-

ings are that Br2-Titu3+ in concentrations up to 20 μM 

did not affect the binding rate constant of PTX, k, nor 

the fl uorescence level of the intermediate state. Solely 

the overall time until all ATP was hydrolyzed was ex-

tended by the presence of Br2-Titu3+.

These results are in agreement with the concept of a 

blockade of the cytoplasmic access channel since all 

processes occurring from the extracellular side were 

unmodifi ed, while the restricted connection of binding 

sites and cytoplasm decelerated the overall turnover of 

the pumps, and therefore, the duration until all ATP 

was hydrolyzed is elongated.

To study the action of the access channel blockers in 

the absence of Na+ and K+ ions, the Na,K-ATPase was 

backdoor phosphorylated by 0.5 mM Tris phosphate in 

the absence or presence of the blockers and then ex-

posed to 150 nM PTX. The results of these experiments 

in Fig. 9 reveal several interesting properties. (a) Back-

door phosphorylation is signifi cantly slower in the pres-

ence of 15 μM of the trivalent cation Br2-Titu3+ (τ �42 s), 

probably by a slowed-down formation of the transient 

E2(H2) state, which is needed for phosphorylation. 

In contrast, backdoor phosphorylation was not affected 

by the presence of TPA+, and the phosphorylation 

 kinetics was limited only by the mixing time upon 

Pi  addition, as in the case of the control experiment 

without blockers. (b) When PTX was added to the phos-

phorylated state, there was no signifi cant difference in 

time course and amplitude of the fl uorescence decay 

when the control experiment is compared with the 

 experiment in the presence of 30 mM TPA+. (c) In the 

presence of Br2-Titu3+, however, the amplitude of 

the PTX-induced fl uorescence decrease was reduced to 

�20% of the  control. This effect was independent of 

the presence of TPA+. This observation is also in con-

trast to the  “normal” fl uorescence decrease when Na+ 

(50 mM) was present (Fig. 8 B). (d) In all four traces, 

Figure 8. Effect of access-channel blockers on the PTX-induced 
action of the Na,K-ATPase. Na,K-ATPase was equilibrated in stan-
dard buffer: 200 nM RH421, 50 mM NaCl, and PTX. Upon addi-
tion of 1 μM ATP, the enzyme turned over into the P-E2 state to 
allow PTX (200 nM in [A] and 100 nM [B]) to modify the pump. 
(A) In the absence (a) or in the presence of 10 mM (b) and 
20 mM (c) TPA+, the main difference of the ATP-induced fl uores-
cence signal was an enhanced intermediate fl uorescence level in 
the presence of the channel blocker. (B) In the absence (a) or in 
the presence of 5 μM (b), 10 μM (c), 15 μM (d), and 20 μM (e) 
Br2-Titu3+, the only signifi cant difference was the duration of the 
intermediate, PTX-dependent state, which was elongated by the 
presence of Br2-Titu3+.
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the fl uorescence decrease could be fi tted by a single 

 exponential and the rate constant was the same, 

k = 0.010 ± 0.0002 s−1.

The observed signifi cant reduction of the PTX-

 induced fl uorescence decrease in the presence of Br2-

Titu3+ indicates that on average, only one or less H+ are 

bound to the Na,K-ATPase. A possible explanation of 

this fi nding may be the electrostatic repulsion produced 

by the trivalent cation Br2-Titu3+ bound at the entrance 

of the cytoplasmic access channel that diminishes the 

apparent proton binding affi nity of the binding sites.

According to Fig. 9, H+ binding was not affected by 

the presence of TPA+ in the PTX-induced state. There-

fore, the pH dependence of the RH421 fl uorescence 

was studied in the absence and presence of 15 μM Br2-

Titu3+. The Na,K-ATPase was equilibrated in standard 

buffer and 200 nM RH421, the enzyme was phosphory-

lated by 0.5 mM Tris phosphate in the absence or pres-

ence of 15 μM Br2-Titu3+ (initial pH 7.0), and then 150 

nM PTX was added, and a stationary state was allowed 

to be reached. The respective pH upon each addition 

of HCl was measured with a pH electrode. The resulting 

fl uorescence decrease refl ects H+ binding to the binding 

sites. The results are shown in Fig. 10 A. The pK of the 

fl uorescence decrease represents the half-saturating H+ 

concentration of the site that was initially unoccupied, 

and it was found to be 6.45 ± 0.05 in the absence and 

5.98 ± 0.04 in the presence of Br2-Titu3+ when the data 

were fi tted with a binding isotherm. At saturating H+ 

concentrations (pH < 4.5), the fl uorescence reached 

the same level for both conditions, which corresponded 

to occupancy of the binding sites by two H+. The shift of 

pK (and the reduced fl uorescence level at pH 7) is again 

compatible with a repulsive electrostatic potential gen-

erated by the positively charged Br2-Titu3+ bound at/

in the entrance of the cytoplasmic access channel. The 

ion-binding experiments were repeated with K+, which 

is known to bind with a high affi nity. The results are 

shown in Fig. 10 B. The experiments were performed 

as described above with the only difference that aliquots 

of KCl were added (instead of HCl). The concentration 

dependence was fi tted by a binding isotherm, and the 

half-saturating K+ concentrations, Km, were found to 

be independent of the addition of the channel blocker, 

0.28 ± 0.04 mM (0 Br2-Titu3+) and 0.31 ± 0.03 mM (15 

μM Br2-Titu3+). Again, at saturating K+ concentrations, 

the fl uorescence levels would be identical, correspond-

ing to two K+ bound. The initial difference at low K+ is 

caused by initially less H+ bound (at pH 7) in the pres-

ence of Br2-Titu3+ (compare to Fig. 10 A).

D I S C U S S I O N

The most detailed analysis of the molecular mechanism 

of PTX/sodium pump interaction by now was recently 

contributed by Artigas and Gadsby who studied the ef-

fect of the toxin on the Na,K-ATPase–mediated electric 

currents in outside-out and inside-out patches of 

HEK293 cells and in whole-cell current recordings of 

guinea pig ventricular myocytes (Artigas and Gadsby, 

2003b; Artigas and Gadsby, 2004). From their results 

it could be clearly derived that the Na,K-ATPase is trans-

formed by the toxin into a cation-selective ion channel 

with a suggested (minimal) width of 7.5 Å. PTX in-

teracts preferentially with the P-E2 state, stabilizes 

the ion pump in a state different from the states of the 

Post- Albers pump cycle, and preserves enzyme phos-

phorylation. The obvious and reasonable proposal for 

the molecular mechanism is that PTX provokes a con-

formational rearrangement of the α helices in the pro-

tein’s membrane domain, which allows the cytoplasmic 

gate of the ion pump to become open (in addition to 

the extracellular gate that can already open in the P-E2 

state). These fi ndings and detailed proposals for PTX-

dependent partial reactions could be gained from mea-

surements of the electric currents enabled by the 

open-channel state(s) of the Na,K-ATPase and by their 

substrate kinetics.

The results presented in this study are complemen-

tary to the previous investigations. Fluorescence experi-

ments with the electrochromic styryl dye RH421 monitor 

states of the Na,K-ATPase according to the number of 

ions bound in the membrane domain of the ion pump 

Figure 9. Effect of access-channel blockers on the PTX-induced 
action of the Na,K-ATPase in the absence of monovalent cations 
other than H+. Na,K-ATPase was phosphorylated in standard buf-
fer by 0.5 mM Tris phosphate in the absence or presence of 15 μM 
Br2-Titu3+ and/or 30 mM TPA+. After reaching a steady-state level 
of the fl uorescence, corresponding to state P-E2, 150 nM PTX was 
added. Only Br2-Titu3+, the blocker of the cytoplasmic access 
channel, produced a striking difference by reducing the ampli-
tude of the fl uorescence decrease by about a factor of fi ve. TPA+ 
had no signifi cant effect. In all four cases, the rate constant of the 
exponential decay was 0.01 ± 0.0002 s−1.
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as well as transitions between states (Heyse et al., 1994; 

Pedersen et al., 2002; Stimac et al., 2005). By appropri-

ate choice of the buffer composition, a single (or a few) 

well-defi ned state(s) of the Post-Albers cycle (Fig. 11) 

can be emphasized, and identifi ed by the number of 

ions bound. Instead of detecting the amount of charge 

passing through the open Na,K-ATPase channel per 

time, the fl uorescence monitors the amount of charge 

that is present (on average) inside the membrane do-

main of the protein.

The following discussion is based on two mechanistic 

proposals that so far could be successfully applied to ex-

plain experiments on structure–function relations of the 

Na,K-ATPase: (1) the ion pump consists of binding sites 

for two or three ions in the middle of the membrane 

domain, two access channels that connect the binding 

sites with both aqueous phases of the membrane, and 

two gates that disconnect the binding sites (alternately) 

from either phase when closed (Apell, 2004), and 

(2) PTX reacts reversibly with the Na,K-ATPase and 

opens an ion channel without a major rearrangement of 

the transmembrane helices but in a conformation that 

consists of mainly the “normal” ion pathway with occa-

sionally simultaneously open gates on the cytoplasmic 

and extracellular side of the binding sites. These two 

conditions imply that the ions migrate (diffusion con-

trolled) through the access channels and interact with 

the protein preferentially in the binding sites, which are 

preserved overall in the PTX-modifi ed state.

The PTX-affected State of the Na,K-ATPase
As demonstrated by the experiments in Fig. 1, PTX in-

duces a state of the Na,K-ATPase that can be distin-

guished by its specifi c fl uorescence level from the 

precedent state, P-E2, from which it develops, and from 

subsequent states to which it may exit. The amplitude of 

the fl uorescence is in agreement with a state that on 

 average contains two monovalent cations, like, e.g., the 

initial state H2E1, to which the fl uorescence amplitude 

is normalized in the presented fi gures. The amount 

of charge in the PTX-modifi ed enzyme was also the 

same when the pump was backdoor phosphorylated by 

inorganic phosphate.

The sequence of standard experiments in Fig. 1 shows 

that addition of PTX did not affect the substrate-depen-

dent partial reactions in a detectable manner before the 

pump reached the P-E2 state. The Na,K-ATPase had to 

reach inevitably P-E2 (without ions in the binding sites) 

to allow a PTX–pump interaction that led to an uptake 

(and binding) of ions in the membrane domain. There 

was no difference in the kinetics of the PTX-induced 

protein transformation when PTX was present before 

enzyme phosphorylation or after the enzyme was in the 

Figure 10. Effect of Br2-Titu3+ on H+ and K+ binding to the Na,K-
ATPase in the PTX-modifi ed state (150 nM PTX). Titration of the 
binding sites was studied in the absence (open circles) and pres-
ence of 15 μM Br2-Titu3+ (solid circles). (A) The pH titration 
showed that in the presence of Br2-Titu3+, the pK was shifted by 
0.5 pH units to a lower value, indicating a repulsive effect of the 
positively charged channel blocker on H+ binding. Merging of the 
data at low pH represents a saturation of ion binding with both 
binding sites in the Na,K-ATPase to be saturated. (B) In the case of 
high-affi nity K+ binding, the half-saturating K+ concentration was 
identical under both conditions (�300 μM), and saturation at 
high concentration was also found for both conditions to be the 
same state with two ions bound. The difference of the initial fl uo-
rescence level was caused by the varying H+ binding at pH 7.

Figure 11. Proposal for an extended Post-Albers pump cycle of 
the Na,K-ATPase induced by the effect PTX. Due to the weak ion 
selectivity of the PTX-modifi ed ion pump, the ions bound can be 
Na+, K+, and H+. Therefore, “X” denotes that different ions are 
transported under appropriate buffer composition from the ex-
tracellular side to the cytoplasm. (In the case of H+, the indicated 
exchange of two X+ against two H+ in the E1 state is unnecessary.) 
The underlined states, PTX

2P-E  and PTX
2 2P-E X , represent the 

 channel-like states of the Na,K-ATPase. The missing left parenthe-
sis in the state )PTX

2 2E X  shall indicate that the cytoplasmic gate of 
the Na,K-ATPase is still held in its open position.
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P-E2 state (Figs. 1 and 2), as well as in both methods 

of phosphorylation, by ATP or Tris phosphate (Fig. 7). 

Therefore, it can be proposed that a functional interac-

tion occurs in the purifi ed membrane preparation only 

in the P-E2 state, even if PTX may be already attached to 

the extracellular part of the Na,K-ATPase. The fact that 

PTX interaction with the Na,K-ATPase could not be de-

tected in other states of the enzyme is in contrast to the 

results of Artigas and Gadsby (2004) who proposed an 

interaction of PTX with all states of the ion pump. This 

difference may be due to so far disguised toxin–enzyme 

interactions, which are also refl ected by the signifi cantly 

lower toxin affi nity of our enzyme preparation and 

 under our experimental conditions. Artigas and Gadsby 

report a half-maximum PTX-induced current through 

the Na,K-ATPase at a concentration of 33 pM in Na+ 

buffer and high ATP concentrations in HEK239 whole-

cell patches. In our microsomal enzyme preparation, 

the apparent half-saturating PTX concentration varied 

between 8 and 280 nM, depending on the experiments 

and the experimental condition.

The Inhibition Kinetics
After the Na,K-ATPase reached the state P-E2, which is 

characterized by the highest fl uorescence level in the 

pump cycle, the transition into the PTX-modifi ed state 

can be monitored in a time-resolved manner, and the 

PTX concentration dependence of the monoexponen-

tial decay of the fl uorescence indicates a bimolecular re-

action, + PTX
2 2P-E PTX P-E  (Fig. 2 and Fig. 7 A). Due 

to mechanistic reasons, this reaction sequence should 

be split into two consecutive reaction steps (compare 

Eq. 3) of which the rate-limiting process has below 23°C 

such a high activation energy (71 kJ/mol) that it can be 

assigned to the conformational modifi cation that opens 

the cytoplasmic gate. This step follows a preceding PTX 

binding to its site as trigger process. This proposed re-

action sequence of PTX binding and transition into the 

open “channel” molecule is in agreement with the in-

terpretation of the investigation of the channel behav-

ior as published by Artigas and Gadsby (2004).

When from time-resolved kinetics and from equilib-

rium titration experiments the PTX binding affi nity 

was determined under otherwise the same experimen-

tal conditions, half-saturating PTX concentrations var-

ied by about a factor of three (Table I). In addition, 

the Na+ concentration in the buffer played a modula-

tory role with an increased overall turnover rate of the 

modifi ed pump at higher cation concentrations. These 

observations are a clue that the effect of the reaction 

of the protein with PTX, which produces the open 

channel, is not a state that is the end point of the re-

action sequence but allows subsequent steps draining 

the PTX
2P-E state. In both types of experiments it was 

observed that higher Na+ concentrations increased 

the apparent PTX affi nity, most probably caused by 

the reaction PTX + PTX
2 2 2P-E + 2 Na P-E Na . Higher Na+ 

produced a shift of the equilibrium to the right side 

and thus reduced the probability of the back reaction 
→ +PTX

2 2P-E P-E PTX.

Properties of the PTX-modifi ed Membrane Domain 
of the Na,K-ATPase
The most prominent modifi cation of the protein in the 

presented experiments is the uptake of cations in the 

membrane domain, as indicated by the fl uorescence 

decrease of �30–40%. This effect was observed in the 

presence of Na+ (Fig. 4) and H+ ions (Fig. 7, inset). 

Since no electrochemical potential gradient is applied 

across the membrane, the state after the transformation 

into an ion channel is a steady state, and therefore, it 

can be assumed that the ions are located in binding 

sites. This concept is supported by the result that in ion 

titration experiments, binding isotherms were found 

(e.g., Fig. 10). A consequence is that PTX not only 

opens the cytoplasmic gate but possibly also affects the 

binding affi nity of the sites. This was clearly found for 

Na+ binding. Binding affi nities of the unmodifi ed Na,K-

ATPase for Na+ in the P-E2 state were determined to be 

90 mM for the fi rst, 1.5 M for the second, and 100 mM 

for the third ion for the rabbit kidney preparation 

(Wuddel and Apell, 1995). In the PTX-modifi ed pro-

tein, two binding sites are already completely occupied 

at 50 mM NaCl (Fig. 1). From Fig. 4, a half-saturating 

concentration of 12 mM was estimated. From direct 

Na+ titration experiments in the PTX
2P-E  state, a Km of 

18.1 ± 2.0 mM was determined. These values are closer 

to the half-saturating Na+ concentration in the E1 con-

formation of the Na,K-ATPase, which is 2 mM in the 

presence of 1 mM Mg2+ (Schneeberger and Apell, 

1999), but still signifi cantly different. Therefore, it has 

to be proposed that the binding sites are neither in the 

E1 nor P-E2 form.

In the case of H+ binding, the affi nity for protons in 

the native P-E2 state is low enough that at pH 7.2, no H+ 

are bound (Apell and Diller, 2002), while in PTX
2P-E , 

more than one H+ could be detected in the membrane 

domain (Fig. 9), similar to what was found in E1. In the 

case of K+ ions, no signifi cant differences were observed 

in K+ binding between P-E2 and PTX
2P-E (Fig. 10 B) as 

well as E1 (Schneeberger and Apell, 2001).

Properties of the Access Channels
The experiments presented above show that TPA+ 

affects the extracellular access channel of the Na,K-

ATPase in both the native and PTX-modifi ed protein. 

The mechanism did not lead to a complete block of 

the access channel but generated a behavior more like 

a fl ickering gate that prevents a full occupation of the 

binding sites and thus slowed down dephosphorylation 

(and overall enzyme activity). A competition of K+ bind-

ing with TPA+ has been shown before (Gatto et al., 2005) 
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and was reproduced here. TPA+ does not bind inside 

the membrane domain close to the binding sites since 

it did not affect the RH421 fl uorescence, nevertheless it 

reduced the enzyme activity by >95% when present in 

a concentration of 20 mM. All TPA+-induced effects, in 

the presence and absence of PTX can be explained by 

a (reversible) blockade in the extracellular access chan-

nel produced by TPA+ as a steric hindrance.

In a similar way Br2-Titu3+ blocked the cytoplasmic 

access channel rather effectively in the absence as well 

as in the presence of PTX. It is known that this channel 

blocker binds on or close to the surface and reduced 

signifi cantly the movement of Na+ or H+ ions through 

the access channel from or to the binding sites. This 

mechanism is in agreement with the observations that 

the time period is prolonged until 1 μM ATP is hydro-

lyzed by the Na,K-ATPase (Fig. 8 B) and that backdoor 

phosphorylation is decelerated by more than a factor of 

10 (Fig. 9) in the presence of Br2-Titu3+.

Since the observed effects produced by TPA+ and Br2-

Titu3+ can be assigned to the interactions with the ex-

tracellular and cytoplasmic access channel, respectively, 

and since no new quality of the effects of action of these 

“channel blockers” were observed in the PTX-modifi ed 

Na,K-ATPase, the fi ndings support the concept that the 

ion channel through the membrane domain of the pro-

tein consists of both access (half) channels and the moi-

ety of the binding sites and that no additional pathway 

for the ions was opened.

Proposal of a simple reaction scheme for the PTX-modifi ed 
Na,K-ATPase
To describe the observed kinetical behavior of the ion 

pump in a comprehensive manner, the Post-Albers cycle 

(Fig. 11) has to be extended to account for the toxin-

 induced effects. The simplest extension requires three 

additional states, two of which may be assigned as “open 

channel” (Fig. 11). As will be discussed below, in this 

model, PTX modifi es the Na,K-ATPase exclusively in 

the P-E2 state. The toxin binds in a fi rst step to a specifi c 

site on the extracellular domain of the ion pump and 

provokes a modifi cation in the membrane domain that 

opens the channel and modifi es the ion-binding sites 

slightly so that the binding affi nity, especially for Na+ 

and H+, is increased. A possible mechanism could be a 

higher mobility of the amino acid side chains, which are 

the coordination partners of the ions bound.

In the open-channel conformation, ions pass through 

the channel as soon as a driving force is present in the 

form of an electrochemical potential gradient. Ion trans-

port may be described as diffusion-controlled movement 

through the access channels and a transient binding to 

the two binding sites present in the P-E2 conformation, 

similar to what is known to happen in the selectivity fi l-

ter of a classical ion channel. In the short period when 

two ions are bound to their sites, the state PTX
2 2P-E X , the 

enzyme can be dephosphorylated, according to what is 

happening under physiological conditions in the state 

P-E2K2 of the Post-Albers cycle. The higher the ion con-

centration, X+, the higher is the probability that both 

sites are occupied simultaneously, and this fact would 

explain the faster escape from the inhibited state and 

faster ATP hydrolyzation rate at higher Na+ concentra-

tions (Fig. 4). Under the assumption that PTX opens 

the cytoplasmic gate in the membrane domain, dephos-

phorylation could close the extracellular gate, similar 

to the situation under physiological conditions, while 

the cytoplasmic gate is still open. Then the PTX-modifi ed

state is destabilized, and after reversal of the PTX  action, 

the pump returns to the genuine, occluded state E2(X2) 

of the Post-Albers cycle.

In the presence of ATP, the ion pump continues 

through the cycle and can, or will, be affected again by 

PTX when it gets to the P-E2 state. This conception is in 

agreement with observations on the level of the single-

channel experiments by Artigas and Gadsby (2004), 

who observed long open bursts with brief closures of 

20–30 ms duration. Since the rate-limiting reaction 

steps in the Post-Albers cycle are all included in the se-

quence from E2(K2) to P-E2, this period of a closed 

channel of 20–30 ms can be related to a turnover rate of 

30–50 s−1, which is to be expected at the temperature of 

22–25°C in these experiments. The observed burst du-

rations on the order of a minute with several of these 

short closures indicate that the PTX remains attached 

to the pump.

From the kinetical behavior of the Na,K-ATPase in 

the presence of PTX, some details of reaction steps in 

the reaction scheme of Fig. 11 may be revealed. The 

fact that experiments on backdoor phosphorylation of 

the Na,K-ATPase, which was preincubated with PTX, 

 always show a transition through the (highest) fl uores-

cence level of the P-E2 state, provides a strong indica-

tion for the constraints that (a) the backward-oriented 

 reaction sequence, E2X2→
PTX
2 2E X )→ PTX

2 2P-E X  (with 

X = H), in Fig. 11 is kinetically inhibited, and (b) the 

PTX-dependent reaction P-E2X2→
PTX
2 2P-E X  does not 

occur to a detectable extent. The open-channel state is 

only reached through the P-E2 state.

Enzyme dephosphorylation in the PTX-modifi ed 

state, PTX
2 2P-E X → )PTX

2 2E X  is signifi cantly slower than 

under physiological conditions without toxin. This can 

be seen from comparison of the fl uorescence response 

on KCl addition in Fig. 1 B (0 PTX) and Fig. 1 (C–E) 

(100 nM PTX). While in the absence of toxin the transi-

tion to state E2K2 cannot be resolved in the time resolu-

tion of the experiment (�2 s), in the PTX-modifi ed ion 

pump, a response with two components is obvious. The 

fast initial component is assigned to the fraction of ion 

pumps uninhibited at that moment (�25%) while the 

slow component with a time constant of �100 s (�75%) 

may be assigned to the slow dephosphorylation. Such 
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an impaired dephosphorylation was also reported from 

electrophysiological studies (Artigas and Gadsby, 2004).

Based on the presented data, the action of PTX on 

the Na,K-ATPase can be described by the concise mech-

anism as depicted in Fig. 11. Although PTX can be at-

tached to the extracellular side of the Na,K-ATPase in 

all states of the protein, as discussed above, in this 

scheme, “PTX” is introduced as superscript to the P-E2 

states only to indicate the toxin-modifi ed states. When 

the ion pump enters into the state P-E2 in the presence 

of the toxin, binding to its specifi c site triggers a confor-

mational modifi cation of the membrane domain that 

opens the cytoplasmic gate in addition to the already 

open extracellular gate. This process depends on the 

PTX concentration and occurs with a time constant of 

�40 s at 200 nM PTX (Fig. 2). Under physiological buf-

fer conditions, i.e., in the presence of K+, this step is in 

competition with ion binding, P-E2 + 2 K+→P-E2K2, 

which is refl ected by an only 50% inhibition of the en-

zyme activity even at a saturating PTX concentration 

(Fig. 6). Once in the “channel state,” the binding affi n-

ity of the ion binding sites is somehow increased so that 

the average occupation is higher than in state P-E2; how-

ever, binding is not so tight that it would prevent signifi -

cant ion fl ux through the channel in the presence of an 

electrochemical potential gradient for the cations. In 

the state with two cations bound, PTX
2 2P-E X , enzyme de-

phosphorylation is possible, this process occurs only 

rather slowly (τ ≈ 100 s). So far it is not clear whether 

this behavior is a consequence of the short fraction of 

time in which both binding sites are occupied or a small 

rate constant of the dephosphorylation step. The de-

phosphorylated state with PTX bound is proposed to 

no longer be an open-channel state and has the extra-

cellular gate closed. Finally, the return into the canoni-

cal Post-Albers cycle occurs by a release of the membrane 

domain from the PTX modifi cation; the cytoplasmic 

gate is closed so that the occluded state is regained, 

E2(X2). This step may be fast, so far no kinetical infor-

mation is available; however, on all accounts, the equi-

librium of the reaction, )PTX
2 2E X ↔E2(X2), has to be 

shifted strictly to the right side to prevent the direct 

transition into the PTX-modifi ed conformation.
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