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Abstract
Pediatric cardiomyopathies are heterogeneous groups of serious disorders of the heart muscle and
are responsible for significant morbidity and mortality among children who have the disease. While
enormous improvements have been made in the treatment and survival of children with congenital
heart disease, parallel strides have not been made in the outcomes for cardiomyopathies. Thus,
ancillary therapies, such as nutrition and nutritional interventions, that may not cure but may
potentially improve cardiac function and quality of life, are imperative to consider in children with
all types of cardiomyopathy. Growth failure is one of the most significant clinical problems of
children with cardiomyopathy with nearly one-third of children with this disorder manifesting some
degree of growth failure during the course of their illness. Optimal intake of macronutrients can help
improve cardiac function. In addition, several specific nutrients have been shown to correct
myocardial abnormalities that often occur with cardiomyopathy and heart failure. In particular,
antioxidants that can protect against free radical damage that often occurs in heart failure and nutrients
that augment myocardial energy production are important therapies that have been explored more in
adults with cardiomyopathy than in the pediatric population. Future research directions should pay
particular attention to the effect of overall nutrition and specific nutritional therapies on clinical
outcomes and quality of life in children with pediatric cardiomyopathy.

Introduction
Pediatric cardiomyopathies are heterogeneous groups of serious disorders of the heart muscle
and are responsible for significant morbidity and mortality among children who have the
disease. The incidence of pediatric cardiomyopathy is approximately between 1.13 and 1.24
cases per 100,000 children 18 years of age and younger, with the highest incidence among
children less than one year of age [1-3]. The incidence tends to be higher among African
American and Hispanic children in the US [2]. Despite its overall low incidence,
cardiomyopathies result in some of the worst pediatric cardiology outcomes and are responsible
for nearly one-half of all pediatric heart transplants [4]. Nearly one-third of all children
diagnosed with pediatric cardiomyopathy prior to one year of age will die within one year of
diagnosis [5], and 40% receive heart transplants within two years. Among those who live
beyond the first year, the five-year survival is nearly 85% [6]. Despite these overall dismal
statistics, the clinical course and outcomes of cardiomyopathy vary among patients, from
complete recovery to death, even among those with similar functional types of cardiomyopathy.
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The World Health Organization classifies cardiomyopathies into four distinct functional
categories: 1) dilated cardiomyopathy, where the heart muscle fibers stretch, causing a chamber
of the heart to enlarge, thus weakening the heart's ability to pump blood; 2) hypertrophic
cardiomyopathy a functional type of cardiomyopathy occurs among older children and adults
[7]. In hypertrophic cardiomyopathy, the growth or arrangement of muscle fibers is abnormal,
leading to a thickening of the heart walls and reduction in size of the pumping chamber that
may obstruct the blood flow; 3) restrictive cardiomyopathy, where the walls of the ventricles
stiffen and lose their flexibility. When this occurs, the heart cannot fill adequately with blood
and eventually the heart loses its ability to pump properly; and 4) arrythmogenic right
ventricular cardiomyopathy. Arrythmogenic right ventricular cardiomyopathy is characterized
by the replacement of myocytes in the right ventricle with fatty, fibrous tissue [8]. It has been
found that mutations in genes that encode cell junction proteins can cause arrythmogenic right
ventricular cardiomyopathy [9]. Distinctions between these cardiomyopathies are critical
because differences in etiologies and outcomes vary by the functional type of cardiomyopathy.
In general, the cause of PCM remains primarily unknown, yet genetic causes are likely to be
a factor in most pediatric patients with recent studies demonstrating a large familial component
[2,3]. Thus, as more becomes known of the causes and natural history of pediatric
cardiomyopathy, there will be a greater ability to determine etiology-specific therapeutics that
will positively impact outcomes.

While enormous improvements have been made in the treatment and survival of children with
congenital heart disease, parallel strides have not been made in the outcomes for
cardiomyopathies. Heart transplantation remains the standard of care for children with
progressive disease. The percentage of children with cardiomyopathy who received a heart
transplant has not declined over the past 10 years and cardiomyopathy remains the leading
cause of transplantation for children over one year of age [10]. Nearly 40 percent of children
who present with symptomatic cardiomyopathy receive a heart transplant or die [11,12].
Furthermore, the time to transplant or death for children with cardiomyopathy has not improved
during the past 35 years, and the most economically advanced nations have no better outcomes
than developing nations [10]. Cardiomyopathies have an associated cost of nearly $200 million/
year in adults and children in the United States alone [13]. Improvements in technology and
medicine have contributed to an improved survival for children having heart transplants,
however, it has not resulted in either a normal life span, or quality of life. Recent medical
research indicates that new treatments may soon be available. It has been suggested that
advancements in stem cell research may be beneficial to children with cardiomyopathies
[14]. Thus, ancillary therapies, such as nutrition and optimizing nutritional interventions, that
may not cure but may potentially improve cardiac function and quality of life are imperative
to consider in children with all types of cardiomyopathy.

Nutritional Status of Children with Cardiomyopathy
Growth problems are common in many pediatric illnesses [15-19]. Normal growth in children
is considered an important clinical indicator of health. Chronic illness in children leads to an
imbalance of energy where there is more energy expended secondary to the disease and less
devoted to normal metabolic processes (i.e. – growth). Growth failure can be due to a variety
of factors and it is often multifactorial. Increased energy expenditure secondary to chronic
disease processes (hyperthyroidism, congestive heart failure, chronic infections, to name a
few), gastrointestinal malabsorption, chronically low and suboptimal dietary intake, or
psychosocial problems are the 4 most common and cited causes of poor growth in the child
with chronic disease. The etiology of malnutrition in children with chronic illness is likely due
to a combination of 2 or more of these factors.
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Not only is growth an indicator of active and poorly controlled disease, but there is emerging
evidence that progressive declines in nutritional status are linked closely and independently
with deteriorating organ functions, morbidity and mortality in a variety of disorders [20,21].
The best example of this is the first discovery of pneumoncystis carinii pneumonia in otherwise
healthy, but severely malnourished children in developing nations [22]. Furthermore,
investigators have shown that improving nutritional status in malnourished and chronically ill
children relate to improved survival and decreased utilization of health care resources through
lower hospitalization rates [23]. In another study evaluating cardiac outcomes in chronically
ill children [24], nutritional status was a strong and independent predictor of mortality and
cardiac function. Thus, better nutritional status of the child (or adult) is related to the optimal
functioning of the heart and other organ systems and eventual clinical outcomes [25,26].

Growth failure is one of the most significant clinical problems of children with cardiomyopathy
with nearly one-third of children with this disorder manifesting some degree of growth failure
during the course of their illness. In a recent international study in Brazil [25], Azevedo
determined that weight z-score was positively and independently correlated with survival in a
chart review of 165 children with idiopathic dilated cardiomyopathy between 1979 and 2003.
However, short of this restrospective chart review, there is a dearth of information on nutritional
correlates to cardiac outcomes and function in children with cardiomyopathy. We have shown
previously that in other models of chronic illness in children (human immunodeficiency virus
infection), that cardiac muscle mass does not always waste in proportion to skeletal muscle
[27]. This suggests that neurohormonal influences may affect cardiac status to a greater extent
than skeletal muscle. The underlying cause of growth failure is usually due to persistent
congestive heart failure as a result of an overall poor response to medical treatment. Significant
cardiac dysfunction in these children can result in increased metabolic demands, decreased
food intake and malabsorption of important nutrients. Growth failure or malnutrition in
children can lead to problems in virtually every organ system, with many of the effects only
partially reversible. Thus cardiomyopathy may lead to growth problems, but growth problems
can lead to further complications that may directly or indirectly impact on heart function,
leading to a vicious downward cycle (Figure 1). These clinical manifestations indicate that
growth patterns may be an important predictor of the outcomes among CM patients or an
important indicator of the severity of their cardiomyopathy. If this is so, then it becomes
apparent that clinicians should be vigilant regarding treatment issues surrounding growth. The
relationship between growth patterns and echocardiographic findings is unknown.

The Effect of Nutrients on Cardiac Endpoints in Heart Failure
Promotion of adequate nutrition begins with early detection of children at risk for malnutrition.
Optimal nutrition is critical in providing children the means to recover from their illness and
to withstand the detrimental metabolic effects of aggressive therapies. In theory, patients with
heart failure who have either insufficient fat mass (BMI <10% for age and sex) or excess fat
mass (BMI ≥ 85% for age and sex) should have poorer outcomes than patients with a BMI in
the reference range (between 10% and 95%). Although excess body fat may increase the risk
of developing heart failure, evidence suggests that it may be beneficial once heart failure
develops. One mechanism may be that increased body fat provides a metabolic reserve that
allows overweight and obese patients to tolerate the metabolic/catabolic stress associated with
heart failure pathology for a longer time [28]. Another potential mechanism is related to the
hypothesized differences in proinflammatory cytokine activity between underweight and
overweight/obese individuals with heart failure [29]. In addition to releasing proinflammatory
cytokines, adipose tissue is a source of anti-inflammatory cytokines. However, it is not known
whether the potential positive effects of excess body fat in patients with heart failure vary
depending on body fat distribution. Our current recommendations focus on decreasing body
fat accumulation due to the known adverse effects and secondary diseases the may develop
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from obesity. However, more studies are needed in order to tease out the complex interaction
between obesity and active heart failure with particular focus on the pediatric population that
has been often difficult to study owing to limited numbers of children available to study.

Macronutrients
Children with cardiomyopathy, with varying degrees of congestive heart failure, need to
receive adequate calories to compensate for their heart failure (that typically increases basal
energy expenditure) as well as to provide additional calories for normal growth. As mentioned
previously, children in heart failure often do not grow along expected standards for age and
sex and poor growth may either contribute to poor cardiac function or be one result of it.
Optimal caloric intake is usually estimated to be approximately 110 – 125% of the estimated
energy requirement (EER) (Table) [30] for age and sex. However, greater or fewer calories
may be required depending on the child's growth as a response to their intake; as normal
nutrition is the balance between energy intake and energy utilization. Children who are in
congestive heart failure often have increased metabolic rates due to the increased work of
breathing, eating, or other routine activities of daily living. They may also malabsorb critical
nutrients as a result of heart failure leading to gut edema. Furthermore, anorexia, due to a variety
of reasons including a proinflammatory state (cachexia) or delayed gastric emptying secondary
to increased edema may be a factor that contributes to suboptimal dietary intake. Physical
activity level also has to be accounted for, with physical activity being indirectly related to the
level of congestive heart failure [31]. However, physical inactivity may contribute the
digression in heart function leading to worsening heart failure.

There is little information regarding the role of dietary macronutrients in the development or
prevention of left ventricular hypertrophy or heart failure in children with cardiomyopathy.
Dietary guidelines aimed at prevention of cardiovascular disease emphasize the importance of
consuming a low-fat/high carbohydrate diet; however recent findings suggest that reducing fat
intake and increasing carbohydrate consumption does not lower the risk of heart disease [32]
in adults. Little information is available for children, yet it is becoming increasingly recognized
that the root of adult cardiovascular disease may begin in childhood.

Studies of animal models have shown that a high-fat diet attenuated the hypertension-induced
increase in left ventricular mass, cardiomyocyte hypertrophy, left ventricular chamber markers
of cardiac dysfunction, and induction of molecular markers of cardiac hypertrophy and
dysfunction [33-35]. However there are no data from humans to support extending this
observation into clinical practice. The interactions among fat and carbohydrate intake, salt
intake, hypertension, and cardiac size and function are complex and difficult to decipher in
vivo. The reduced left ventricular hypertrophy with a high-fat/low-carbohydrate diet could be
because of less insulin stimulation of cardiomyocyte growth. Dietary intake of carbohydrates,
particularly sugars, determines the exposure of the heart to insulin and insulin-like growth
factor. In addition, it is not clear if a low-sugar/high complex carbohydrate/low-fat diet could
be just as effective at preventing left ventricular hypertrophy and contractile dysfunction in
hypertension.

Nonpharmacological factors, often nutrition related, can influence the course of heart failure.
There is general agreement that a diet high in sodium is potentially harmful in congestive heart
failure, as it may cause fluid overload and potentially contribute to acute decompensation.
Besides preventing exacerbations of heart failure, sodium reduction can reduce the dose of
diuretic therapy. Water restriction may also be important, especially in advanced stages.
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Micronutrients
Although provision of optimal calories and protein is important for growth and optimal cardiac
function in children with cardiomyopathy, it is not always sufficient to optimize cardiac
function. In adults with congestive heart failure, high protein feedings and a marked positive
energy balance does not always correct the significant metabolic problems that occur in heart
failure [36]. Thus, specific nutritional deficiencies specific for heart failure may play a role in
optimizing or helping correct the failure. Children with cardiomyopathy and heart failure,
similar to adults, may require greater than standard intakes of certain micronutrients in order
to optimize the cardiac function [36,37]. Furthermore, serum levels of micronutrients may not
necessarily reflect adequacy of these nutrients at the tissue level. The following discussion is
of micronutrient, mineral and other nutritional deficiencies that are known to be problematic
in patients with heart failure or may be therapeutic in improving cardiac function if given to
patients as an ancillary intervention. These nutrients are either broadly categorized as
antioxidants or nutrients known to affect myocardial energy production. However, several of
these nutrients have more than one cellular role.

Antioxidants—Free radicals are products of oxygen metabolism and their rate of production
is usually equal to their metabolism under normal circumstances. In certain clinical situations
of stress, the production of these free radicals is greater than their normal clearance. At that
point, the host's endogenous antioxidant system plays a major role to prevent or limit the
deleterious effects of free radicals and in children with cardiomyopathy specifically, control
further myocardial damage. Endogenous antioxidants include enzymatic antioxidants (e.g.,
zinc in superoxide dismutase or selenium in glutathione peroxidase), free radical scavengers
(e.g., vitamins A, C or E) and metal chelators. Sources of antioxidants include the diet or
through the use of specific nutritional supplements. Increased free radical formation and
reduced antioxidant defenses [38,39] found in patients with heart failure can result from a
combination of insufficient dietary intake and excessive utilization of specific antioxidants
without adequate recycling or replacement. Recognizing and correcting multiple vitamin
marginal deficiencies may be the key to the treatment of many heart failure patients. It has
been recommended that individuals strive to achieve a higher intake of dietary antioxidants by
increasing consumption of fruits, vegetables, and whole grains.

As a general rule, food and lifestyle factors that trigger the acute phase response should be
avoided. This comprises, for example, excess of carbohydrates or saturated fat, alcohol, and
smoking. Food that counteracts inflammatory processes can generally be recommended, for
example fatty fish for its content of omega-3 fatty acids and possible favorable effect on left
ventricular function. There are no clinical trials demonstrating the benefit of omega-3 fatty
acid supplementations in patients with heart failure. However, the omega-3 fatty acids,
eicosapentanoic acid and docosahexanoic acid, are essential nutrients. Thus, assuring adequate
intake is necessary to meet nutritional requirements. The American Heart Association
recommends 2 meals of fish, preferably fatty fish, per week and the use of vegetable oils high
in α-linolenic acid such s canola, flaxseed, soybean, and walnut [40].

Injury from free radicals can contribute to coronary artery disease, myocardial infarction and
cardiac dysfunction in some forms of cardiomyopathy in both humans and animals [41]. Free
radicals can have both cytotoxic effects on the myocardium and also act as negative inotropes
[42]. In models of congestive heart failure, antioxidants are elevated in cardiac hypertrophy
and lower in cardiac failure [43,44]. For example, administration of vitamin E in one
experimental model in Syrian Hamsters with end-stage cardiomyopathy showed optimization
of alpha-tocopherol levels and improved glutathione peroxidase activity [45]. However,
despite some experimental evidence, few studies have shown supplementation with
antioxidants to have a significant impact on treatment of heart failure. The following section
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outlines experimental evidence that is available on the effects of specific antioxidants on
cardiac conditions in patients with heart failure. Please note the dearth of information regarding
their effects on children.

Vitamin A: Vitamin A can be found in 2 forms; preformed vitamin A (retinol) and carotenoids.
Vitamin A is an antioxidant that can decrease oxidative stress. In experimental animal models,
some have shown that vitamin A, taken as one of several antioxidants, prevents NF-kappaB
activation, reduces mitochondrial cytochrome c release, decreases caspase activity, attenuates
cardiomyocyte secretion of inflammatory cytokines, and improves myocardial contractile
function [46]. In the neonatal rat heart, 9-cis-retinoic acid, stimulated transcription from the
GLUT4 glucose transporter promoter (whose expression may be critical for the survival of
cardiac myocytes in situations of stress) [47]. However, its role in the treatment of heart failure
is unknown, and some clinical studies have found it to have no benefits in treating heart failure
[48].

Vitamin E: Vitamin E is an antioxidant that can be detected in lower concentrations in patients
with congestive heart failure [49]; however there is little evidence that shows the benefits in
improving myocardial function with exogenous supplementation [50-54]. There have been few
human trials, but one randomized, placebo controlled study in adults with congestive heart
failure showed no effect on quality of life, norepinephrine levels and other neurotransmitters
[55].

Taurine: Children with heart failure have increased levels of intracellular and mitochondrial
calcium that can depress myocardial energy production and increase oxidative stress. Taurine,
an amino acid, helps regulate calcium flux through the cells [56]. Taurine is the most abundant
free amino acid in cardiac muscle cells. Taurine can be synthesized from methione and cysteine
and is not essential. However, the activity of certain enzymes to systhesize taurine from these
other amino acids is low in humans, thus the majority of taurine in the body is derived from
foods including seafood and meat [57]. Proinflammatory cytokines can also decrease tissue
taurine levels. With inflammatory conditions often accompanying heart failure, taurine
supplementation may play a role in controlling oxidative stress as well of optimizing
myocardial energy production [58]. For example, one study showed that heart tissue is more
susceptible to adriamycin toxicity when taurine levels are low [59]. Studies regarding the
benefit of taurine administration in various heart conditions have been promising [57,60,61].
However, taurine's potential beneficial effects in children have had limited attention.

Co-enzyme Q10 (Ubiquinone): Co-enzyme Q10 (ubiquinone) is a vitamin-like substance that
is present in all human cells and responsible for energy production by facilitating the actions
of the mitochondria. It is a rate-limiting carrier for the flow of electrons through complexes I,
II and III of the mitochondrial respiratory chain and is also an endogenous lipophilic
antioxidant. Those organs with the highest energy requirements, including the heart, have the
highest Co-enzyme Q10 concentrations [62-64]. It is a powerful antioxidant and stabilizes
membranes. Ubiquinone is present in varying amounts in all food groups, thus body stores may
be partially supplied by diet. Oral absorption is slow but it is enhanced with lipids. There is a
large hepatic first pass effect so that only 2-5% of an oral dose is taken up by the myocardium.
Adults with congestive heart failure can have lower concentrations of Co-enzyme Q10 in their
myocardium as determined by biopsy [65]. Low levels have also been associated with higher
rates of mortality [66]. Studies of Co-enzyme Q10 supplementation have been contradictory
with some showing improvement in functional status, clinical symptoms, and hospitalizations
[67,68], while others showing no benefit [69-71. However, a meta-analysis of published reports
[72] supported a hemodynamic benefit.
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Vitamin C: Vitamin C is another powerful antioxidant that also has a role in vitamin E
metabolism. Vitamin C levels are reduced in heart failure [73]. Vitamin C may have an
important role in modifying apoptosis [74-77]. It also decreases TNF secretion, thereby
improving inflammation [78]. Large doses have been shown to improve vasomotor function
in patients with heart failure by possibly increasing nitric oxide production [78]. In NHANES
I, subjects with a high dietary intake of antioxidants (including vitamin C) had a significantly
lower all-cause mortality and in particular from coronary heart disease [79]. However, in
subsequent prospective, randomized clinical trials in high-risk populations, vitamin C showed
no benefit [80]. Acute vitamin C administration restored peripheral endothelial function in
patients with coronary artery disease to normal values, but not in heart failure, especially in
dilated cardiomyopathy. Thus, factors other than oxidative stress (eg, cytokines) can contribute
to endothelial dysfunction in patients with heart failure [81]. Compiling the evidence, vitamin
C may hold promise in altering peripheral endothelial function, however, few, if any studies
have been performed in children with cardiomyopathy.

Nutrients that Affect Myocardial Energy Production
Thiamine (Vitamin B1): Thiamine is a water-soluble vitamin and is synthesized by plants
and other microorganisms, yet humans cannot synthesize it themselves. Thiamine is important
for carbohydrate metabolism and a deficiency is found in up to 93% of patients with heart
failure [82-87]. Loop diuretcs, among other factors, including malnutrition and poor overall
nutritional status has been linked to thiamine deficiency [82-85]. Symptoms for congestive
heart failure are common and can often be reversed with adequate supplementation [88].

L-Carnitine: L-Carnitine, an amino-acid derivative that helps the transport of long-chain fatty
acids from the cytoplasm into the sites of [beta]-oxidation within the mitochondrial matrix.
Furthermore, carnitine binds toxic acyl groups and releases free coenzyme A. Susequently,
these acylcarnitines can diffuse freely out of the cell and be eliminated through the urine.
Carnitine also indirectly activates pyruvate dehydrogenase, the rate-limiting enzyme for
glucose oxidation [89,90]; this, in turn, improves the coupling between glycolysis and glucose
oxidation, thereby reducing the lactate and hydrogen burden on the myocyte. L-carnitine and
its derivates play an important role in myocardial energy production. Carnitine stores can be
replenished from endogenous synthesis from lysine and methionine, as well as from dietary
intake. Patients with genetically determined deficiency develop both cardiac and skeletal
dysfunction, which can be improved by carnitine administration [91]. Carnitine deficiency can
also be an acquired state in individuals with established congestive heart failure, with levels
reported to be depleted by as much as 50% [92]. Plasma levels may be as much as 3 – 5 times
those of intracardiac levels, thus plasma levels are not a good measure of tissue concentrations.
Patients in congestive heart failure generally exhibit a marked depletion (up to 50%) of both
free and total carnitine [89. 92]. L-carnitine supplementation [89,92,93] can result in overall
improvement in the cardiac status and quality of life of both animals and patients with
myocardial dysfunction. A multicentered, randomized, placebo-controlled, double-blind
clinical trial [94] showed a significant beneficial effect, including a reduction in adverse cardiac
remodeling, when L-carnitine was taken for 12 months after myocardial infarction.
Furthermore, improved 3 year survival was also found in patients given daily doses of L-
carnitine [95]. Similar to other nutrients, it is clear that more studies will be needed to determine
the potential benefits of this nutrient. Furthermore, there continues to be a dearth of studies in
the pediatric population with heart failure.

Creatine: Creatine phosphate is the substrate for phosphate transfer to ADP to form ATP by
the enzymatic activity of creatine kinase. Creatine is synthesized in the liver and spleen from
arginine, glycine and methionine. The concentration of creatine in the myocardiocyte is
determined by adrenergic drive [96], thus with heart failure, the concentration of creatine in
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the cell may be diminished [96,97]. Creatine can improve calcium homeostasis [98] and
survival of myocytes in culture.

Creatine supplements increases skeletal muscle creatine, and this may be most beneficial
during short-term exercise to improve muscle strength, endurance and metabolism by reducing
lactate [99-101]. Thus, creatine supplementation may not be as beneficial under normal
situations. There have been few, if any studies on creatine's effects on heart failure, with notably
none in children.

Other Nutrients
Vitamin D/Calcium: Adequate intake (Table) of calcium and vitamin D needs to be insured,
as these nutrients are critical to optimize cardiac function. The childhood diet is typically
deficient in both of these nutrients with intakes of only 50% of the DRI widely reported. In
animal models, rats fed a vitamin D deficient diet developed poor cardiac function that was
reversed with supplementation of vitamin D [102].

Folate/Vitamin B12: Folate is required to convert homocysteine to methione. Folate
deficiency is frequently detected in patients with heart failure [103] and often this is coincident
with low folate dietary intake [104]. Vascular endothelial function may be improved by folate
[105]. Similarly, vitamin B12 deficiency is also linked to higher homocysteine levels.
However, studies show that neither folate nor vitamin B12 improves intrinsic cardiac function,
yet there may be greater effects on peripheral vasculature [106].

Magnesium: Magnesium deficiency can occur in up to 30% of patients with heart failure
[107-109]. Medications, such as loop and thiazide diuretics contribute to urinary magnesium
loss. Magnesium deficiency is associated with sodium retention and increased ventricular
ectopy [110-112] with associated reduced cardiac contractility and increased peripheral
vascular resistance [113,114].

Zinc: Zinc is another antioxidant and its deficiency is related to apoptosis of the myocardiocyte
[115]. Several medicines including angiotensin converting enzyme inhibitors, angiotensin II
antagonists and thiazide diuretics can increase urinary zinc [116,117]. However, it is unclear
if zinc deficiency is related to or can improve heart failure.

Selenium: Selenium is a trace mineral that can be found in small amounts in the soil and food.
Depending on the region of the world, foods grown in certain areas may have sufficient or poor
concentrations of selenium owing to soil content. Meat and seafood have the greatest
concentrations of selenium. Selenium deficiency has been associated with congestive
cardiomyopathy (Keshan disease), skeletal myopathy, osteoarthropathy (Kashin–Beck
disease), anemia, immune system alterations, increased risk of cancer, cardiovascular disease,
hair and nail changes, infertility, and abnormalities in thyroid hormone metabolism in humans
[118]. Selenium's greatest role is its action as a cofactor for the antioxidant enzyme, glutathione
peroxidase which removes hydrogen peroxide and the deleterious lipid hydroperoxides
generated by oxygen-derived species. Glutathione peroxidase deficiency contributes to
endothelial dysfunction a major contributing factor in heart failure [119], in various conditions
such as hyperhomocysteinemia [120]. This suggests that homocysteine may be involved in
heart failure associated endothelial dysfunction through a peroxide-dependent oxidative
mechanism. Selenium also plays a role in the control of thyroid hormone metabolism [121] by
affecting synthesis and activity of de-iodinases, enzymes converting thyroxin into the
biologically active triiodothyronine [122]. Thus, selenium (through its role in selenoenzymes,
thyroid hormones, and interactions with homocysteine and endothelial function) appears to be
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a major mediator in several pathways potentially contributing to or possibly preventing heart
failure.

The first case of endemic selenium deficiency was described in 1935 in Keshan County, in
China. Clinical features were acute and/or chronic episodes of cardiogenic shock and/or
congestive heart failure. Selenium supplementation may stop progression of the cardiac disease
but is less successful at reversing the existing cardiac damage [123]. The daily recommended
intake of selenium is 20 – 55 ug/day, depending on the age of the child. (30) (Table). Selenium
deficiency in developed nations is more often seen in chronically ill, malnourished patients
with malabsorption and in unsupplemented total parenteral nutrition (TPN)-dependent patients
[124,125]. Selenium deficiency also is encountered when nutrient-limited diets are used such
as patients with phenylketonuria [126] and the ketogenic diet.

Assessment of selenium status is difficult because no optimal method is known. Dietary
assessment is inaccurate, and selenium content depends on where the food was grown (soil
content), which is usually unknown. Selenium can be measured in serum, plasma, whole blood,
erythrocytes, urine, and hair. Serum and plasma concentrations correlate well with dietary
intake and absorption and are a good indicator of short-term selenium status. Whole-blood and
erythrocyte selenium levels reflect longer-term status. Activity of glutathione peroxidase is a
well-accepted functional assay of selenium sufficiency.

Conclusions
Little is understood regarding the role of growth and nutrition in pediatric cardiomyopathy as
a predictor of its outcomes. Understanding the link between nutrition and outcomes in pediatric
cardiomyopthy would be useful in classifying patients into appropriate prognostic categories
that will aid in the identification of patients who would benefit most from transplant or other
types of medical treatment. Furthermore, understanding the role of growth and nutrition in
predicting outcomes in pediatric cardiomyopathy may also focus attention on early and
aggressive nutritional interventions for these children that may ultimately prevent or delay
progressive decline in heart function or eventual heart transplantation. There is evidence that
nutrition can also be used as specific therapy toward optimizing cardiac function by decreasing
the effects of free radicals or augmenting myocardial energy production. However, many
scientific studies are contradictory in adults with heart failure and there is a disappointingly
few studies among children with cardiomyopathy. Future efforts should focus on collaborative
descriptive and interventional studies that further define the role of nutrition and nutritional
interventions on cardiac-specific endpoints as well as quality of life in children with
cardiomyopathy.
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Figure 1. Vicious Downward Cycle of Nutrition in Pediatric Cardiomyopthy
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Table 1
Important Nutrients in Cardiomyopathy

Roles Recommended daily intake Dietary sources
Calories Provide energy for all

metabolic processes and to
support growth
Increased metabolic rate
secondary to recurrent
infections, increased muscle
activity, and need for rapid
growth.

Healthy weight: calorie levels based on the
Estimated Energy Requirements (EER) and
activity levels from the Institute of Medicine
Dietary Reference Intakes (DRI)
Macronutrients Report, 2002.
Estimate catch-up growth needs in growth
failure: by determining ideal body weight for
height and using by indirect calorimetry or
using calorie levels based on EER for that
weight. Children in heart failure often require
10% to 50% more calories due to increased
metabolic rates.

For mild to moderate
undernutrition, ad libitum oral
feedings are appropriate, and
caregivers should be advised to
increase the caloric intake by
increasing the caloric density of
both liquids and solids.
Once a nutritional problem
becomes chronic and the patient
presents with severe growth
failure (BMI<5% or weight/
height<5%), or when the oral
supplementation is no longer
sufficient, an aggressive
nutrition support plan including
gastrostomy or intravenous
alimentation needs to be
advised

Protein (g/d) Serves as the major structural
component of all cells in the
body, and functions as
enzymes in membranes, as
transport carriers, and some
hormones.

Protein requirements are based on an increase
in needs. RDA for protein may be increased by
50-100%
FTT: DRI protein for age × ideal weight for
height (kg) / actual weight
RDA/AI*
Children
1-3 y: 13
4-8 y: 19
males
9-13 y: 34
> 14 y: 52
Females
9-13 y: 34
> 14 y: 46

From animal sources –
“complete protein”: meat,
poultry, fish, eggs, milk, cheese,
and yogurt.
From plants: legumes, grains,
nuts, seeds, and vegetables.

Carbohydrate Source of calories to maintain
body weight.
Primary energy source for the
brain

55 to 60% of the total calories
Children and adults 130 g/d
Added sugars should comprise no more than
25% of total calories consumed.

Starch and sugar are the major
types of carbohydrates. Grains
and vegetables (corn, pasta,
potatoes, breads), are sources of
starch. Natural sugars are found
in fruits and juices. Sources of
added sugars are soft drinks,
candy, fruit, drinks, and
desserts.

Fat (g/d) Energy source and when
found in foods, is a source of
n-6 and n-3 polyunsaturated
fatty acids. Its presence in the
diet increases absorption of
fat soluble vitamins and
precursors such as vitamin A
and pro-vitamin A
carotenoids.

AMDR
Children
1-3 y: 30-40
4-8 y: 25-35
Males and females:
> 9 y: 25-35

Butter, margarine, vegetable
oils, whole milk, visible fat on
meat and poultry products,
invisible fat in fish, shellfish,
some plant products such as
seeds and nuts, and bakery
products.

n-3
polyunsaturated
fatty acids
(linolenic acid)
(g/d)

Possible favorable effect on
left ventricular function

Children
1-3 y: 0.7
4-8 y: 0.9
males
9-13 y: 1.2
> 14 y: 1.6
Females
9-13 y: 1.0
> 14 y: 1.1

Oily fish such as sardines,
mackerel, herring, trout, tuna,
and salmon. Other sources
include flaxseed, soy, canola oil

n-6
polyunsaturated
fatty acids (linoleic
acid)
(g/d)

Essential component of
structural membrane lipids,
involved with cell signaling,
and precursor of eicosanoids.

Children
1-3 y: 7
4-8 y: 10
males
9-13y: 12
14-18 y: 17
Females
9-13 y: 10
14-18 y: 12

Nuts, seeds, and vegetable oils
such as soybean, safflower, and
corn oil.
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Roles Recommended daily intake Dietary sources
Fibers
(g/d)

Reduces risk of coronary
heart disease, assists in
maintaining normal blood
glucose levels.

Children
1-3 y: 19
4-8: 25
Males
9-13y: 31
14-18 y: 38
Females
9-18 y: 26

Soluble fibers: oatmeal,
legumes, and some fruits and
vegetables with pectin

Water (ml/d) Essential for maintaining
vascular volume.

Total fluid requirements:
1-10kg: 100ml/kg
10-20kg: 1000 ml + 50 ml/kg
for each kg above 10 kg
>20kg: 1500 ml + 20 ml/kg
for each kg above 20 kg
Water restriction may be recommended in
advanced stages.

All beverages, including water,
as well as moisture in foods
(high moisture foods include
watermelon, meats, soups, etc.).

Vitamins and
minerals

Antioxidants have an
important role to play in
protecting mitochondria and
cells from reactive oxygen
intermediates.
Deficiency in both macro and
micronutrients may
contribute to the wasting
process once triggered.
Patients are usually receiving
loop diuretics which increase
urinary excretion of
micronutrients.

Using multiple micronutrient
supplementations has been shown to improve
left ventricular ejection fraction and quality of
life.

B1 - Thiamine Coenzyme in many
physiologic functions
including carbohydrate
metabolism and maintenance
of myelin necessary for
proper nerve and muscle
function.

Children
1-3 y: 0.4
4-8 y: 0.5
Males
9-13 y: 0.7
14-18 y: 1.0
Females
9-13 y: 0.7
14-18 y: 0.9

Fortified cereals, meat; meat
and fish; dried beans, soy foods
and peas; whole grains

B3 - Niacin Functions in many biological
redox reactions including
intracellular respiration, fatty
acid synthesis and glucose
oxidation.
Niacin decreases blood levels
of cholesterol and
lipoprotein, which may
reduce the risk of
atherosclerosis.

Children
1-3 y: 5
4-8 y: 6
Males
9-13 y: 9
> 14 y: 12
Females
9-13 y: 9
14-18 y: 11

Dairy products, meat, poultry,
fish, fortified cereals, and
peanuts.

B6 (mg/d) Improvement of endothelial
function by reducing
homocysteine levels, which
is associated with increased
oxidative stress.

Children
1-3 y: 0.5
4-8 y: 0.6
Males
9-13 y: 1.0
> 14 y: 1.3
Females
9-13 y: 1.0
14-18 y: 1.8

Fortified cereals, beans, meat,
poultry, fish, and some fruits
and vegetables

B12 (μg/d) Improvement of endothelial
function by reducing
homocysteine levels.

1-3 y: 0.9
4-8 y: 1.2
9-13 y: 1.8
>14 y: 2.4

Fish, meat, poultry, eggs, milk,
milk products, and fortified
breakfast cereals

Folate (μg/d) 1-3 y: 150
4-8 y: 200
9-13 y: 300
> 14 y: 400

Prepared breakfast cereals,
beans, and fortified grains.

Vitamin A (μg/d) Important for normal vision,
gene expression,
reproduction, embryonic
development, growth and
immune function.

Children
1-3 y: 300
4-8 y: 400
Males
9-13 y: 600
>14 y: 900
Females
9-13 y: 600
>14 y: 700
Note: 1 RAE= 1 μg retinol, 12 μg β-carotene

Many breakfast cereals, juices,
dairy products, and other foods
are fortified with vitamin A.
Many fruits and vegetables, and
some supplements, also contain
beta-carotene and other vitamin
A precursors, which the body
can turn into vitamin A
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Roles Recommended daily intake Dietary sources
Pro vitamin A
carotenoids

Possible antioxidant activity.
Associated with decreased
risk of some cardiovascular
events.

Not determinable due to lack of data of adverse
effects.

Some fruits (papaya, peach,
melon), some tubers (squash,
yam, sweet potato), yellow/
orange vegetables (carrots,
peppers), green leafy
vegetables.

Vitamin C (mg/d) Important antioxidant and
also helps maintain tissue
levels of vitamins A and E,
which also serve as
antioxidants.

Children
1-3 y: 15
4-8 y: 25
Males
9-13 y: 45
14-18 y: 75
Females
9-13 y: 45
14-18 y: 65

Citrus fruits or juices, berries,
green and red peppers,
tomatoes, broccoli, and
spinach. Many breakfast cereals
are also fortified with vitamin
C.

Vitamin E (mg/d) Functions primarily as a
chain-breaking antioxidant
that prevents propagation of
lipid peroxidation.

Children
1-3 y: 6
4-8 y: 7
Males
9-13 y: 11
14-18 y: 15
Females
9-13 y: 11
> 14 y: 15

Vegetable oils, nuts, green leafy
vegetables, and fortified cereals

Vitamin D (μg/d) Essential for calcium
absorption from the intestine.

Children
1-8 y: 5
Males and females
>9 y: 5

Fortified foods such as milk and
breakfast cereals.

Calcium (mg/d) In addition to bone
metabolism, calcium plays a
role in muscle contraction.

Children
1-3 y: 500
4-8 y: 800
Males and females
9-18 y: 1300

Dairy products are the mains
source of calcium in the U.S.
diet. Other sources include
green vegetables, calcium-set
tofu, some legumes, canned
fish, seed, nuts, and certain
fortified food products.

Zinc (mg/d) Act as a component of
antioxidant enzymes

Children
1-3 y: 3
4-8: 5
Males
9-13y: 8
> 14 y: 11
Females
9-13y: 8
14-18 y: 9

Oysters, red meat, poultry,
beans, nuts, certain seafood,
whole grains, fortified breakfast
cereals, and dairy products

Copper Component of enzymes in
iron metabolism

Children
1-3 y: 34015
4-8 y: 440
Males and females
9-13 y: 700
14-18 y: 890

Organ meats, seafood, nuts,
seeds, wheat bran cereals,
whole grain products, cocoa
products

Magnesium (mg/d) Act as a component of
antioxidant enzymes. May be
involved in skeletal (and
cardiac)

Children
1-3 y: 80
4-8: 130
Males
9-13y: 240
14-18 y: 410
Females
9-13y: 240
14-18 y: 360

Green leafy vegetables, some
legumes (beans and peas), nuts
and seeds, and whole, unrefined
grains

Selenium Antioxidant protection in
concert with vitamin E

Children
1-3 y: 20
4-8: 30
Males and females
9-13y: 40
14-18 y: 55

cereals, meat, eggs, dairy
products, human milk, and
infant formula, which are good
sources of highly available Se
and are of low risk of providing
excess amounts of Se.

Sodium (g/d) Sodium restriction prevents
exacerbations of heart failure
and can reduce the dose of
diuretic therapy

Children
1-3 y: 1.0
4-8: 1.2
Males
9-13y: 1.5
14-18 y: 1.5
Females
9-18y: 1.5

Processed foods to which
sodium chloride (salt)/
benzoate/phosphate have been
added; salted meats, nuts, cold
cuts; margarine; butter; salt
added to foods in cooking or at
the table.

Other nutrition supplements
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Roles Recommended daily intake Dietary sources
Carnitine Essential for the transport of

long-chain fatty acids from
cytoplasm into the sites of β-
oxidation within the
mitochondrial matrix

No DRI or RDA established.
Conditionally essential nutrients.

Animal products like meat, fish,
poultry, and milk.

Taurine Nonessential amino acid that
participates in controlling
cellular calcium levels

Meat and fish

Creatine
phosphate

Primary high-energy
phosphate reservoir of the
heart and skeletal muscle.

Meat and fish

Coenzyme Q10 Critically necessary for
oxidative energy production
and cardiac function.
Role as a rate-limiting carrier
for the flow of electrons
through complexes I, II and
III of the mitochondrial
respiratory chain.

Widespread throughout all food
groups

BMR = Basal Metabolic Rate

EER = Estimated Energy Requirement

FTT = Failure to Thrive

DRI = Dietary Reference Intake.

AMDR = Acceptable Macronutrient Distribution Range – is the range of intake for a particular energy source that is associated with reduced risk of chronic
disease while providing intakes of essential nutrients.

*
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