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The unique mechanical performance of animal cells and tissues is
attributed mostly to their internal biopolymer meshworks. Its
perplexing universality and robustness against structural modifi-
cations by drugs and mutations is an enigma in cell biology and
provides formidable challenges to materials science. Recent inves-
tigations could pinpoint highly universal patterns in the soft glassy
rheology and nonlinear elasticity of cells and reconstituted net-
works. Here, we report observations of a glass transition in
semidilute F-actin solutions, which could hold the key to a unified
explanation of these phenomena. Combining suitable rheological
protocols with high-precision dynamic light scattering, we can
establish a remarkable rheological redundancy and trace it back to
a highly universal exponential stretching of the single-polymer
relaxation spectrum of a ‘‘glassy wormlike chain.’’ By exploiting
the ensuing generalized time-temperature superposition principle,
the time domain accessible to microrheometry can be extended by
several orders of magnitude, thus opening promising new metro-
logical opportunities.
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A major strategy in the investigation of complex materials is
to reassemble them step by step from simpler subunits to

trace back their material properties on the macroscopic scale to
those of their elementary constituents. This strategy has been
successfully applied to the biopolymer networks that constitute
the basic scaffolding structure of animal cells, known as the
cytoskeleton (1). Filamentous actin (F-actin), the major load-
bearing element of the cytoskeleton has received particular
attention. The success of simple viscoelastic models in the
quantitative analysis of the rheological behavior of in vitro
reconstituted biopolymer networks (1–5) has rendered them an
attractive paradigm for rationalizing the mechanics of live cells
(6, 7). Indeed, there appear to be striking mechanical analogies
between cells and prestressed reconstituted networks (7–9) and
strong correlations of cell functions with the viscoelastic param-
eters, suggesting the latter as viable indices for clinical diagnosis
(10). Recently, this widely shared view has been challenged by
observations (11) that live cells obey the highly universal and
comparatively featureless pattern of ‘‘soft glassy rheology’’ that
is ubiquitous in soft condensed matter (12). These observations
seem to imply that the pertinent linear mechanical properties of
a cell might be composed in a single number, the so-called ‘‘noise
temperature’’ (13) of the glass, and on this basis it has indeed
been suggested that we are all built of glass (14). Subsequently,
it has become a central task in cell biophysics to understand how
the two conflicting paradigms might be integrated into a unified
picture (15–17).

Here, we aim to resolve the apparent puzzle by demonstrating
that highly purified in vitro polymerized semidilute F-actin
solutions undergo a glass transition as a function of various
physiologically relevant physical control parameters. It manifests
itself in a very robust exponential stretching of the relaxation
spectrum evidenced by the logarithmic tails of the dynamic
structure factor measured by high-precision dynamic light scat-

tering (DLS), whereas no signs of diverging structural length
scales can be detected. Spectacular consequences of this anom-
alous stretching also emerge in the nonlinear mechanical prop-
erties of the actin solution, notably in the finite-time nonlinear
rheological response, which we find to be highly reminiscent of
previous results for living cells (7) and cross-linked actin net-
works (3, 9, 18). The presence of a mechanical signature usually
regarded as characteristic of biological cross-linkers in pure actin
solutions hints at a close intrinsic similarity of the mechanics of
(glassy) actin solutions with the mechanics of cross-linked in vitro
networks and of the cytoskeleton of living cells. It suggests that
a detailed analysis of the former may provide a key to a better
understanding of the latter.

We start with the exposition of our rheological results. The
data displayed in Fig. 1 were obtained by a series of short stress
pulses (see Methods) of increasing amplitude � for a represen-
tative actin sample. As can be seen from Fig. 1 Inset, the time
dependence of the compliance, J�(t) � �(t)/�, on the time scale
of the pulse duration exhibits two distinct regimes: a rapid elastic
response followed by a comparably broad viscoelastic creep
regime, which is characteristic of the internal relaxation times of
the sample. The time dependence of the response is very similar
for different pulse strengths �, as evidenced by a neat collapse
of all compliances onto a single master curve (data not shown),
with practically perfect strain recovery after each pulse. The
inverse of the creep compliance, Jt

�1, at a given time t of the order
of some seconds is thus a characteristic measure of the stiffness
of the physical polymer network. The main plot in Fig. 1 shows
Jt
�1(�) as a function of the stress-pulse amplitude � for different

delay times t. Independent of t, three different regimes can be
distinguished: at low stress, the creep compliance is approxi-
mately constant, corresponding to a linear stress–strain relation.
Above a critical stress of �0.06 Pa, one can discern a shear
stiffening regime, where the elasticity increases with the pulse
amplitude �, approximately in accord with J�1 � �x, x � 0.4.
Finally, at shear stresses �1 Pa, the elasticity drops sharply and
the response ceases to be reversible, apparently because of
irreversible structural changes.

The curves in Fig. 1 demonstrate that shear stiffening similar
to that found for cross-linked networks is also possible for pure
actin solutions. Indeed, the overall functional form of the curves
in Fig. 1 resembles qualitatively results obtained for cross-linked
(and prestressed) in vitro samples (3, 9, 18) or even for live cells
(7). However, as seen from the data in Fig. 2, the stiffening is

Author contributions: R.M., A.R.B., and K.K. designed research; C.S., T.S., and J.G. per-
formed research; C.S., T.S., J.G., R.M., A.R.B., and K.K. analyzed data; and R.M., A.R.B., and
K.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

¶To whom correspondence may be addressed. E-mail: abausch@ph.tum.de or kroy@itp.uni-
leipzig.de.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0705513104/DC1.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0705513104 PNAS � December 18, 2007 � vol. 104 � no. 51 � 20199–20203

BI
O

PH
YS

IC
S

PH
YS

IC
S

http://www.pnas.org/cgi/content/full/0705513104/DC1
http://www.pnas.org/cgi/content/full/0705513104/DC1


sensitively dependent on slight changes in temperature T, sug-
gesting that the apparent power-law exponent x of the stress-
stiffening relation might be less universal than thought (3, 4).
The displayed inverse creep compliances measured at temper-
atures between 18°C and 27°C show that x decreases approxi-
mately linearly with increasing T, until the stiffening effect
vanishes at T � 25°C (compare Fig. 2 Inset). Curiously, neither
in the linear regime of the curves in Fig. 2 nor in the frequency-
dependent linear shear moduli in the range 0.01–10 Hz can any
significant temperature dependence of the response be detected.

Completely analogous observations were made for other
control parameters, notably ionic strength I, polymer length L,
and actin concentration cA. For example, reducing the KCl
concentration by a factor of 10 to 10 mM has no significant effect
on the linear elastic response but strongly affects the nonlinear
response in a way very similar to raising the temperature.
Replacing 90 mM KCl by cosmotropic or chaotropic salts (NaCl,
CsCl) did not affect the overall picture. Under both conditions
the same mechanical response was observed, hinting at a purely
electrostatic, ion-unspecific effect.

To obtain more comprehensive data, we turned to the more
efficient �̇-pulse protocol (see Methods and ref. 5). Taking the
numerical derivative of the recorded stress-strain curves (see Fig. 3,
for examples) yields the nonlinear differential modulus K, which
may be parameterized either in terms of strain or stress. To facilitate
comparison with Figs. 1 and 2, we have chosen the representation
K(�) in Fig. 4. On changing T, L, cA, and I, one finds again
qualitatively the same characteristic nonlinear behavior as obtained
in Fig. 2 for the �-pulse method (see Fig. 4).

Altogether, our data demonstrate that the characteristics of
the transition from stiffening to softening are largely insensitive
to the choice of the control parameter. To understand the origin
of this remarkable rheological redundancy, consider again the
stress–strain relations displayed in Fig. 3, which were obtained
with the �̇-pulse protocol at various fixed shear rates �̇ and
temperatures T. A comparison of the curves suggests that a
decrease in temperature can be compensated by an appropriate
decrease of the shear rate. Indeed, as demonstrated in Fig. 3 Inset
with 25 curves for different T, L, cA, and �̇, the stress–strain
curves neatly collapse onto a single master curve on rescaling
with their characteristic strain and stress values. This explains
why rheological protocols imposing a fixed external time scale
(19), like our pulse protocols, are a crucial prerequisite for a
systematic study of the nonlinear mechanical consequences of
the glass transition in F-actin solutions. By minimizing viscous
creep as incurred during ordinary creep and oscillatory mea-
surements in the nonlinear regime, they can detect the distinctive
nonlinear elastic features characteristic of the particular (fixed)
finite time scale that are otherwise ‘‘wiped out’’ in the measure-
ment process.

The data collapse of the stress–strain relations in Fig. 3
moreover establishes a time–temperature superposition princi-
ple: the effect of a temperature change on the nonlinear
rheological behavior amounts essentially to a rescaling of time.
Moreover, with regard to the observed rheological redundancy,
it suggests that changes not only of temperature but also of
polymer length, concentration, ionic strength (and possibly
further parameters) all affect the rheological response chiefly by a
stretching of the relaxation spectrum. To support this far-reaching
superposition principle, it would be desirable to measure in
greater detail the equilibrium long-time dynamics of the samples
on microscopic and macroscopic scales. Because of the technical
difficulty of low-frequency linear rheometry for soft samples, we
concentrate on microrheological measurements for that pur-

Fig. 1. Nonlinear elasticity probed by the �-pulse protocol. Inverse creep
compliance, 1/J, as a function of applied stress pulse amplitude, �, evaluated
at delay times: t [s] � 1 (diamonds), 2 (circles), 3 (double triangles), 4 (triangles),
5 (squares) for actin concentration cA � 9.5 �M, temperature T � 21°C, and
average polymer length L � 21 �m. (Inset) The time dependence of the
compliance J(t) for different � values.

Fig. 2. Temperature-induced transition from shear softening to shear stiff-
ening (�-pulse protocol). The inverse of the creep compliance, J, normalized by
J(0.01 Pa), as a function of the applied stress � for various temperatures:
T [°C] � 18 (filled circles), 19 (filled squares), 21 (filled diamonds), 22 (filled
triangles), 23 (open circles), 25 (open squares), 27 (open triangles) and cA � 9.5
�M, L � 21 �m. (Inset) Apparent power-law stiffening exponent x of 1/J(�) �
�x vs. temperature T.

Fig. 3. Stress–strain curves (�̇-pulse protocol). The stress � vs. the strain � at
21°C (solid lines) and 25°C (dashed lines) for �̇ [s�1] � 0.05, 0.1, 0.2, 0.4. For all
curves L � 21 �m, cA � 9.5 �M. (Inset) Data collapse of 25 stress–strain curves
for different T, L, cA, and �̇ values onto a master relation upon rescaling each
curve by its characteristic strain and stress values. The spread of the data at
low-strain values is due to instrument limitations causing measurement
uncertainties.
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pose. The linear microrheology is reliably and noninvasively
probed over several orders of magnitude in time by high-
precision DLS. Throughout the measurable time domain, the
dynamic structure factor is uniquely determined by the trans-
verse dynamic mean-square displacement of the polymers (20).
By the fluctuation dissipation theorem, it may thus be translated
into the mechanical susceptibility probed by an idealized weak
periodic transverse point force applied to a test polymer, which
is commonly reported in the form of microrheological moduli.
Our DLS results presented in Fig. 5 show that the scattering
function acquires a pronounced logarithmic tail at low T and
large L, in stark contrast to more fluid samples at higher
temperatures (21). The slopes of these logarithmic tails in the
(semilogarithmic) plot determine the apparent power-law expo-
nent characterizing the corresponding frequency-dependent mi-
crorheological moduli (11) as detailed in the supporting infor-
mation (SI) Text and SI Fig. 10. As demonstrated in Fig. 5 Inset,
the tails of the individual scattering curves measured for differ-
ent actin concentrations (other conditions and scattering vector
q � 8.04 �m�1 fixed) collapse on rescaling the time axis. The
resulting master curve extends over �10 orders of magnitude in
time of which �7 exhibit the logarithmic decay, providing an
impressive illustration of the metrological potential of the su-
perposition principle (here, for the parameter cA). Beyond an
unambiguous demonstration of the stretching of the relaxation
spectrum in form of the logarithmic decay, the DLS data thus
represent strong independent evidence for the rheological re-
dundancy inferred above from our nonlinear macroscopic rheo-
logical measurements.

In the remainder, we briefly sketch the relevant features of the
model that produces the fits in Fig. 5 and its relation to the
nonlinear rheology reported above. A more comprehensive
theoretical discussion of this ‘‘glassy wormlike chain’’ model is
reported in ref. 22. Our starting point is the observation that for
short times (or high frequencies) the dynamic structure factor
and the micro- and macrorheological response can all be ex-
pressed in terms of single-polymer dynamics (20, 23–25). To
account for the slowing down by interactions with the surround-
ing polymers at longer times, we modify the dynamics of an
ordinary, weakly bending wormlike chain (see Methods) in the
following way. The mode relaxation times �� � �� of all
eigenmodes of (half) wavelength, �, longer than a characteristic
interaction length, �, are multiplied by a factor exp(EN) that
grows exponentially in the number N � �/� � 1 of interactions
per wavelength �. The modification is reminiscent of the generic
nonequilibrium trap models (12, 26) of soft glassy rheology (13),
but concerns the equilibrium dynamics here. The stretching
parameter E controls the slopes of the logarithmic tails of the
structure factor in a semilogarithmic plot and thus the nonuni-
versal apparent power-law exponents deduced from microrheo-
logical measurements. (Asymptotically for large E �� 1, the
‘‘noise temperature’’ is given by 1 � 3/E; see SI Text.) In view of
the sensitivity of the rheology to temperature and ionic strength
reported above, it seems natural to think of E as the characteristic
scale (in units of thermal energy) for energetic barriers. Whereas
protein interactions remain poorly understood, many observa-
tions hint at temperature-sensitive unspecific (probably hydro-
phobic) adhesive contact interactions incompletely screened by
electrostatic repulsion (27, 28), which would match well with this
interpretation and with our observations. In the spirit of generic
free-volume theories (29), the parameter E might moreover
accommodate free-energy contributions from caging and entan-
glement (22). In any case, an exponential scaling of the relaxation
times in the wavelength � seems plausible.

Crucially, appealing to the intuition of the stretching param-
eter as a (free) energy barrier, externally or internally generated
stresses may arguably be expected to contribute additively to E,
which provides a tentative theoretical access to the observed
stress softening/stiffening. Pertinent predictions suitable for a
qualitative comparison with our nonlinear rheology data may be
derived by subjecting the glassy wormlike chain to a prestress. To

a

b

Fig. 4. The transition as a function of polymer length and concentration
(�̇-pulse protocol). The differential modulus K (the numerical derivative of � �
� curves) vs. the applied stress � at �̇ � 0.1 [s�1], both axes normalized by the
linear modulus Klin (a) for various actin concentrations cA [�M] � 2.4, 4.8, 9.5,
19, and 38 at T � 21°C, L � 21 �m, and (b) for different filament lengths L
[�m] � 5, 7, 10, and 21 at T � 21°C, cA � 9.5 �M.

Fig. 5. Dynamic structure factor from DLS. Scattering functions for native actin
(no gelsolin, cA � 17 �M, T � 15°C) at various scattering vectors q [�m�1] � 6.44,
8.04, 9.62, 11.71, 13.1, 14.47, 17.13, 19.64, 22.01, 24.22, and 29.66 (from top to
bottom,thedataoutsidetheconfidencetimeintervalaretruncated)fittedbythe
model proposed in the main text. The failure of the fits for low q indicates the
breakdown of the single-polymer scattering theory. Quantitative evaluation is
meaningful for q �10 �m�1 and yields E � 37 	 6, � � 2.15 	 0.13 �m (see SI Text
and SI Figs. 7–9 for further details). (Inset) The logarithmic tails of the scattering
curves at q � 8.04 �m�1 for various actin concentrations cA [�M] � 7.2, 12, 17, and
24 collapse on rescaling the time axis. Theoretical fits are dotted.
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this end, we represent the effect of prestressing the sample by
subjecting the chain to a tension f and by replacing the stretching
parameter E by E � f/fT. Here, fT � kBT/
 represents some
characteristic scale of the thermal equilibrium tension present in
an unstressed sample, so that 
 may be interpreted as a
characteristic (effective) width of the energetic traps and barri-
ers. The complex frequency-dependent linear shear modulus of
the prestressed system is then, within our simple scheme, equiv-
alent to the much studied macroscopic frequency-dependent
nonlinear differential modulus K*�(�) (3, 7–9). In Fig. 6, its
absolute value �K*��, evaluated at a fixed frequency � � 0.1��

�1 in
the ‘‘slant-plateau’’ regime, is plotted as a function of the
prestressing tension f, which is expressed as an equivalent
prestress �. The parameters, given in the legend to Fig. 6, were
chosen to mimic our experimental conditions. Although the
increase of the modulus is due to the stiffening of the polymers
caused by the prestress, its sharp downturn signals the break-
down of the stretching of the relaxation spectrum when f � EfT
and the sticky contacts yield to the stress. Qualitatively, the
results compare favorably to our data in Figs. 2 and 4, thus
providing further support for the proposed mechanism.

Notwithstanding the substantial success of the scheme above
in accounting for the experimental observations, one should
carefully consider the scope for other available theoretical
explanations. Slow relaxation, as evidenced by our DLS data,
also occurs in the vicinity of ordinary (e.g., percolation) critical
points (30, 31). However, so far, there is neither direct evidence
of fractal or percolating structures or other diverging length
scales nor of a critical point at a finite temperature or at a
semidilute concentration in actin solutions or in cells, but there
is accumulating phenomenological evidence for (nonequilib-
rium) glassy behavior in cells (32–34). The anomalous stretching
of the relaxation spectrum leading to generic apparent power-
law fluid behavior with a parameter-dependent nonuniversal
exponent is characteristic of soft glassy rheology and runs
counter to an interpretation in terms of critical gelation. There
are, moreover, good reasons why it might be physiologically
advantageous for cells to behave as glassy rather than like a
critical gel (33). Higher-order mode-coupling singularities might
be considered as an alternative explanation, in analogy with what
has been established for colloids (35) and suggested to extend to
flexible polymer blends (36). However, given the very robust and
generic nature of the effect in our F-actin solutions and the
corresponding phenomenology in live cells, the fine-tuning of
competing interactions required by that theory seems again
somewhat unintuitive. In contrast, the characteristic patterns of

soft glassy rheology arise very naturally from the glassy worm-
like chain model introduced above and in ref. 22 (see also SI
Text), which moreover offers considerable scope for pinpointing
its microscopic origin and rationalizing additional features of
nonlinear cell rheology (34) in future work.

It is an intriguing question as to what extent our results for
pure F-actin solutions are representative also for the mechanics
of cross-linked networks and live cells. First, we note that
reversibly (and irreversibly) cross-linked networks are effectively
contained (as the limiting case E 3 �) in our theoretical
discussion, which allows us to establish a very direct and well
testable relation between the form of the linear and nonlinear
viscoelastic moduli and the strength E and concentration
3��2��1 (see Methods) of cross-links. Moreover, it is possible
and would be worthwhile to develop the proposed scheme
further to effectively account to some extent also for the diverse
geometries and mechanical properties of various actin-binding
proteins. Similar reduced descriptions are routinely applied with
great success in colloidal science, where the physical effects of
one species of particles in a binary mixture are completely
absorbed into an effective interaction potential between the
particles of the second species (37). Second, a comparison of our
computed linear rheological moduli with published microrheo-
logical data for live cells (11, 32, 34) shows very satisfactory
agreement. This might be interpreted as further evidence that
cells and multicellular organisms do indeed live at the edge of a
glass transition (14, 33), although a more comprehensive com-
parison with linear and nonlinear cell rheometry data clearly
remains a major task for future studies. In particular, it would be
interesting to analyze in greater detail to what extent the
generalized time–temperature superposition principle and the
striking rheological redundancy with respect to important phys-
iological control parameters established above for actin solutions
is also realized in living cells. Can it provide a unified explanation
for the well known universality and robustness of the rheology
of cells and reconstituted cytoskeletal networks against struc-
tural modifications by drugs and mutations (14, 38)? As we have
demonstrated, the pronounced rheological redundancy ob-
served in pure actin solutions finds a very natural explanation in
the tight control of the dramatic stretching of the relaxation
spectrum by a single characteristic free-energy scale E, which
generally has to be thought of as a complicated sum of a
potentially large number of microscopic contributions to the
free-energy barriers retarding the structural relaxation. Clearly,
a complete microscopic derivation of the various anticipated
contributions to E is at the present stage elusive for actin
solutions, let alone live cells. Also, the implications of the
proposed scheme out of equilibrium remain to be explored. Yet,
it certainly offers a promising new perspective on the widely
reported observations of soft glassy rheology in cells and defines
clear objectives for future theoretical work. Ultimately, it
strongly supports expectations shared by many physicists that
‘‘simple polymer physics-based models may be able to explain
the observed cell mechanical response and suggest mechanisms
for mechano-sensing’’ (16).

In summary, we have found comprehensive evidence that
small variations in the ambient conditions (temperature, salt) or
the composition (polymer length, concentration) of F-actin
solutions bring about dramatic changes in the long-time equi-
librium dynamics and nonlinear rheology. We have proposed a
uniform exponential stretching of the relaxation spectrum of the
wormlike chain model as the universal origin of the glassy
phenomenology and the corresponding rheological redundancy.
This simple scheme yields predictions that compare favorably
with experimental data and offers a unifying perspective on the
relation between viscoelastic short-time and glassy long-time

Fig. 6. Nonlinear differential shear modulus of a glassy wormlike chain as
function of prestress. Absolute value of K*�(�) evaluated at � � 0.1��

�1 for the
glassy wormlike chain model discussed in the text. For the parameters per-
taining to the free-energy wells we chose 
 � 0.25 �m, � � 1.5 �m, and E �
4 . . . 40 from bottom to top. As in Fig. 4, both axes were normalized by the
linear modulus �K*� � 0(�)�.

20202 � www.pnas.org�cgi�doi�10.1073�pnas.0705513104 Semmrich et al.

http://www.pnas.org/cgi/content/full/0705513104/DC1
http://www.pnas.org/cgi/content/full/0705513104/DC1


dynamics. Apart from its plausible physiological significance, the
emerging superposition principle provides a powerful metrolog-
ical tool for future investigations.

Methods
Actin Preparation. Globular actin (G-actin) was prepared from rabbit skeletal
muscle (39) and stored in lyophilized form at �20°C. For the measurements,
the lyophilized actin was dissolved in deionized water and dialyzed against
G-Buffer (2 mM Tris, 0.2 mM ATP, 0.2 mM CaCl2, 0.2 mM DTT, and 0.005%
NaN3, pH 8) at 4°C. The G-actin solutions were stored at 4°C and used within
7 days of preparation. The average length L of filamentous actin (F-actin) was
adjusted by adding gelsolin, which was isolated from bovine plasma serum
(40). Throughout the text, we refer to the physically relevant average actin
length L in place of the gelsolin concentration, exploiting the relation estab-
lished in ref. 41. Samples were prepared by gently mixing deionized water
with gelsolin and G-actin and buffered to 2 mM Tris, 2 mM MgCl2, 0.2 mM
CaCl2, 0.2 mM DTT, 100 mM KCl, and 0.5 mM ATP.

Rheology. Approximately 520 �l of sample volume were loaded within 1 min in
a commercial stress-controlled rheometer (Physica MCR301, Anton Paar) with 50
mm of plate-plate geometry and 160 �m of plate separation. Our force protocols
were designed to minimize viscous creep. In the ‘‘�-pulse’’ protocol, short stress
pulses are applied. The duration of the pulses (5 s) and the intermittent recovery
periods (at least 45 s) were adjusted to allow for a 98% strain recovery of the
sample between consecutive pulses. In the more efficient ‘‘�̇-pulse’’ protocol,
samples are sheared at a constant shear rate (0.01 s�1 	 �̇ 	 0.4 s�1) and the
differentialnonlinear shearmodulus,K(�), asa functionof thestrain � isobtained
by taking the numerical derivative of the recorded stress–strain relations (5). We
checked for certain parameter values throughout the whole parameter range
that both methods yield qualitatively the same results.

DLS. We used a light-scattering spectrometer SP/125 equipped with a single-
photon detection unit SO-SIPD (ALV-Laser Vertriebsgesellschaft). The sample
cuvettes were housed in a thermostated index-matching bath (ALV) filled with
toluene. Measurement duration was up to 8�104 s. Therefore, instrument stability
was a major concern and was checked by measuring the correlation function of
toluene for 8�104 s. Values of g(2) � 1 did not exceed 0.003 with any statistical
significance, so that we concluded that values exceeding 0.01 were measured
reliably in our experiments. Such good stability of the instrument required a
warm-up period of the Ar� laser (Coherent) of 2 days, stability of the room
temperature to within 3°C, and careful alignment of laser and goniometer. The
intercept was very close to 2 (average value, 1.98; lowest value in all experiments
that are presented here, 1.93). We measured each sample before and after all
other light-scattering measurements at a scattering angle of 90°. Only experi-
ments where these measurements yielded indistinguishable results were
accepted.

Theory. For convenience, we summarize a few basic formulae concerning the
dynamics of the ordinary weakly bending wormlike chain, which is the basis of
the glassy wormlike chain theory developed in the text. For more comprehensive
background information on the wormlike chain, the reader is referred to ref. 42.
For more specific details concerning the theory curves in Figs. 5 and 6, see SI Text
and SI Figs. 7–9. The dynamics of a weakly bending wormlike chain of arc length
s � 0 . . . L subject to an (optional) constant backbone tension, f, is described by
the linear Langevin equation:


�ṙ� � � �r�
� 
 fr �� 
 �� [1]

for its transverse excursions r�(s, t) from the straight ground state. We abbre-
viate partial time and arc length derivatives by dots and primes, respectively,
and �, 
�, and ��(s, t) denote the bending rigidity, the solvent friction per
length, and Gaussian white noise. (See SI Text for a subtle improvement
concerning hydrodynamic interactions.) In three space dimensions, the per-
sistence length is given by �p � �/kBT. The equation of motion is solved by
introducing eigenmodes. For the simple case of hinged-end boundary condi-
tions, these are just sine functions with amplitudes rn(t) for discrete (half)
wavelengths �n � L/n (n � 1, 2, 3, . . . )

r��s , t� � �2/L �
n

rn� t� sin��s /�n� . [2]

The eigenmodes relax independently and exponentially. For the case of
vanishing tension, f � 0,

�rn� t�rm�0�� � �nm

2kBT
�

� �n

�
� 4

exp�� t /�n� [3]

with the characteristic mode relaxation time

�n �

�

�
��n

�
�4

, [4]

referred to as �� in the main text. By �. . .� we denote the averaging over the
thermal noise ensemble. With the above formulae it is straightforward to calcu-
late the transverse component �[r�(s, t) � r�(s, 0)]2� of the mean-square displace-
ment (and similarly the longitudinal component) as a sum over the mode con-
tributions (Eqs. 2 and 3), from which all other quantities follow by standard
procedures. The case with finite tension f � 0 (interpreted as arising from a
prestress � � f/5�2 with � the mesh size) is treated along the same lines (22).
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