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We give a unified treatment of the statistical foundations of
population based association mapping and of family based linkage
mapping of quantitative traits in humans. A central ingredient in
the unification involves the efficient score statistic. The discussion
focuses on generalized linear models with an additional illustration
of the Cox (proportional hazards) model for age of onset data. We
give analytic expressions for noncentrality parameters and show
how they give qualitative insight into the loss of power that occurs
if the scientist‘s assumed genetic model differs from nature’s
‘‘true’’ genetic model. Issues to be studied in detail in the future
development of this approach are discussed.

genetic association � genetics � score statistic

A principal goal in both experimental and human genetics is
the identification of DNA polymorphisms that play a role in

determining measurable phenotypes. These polymorphisms are
called quantitative trait loci, or QTL. Unlike experimental
genetics, where controlled breeding experiments allow one to
map genes by a comparatively direct study of the correlation of
phenotypes with the genotypes of markers linked to QTL, human
genetics requires different approaches. The two most popular
methods are (i) association, or population based mapping, and
(ii) linkage, or family-based, mapping. In association mapping,
one correlates directly phenotypes and genotypes of genetic
markers, in principle, much like the corresponding process in
experimental genetics. However, because of population history,
which cannot be controlled and which is poorly understood,
success using this approach requires the approximate validity of
difficult to verify assumptions. In addition to uncertain assump-
tions about the mode of inheritance of the trait, because of the
large number of generations in the history of most populations,
the marker location on a chromosome must be very close to the
relevant QTL to ensure that recombination over the population
history has not severed the connection between QTL and
marker. Genome-wide association studies to search for anony-
mous genes typically use hundreds of thousands of markers to
represent the �3 � 109 base pairs of a human genome. This
marker density has only recently become achievable through the
technological advances of high throughput genotyping
platforms.

Family-based linkage analysis is based on the assumption that
observed similarities in phenotypes of related individuals are
caused by similarities in their genotypes at loci influencing those
phenotypes. Because this approach depends on family relation-
ships going back only a few generations, there are usually fewer
questionable assumptions, and the small number of generations
separating pedigree founders from the present means that
markers can be much more widely spaced, with perhaps 1,000–
10,000 sufficient to cover a human genome with little loss of
information. The indirect logic of family based linkage mapping
is usually thought to result in a lower signal to noise ratio at an
‘‘ideal’’ marker, and when one combines this with the added
complication of recruiting and studying appropriate pedigrees,
association studies are increasingly thought to be the method of
choice.

Although association and linkage studies usually proceed from
similar genetic models, with few exceptions the appropriate
statistical methods have been developed along separate lines. In
this paper, we provide a unified statistical framework and
indicate how it can allow one to study and compare different
experimental designs under various conditions. The discussion
here is necessarily abstract and simplified. In particular, we
mention only in Discussion the issues of multiple testing that
arise in genome-wide searches for anonymous genes, we assume
that genetic markers are completely informative, and we discuss
computational issues only briefly and problems of missing data
not at all.

Generally speaking, there are three sources of information for
making inferences about the presence of a QTL: the phenotypic
measurements, the genotypes of the founders of pedigrees, and the
process of inheritance that distributes these genotypes among the
nonfounders. The major difference between linkage and associa-
tion mapping is the way the founder genotypes are treated. In
association mapping one models penetrance of the genotypes and
uses this model directly in the formation of the test statistic. In
linkage analysis, the founder genotypes are used only indirectly, to
provide information about the inheritance patterns, which are the
sole genetic component used for inference.

Our basic model, described in detail below, is a direct gener-
alization of the model introduced by Fisher (1), who represented
phenotypic measurements as sums of genetic and environmental
effects and showed the important role of genetic and environ-
mental variance components in relating genotypic to phenotypic
variability. He also laid the foundation for family based genetic
mapping by computing the phenotypic correlation between
relatives.

A weak link in the development of this model is the need to
hypothesize a conditional probability distribution of the pheno-
types, given the genotypes. To mitigate this problem we will base
our approach on the conditional distribution of genotypes given
phenotypic values. This insures that conclusions will be relatively
robust against model failure with respect to false positive errors,
although not necessarily with respect to power to detect true
genetic effects. It is also effective in mitigating the effects of
nonrandom ascertainment as, e.g., when pedigrees are selected
through a proband having a disease related to the phenotype.

In The Efficient Score, we produce score statistics for gener-
alized linear models (GLM) and for the Cox regression model for
age of onset phenotypes (2). The key ingredient is a suitable
derivative of the log-likelihood with respect to the parameter of
interest, evaluated at the null value of that parameter. In the case
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of association mapping, the first derivative is used. In the case of
linkage mapping, the second derivative is used because the first
derivative vanishes. It is shown that, in both cases, the test
statistic is of the form of a linear combination of the genetic
information, weighted by terms that depend on the phenotype
and nuisance parameters of the model. In the case of association
mapping, the sum is taken over all subjects and the genetic
information enters in the form of an hypothesized effect of the
genotypes. In the case of linkage mapping, the sum extends over
all pairs of subjects and the genetic information enters in the
form of centered identity-by-descent relationships. (It turns out
that, under the null hypothesis of no linkage and no association,
these two efficient scores are uncorrelated, so could be used
simultaneously if this seemed advisable.) In Calculating the
Variance, we assess the variance of these statistics, and in
Nuisance Parameters and Latent Covariates, we propose an
algorithm for the estimation of nuisance parameters.

The Noncentrality Parameter is concerned with evaluation of
the noncentrality parameter (the expectation of the test statistic
when a QTL is present), which is the key in evaluating the power
to detect a QTL. It is shown that in association mapping the
magnitude of this parameter is determined by the correlation
between the true model of penetrance and the assumed one, so
the power of association mapping may be greatly affected by a
mis-specification of the model. In linkage analysis, however, the
noncentrality parameter is much less sensitive to a mis-
specification of the model. This and other issues are discussed in
Discussion.

Notation
Let Y be an n � 1 vector. The components Yi denote the phenotypic
measurement for subject i. These individuals exist within pedigrees,
which can be a single pedigree of size n, n pedigrees of size one, or
anything in between. To relate the distribution of Y to a set of
genetic and nongenetic covariates, let t be a genomic locus that is
to be tested as a QTL. Genetic variability is introduced as an
assignment of a pair of haplotypes to each of the pedigrees’
founders. We model the haplotypes among founders as indepen-
dent of each other. These haplotypes are transmitted to the rest of
the pedigree in a process summarized by the inheritance vector,
which has two coordinates for each nonfounder, each coordinate
coded as 0 or 1, the first coordinate to indicate whether the
individual’s maternally inherited allele comes from the maternal
grandmother or grandfather, and the second coordinate to describe
similarly the paternally inherited allele. The haplotype assignment
of the founders is identified by gt and the inheritance vector by vt.
Denote by Qi � Q(vt(i), gt) the relevant combination of alleles at the
locus in the ith subject, coded as a row vector. The matrix Q, which
has n rows, will be called the QTL covariate. In reality, because the
exact nature of the QTL is typically unknown, one introduces a
possibly different coding of the observed haplotypes as a substitute.
We will call the coding for a given subject Ui. For simplicity of the
exposition, it is assumed to be a scaler, although vector coding can
be used in all that follows. The n � 1 vector U with coordinates Ui
will be called the local genetic covariate. We assume that the locus
under consideration is within a relatively short genomic subinterval
that is unlikely to experience recombination in the meiotic events
that define the inheritance vector. Consequently, we may assume
that Q and U are direct functions of the pair (vt, gt) and that Qi and
Ui correspond, respectively, to the true and to an hypothesized
coding. (In general, t can be a vector if we want to model explicitly
multiple, possibly interacting genetic loci; but for simplicity we
restrict our formal discussion to the case of a single locus. In
addition, the location of the QTL will usually be unknown, but again
for simplicity we assume at present that Q and U both model the
same genetic locus.)

The relation between U and Y will be our primary interest.
However, other factors may affect the distribution of the phe-

notype. The observable factors will be treated as fixed and will
be coded in a matrix z. Latent genetic factors will be coded in a
matrix G, which we call the global genetic covariate and assume
is unlinked to and in linkage equilibrium with the tested locus t.
This will be the case if, as we assume, the population is randomly
mating. Environmental and other latent nongenetic effects are
introduced in a matrix E. We treat both G and E as random
effects and assume that they are independent. The combined
effect of the covariates on the distribution is assumed to be given
by the linear predictor

���� � z�z � U�U � G�G � E�E, [1]

where � � (�z, �U, �G, �E) is a vector of regression coefficients.
Without loss of generality, we assume that the latent covariates
G and E are standardized to have mean zero and unit variance.
We will also assume that there is a true model, of the same form
as Eq. 1, but with U�U replaced by Q�Q.

Remark 1. In the simple case of a biallelic marker with alleles B and
b, an additive coding of Ui is simply the total number of say B alleles
in the genotype: 2, 1, or 0. A nonadditive coding would allow the
possibility that the coding for the heterozygote Bb differ from the
average of the two homozygotes. To consider a range of possible
values, one would introduce a second coordinate to Ui , so �U would
become a two dimensional vector. If there are more than two alleles,
e.g., if one considers haplotypes or a multiallelic QTL, a saturated
model would require high dimensional coding. Consequently, an
important issue is the loss of information that occurs if a simple
model for Ui fails to capture adequately the complexity of the true
covariate Qi .

In the spirit of GLM (2), we assume a a log-likelihood of the
phenotypic measurement associated with subject i in the form
�i(�) � [Yi �i � �(�i)]/�, where � is a scale parameter and � is
the cumulant generating function with respect to the natural
parameter of the exponential family. The parameter �i is itself a
function of the vector of parameters � and of the covariates via
the link function h and the linear predictor: �i(�) � h(�i(�)). We
assume that the phenotypic measurements are conditionally
independent, given the covariates, so the log likelihood for a
sample of size n, conditional on the covariates, both observed
and unobserved, takes the form:

���� � �
i�1

n

�Yi�i � ���i��/�. [2]

In general, the sample will contain pedigrees, within which the
genotypic covariates are correlated and the environmental co-
variates may also be correlated, whereas these covariates are
usually regarded as independent between pedigrees. However,
the conditional log likelihood can be written in the form of Eq.
2 in all cases. Because the joint distribution of the covariates does
not involve the unknown parameters of the model, the condi-
tional likelihood in Eq. 2 is also the full likelihood. In the special
case that h(x) � x, �(�) � �2/2, and � � 	e

2, the phenotype Y is
conditionally normally distributed with mean value � and vari-
ance 	e

2.
To illustrate the generality of our approach, we also consider

the Cox regression model (2), where the ‘‘phenotype’’ is Yi � (Xi,

i), i � 1, . . . , n, with Xi being the minimum of an age of onset
(or survival time) and a censoring time, and 
i is the indicator
that the subject was not censored. The partial log-likelihood
takes the form:

���� � �
i�1

n

��i � log S��, Xi��
i,
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where S(�, Xi) � n�1	j�R i
e� j, with R i � { j: Xj � Xi}, the

group of subjects at risk at time Xi, the age of onset or
censoring of the ith individual.

In principle all phenotypes are observable, whereas many
covariates are not. We assume henceforth that the fixed-effect
covariate z is observable, as is, to an extent made more precise
below, the local genetic covariate U. Inference is based on
marginal and conditional likelihoods of the observable covari-
ates. Marginal likelihoods can be calculated as conditional
expectations, given the observed variable, of the full likelihood.
For example, if we assume that we observe the measurements Y
and the covariates z and U, then the marginal log-likelihood of
� with respect to these observations will be denoted by

���; Y, U� � log ��e�����Y , U� .

(Dependence on the fixed covariates z has been suppressed.) The
conditional log-likelihood of the genetic covariate, given the
phenotypes (and nongenetic observed covariates), is

���; U�Y� � log ��e�����Y , U� � log ��e�����Y� . [3]

To have a better understanding of the relations between
association and linkage mapping we consider the inheritance
vector vt and the genotypes among the founders, gt. In association
mapping, the exact form of the genetic variability contributing to
the phenotype is modeled, say, in a form of a biallelic DNA
variant. Accordingly, the Ui values are observable and inference
may be based on the log-likelihoods (Eq. 3). In linkage analysis
one assumes that gt is not available for purposes of inference and
restricts consideration to the log-likelihood

���; vt�Y� � log ��e�����Y , vt� � log ��e�����Y� , [4]

which, as we see below, allows inferences based only on
inherited genetic relationships among the members of pedi-
grees. Note that the expectation in the first term of Eq. 4 is now
taken with respect to the random distribution of gt, as well as
the other unobserved covariates, conditional on the inheri-
tance vector.

The Efficient Score
The efficient score, which can be standardized to produce the
score statistic for testing the contribution of the locus t to the
trait, is formed by taking derivatives of the log-likelihood
function with respect to the coefficient �U and setting the value
of that coefficient equal to zero (3). In what follows �0, and
where no confusion can result simply a subscript of 0, will
indicate that the vector � has been evaluated at (�z, 0, �G, �E).

For association mapping, we obtain by differentiating Eq. 3
the efficient score

�̇��0; U�Y� � �
i�1

n

�0��i�Y� 
Ui � �0 �Ui��, [5]

where

�i � ��Yi, Gi, Ei� � �Yi � ��1� ��i��0���h�1� ��i��0��/�

and the superscript in parentheses denotes differentiation with
respect to the argument of the indicated function. The product
form results from the fact that under the null distribution (�U �
0) the triplet (Y, G, E) is independent of U. The resulting statistic
is a linear combination of the centered local genetic covariates.
The coefficients are functions of the phenotypes, global covari-
ates, and parameters that must be estimated.

In the special case of a normally distributed response Y with
the identity link and � � 	e

2 one obtains � � [Y � �(�0)]/	e
2.

Suppose the distribution of �(�0) is normal with mean z�z and
covariance matrix R. Then Y is normally distributed with mean
z�z and covariance matrix 	 � R � 	e

2I. By standard multivariate
calculations, one sees that the conditional distribution of � given
Y is also normal with mean 	�1(Y � z�z) and covariance matrix
R � R	�1R. Hence, the efficient score (Eq. 5) is equal in this case
to (Y � z�z)	�1(U � �0�U�). If our sample contains pedigrees,
the polygenic random effect G is often assumed to make an
additive contribution, which produces a covariance matrix of the
form 	G � �G

2 �, where � is the matrix of kinship coefficients.
In the absence of environmental covariances, one has R � 	G.
Some details of the calculations in the normal case are given in
supporting information (SI) Text.

For linkage mapping, when we take the first derivative of Eq.
4 with respect to �U and evaluate it at �U � 0, we find that

�̇��0; vt�Y� � �
i�1

n

�0��i�Y� 
�0�Ui�vt� � �0�Ui�� � 0, [6]

whenever the distribution of gt is exchangeable and vt involves no
inbreeding; in particular whenever there is random mating.
Consequently, we use the second derivative and obtain

�̈��0; vt�Y� � 2 �
i�2

n �
j�1

i�1

�0��i�j�Y� 
�0�UiUj�vt� � �0�UiUj��

� 2 �
i�2

n �
j�1

i�1

�0��i�j�Y� 
��̂ij � �ij�	A:U
2

� ��̂ij � �ij�	D:U
2 �, [7]

where 	A:U
2 is the additive variance of the genotypic values of U

(see refs. 1 and 4) 	D:U
2 is the dominance variance, � is the

kinship coefficient matrix, and � is the matrix with (i, j)th
element equal to the probability that individuals i and j share 2
alleles identical by descent (IBD). The entry �̂ij is the proportion
of alleles shared IBD at the locus t for the given pair of subjects
and �̂ij is the indicator that the pair have inherited two alleles
IBD. This statistic is a function of the pairwise IBD relations of
the subjects.

Remark 2. The efficient score as second derivative arises statisti-
cally because the likelihood of vt contains no information about
the effect of �U on the phenotype of an individual, but does
carry information about the effect of �U

2 on the covariance of
phenotypes of related individuals, so the likelihood is properly
parameterized by �U

2 . Mathematically the appearance of the
second derivative amounts to the observation that, if a function
f(x) can be written as a function of x2, say g(x2), then by the chain
rule, the first derivative of f with respect to its argument evaluated
at x � 0 vanishes, whereas the second derivative of f (evaluated
at x � 0) is proportional to the first derivative of g with respect
to its argument evaluated at x � 0. For the purposes of this paper
we find it more useful to take the second derivative than to
reparameterize the likelihood function.

Remark 3. The claim in the introduction that the efficient scores for
linkage and for association are uncorrelated under �0 follows from
consideration of the conditional expectation of the product of the
two scores given Y and vt. The score for linkage is a function of these
variables, so comes outside the conditional expectation; the re-
maining conditional expectation is 0 by Eq. 6.

In the special normal case introduced above, when the marker
U has additive genotypic values, one finds that
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�̈��0; vt�Y� � tr
�0��� �Y� ��̂ � ���	A:U
2

� tr
�¥�1 �Y � z� z� �Y � z� z� ¥
�1 � ¥

�1 R /	e
2�

��̂ � ��� 	A:U
2

� tr
��¥�1 �Y � z� z� �Y � z� z� � I�¥�1 � I /	e
2�

��̂ � ���	A:U
2 .

The second term in the final line equals tr[�̂ � �] � 0. Hence,
up to a constant factor, this expression reduces to the efficient
score proposed by Tang and Siegmund (5) and others (6, 7). See
SI Text for details and a generalization to nonadditive coding
for U.

For the Cox partial likelihood, we find for association the
efficient score

�̇��0; U�Y� � �
i�1

n �
j�1

n

�0�p̂ij�Y�
i1
 j�R i�
�Ui � Uj� [8]

where p̂ij � p̂ij(�0) � e� j(�0)/[¥k�R i
e�k(�0)], j � R i. For linkage,

the first derivative of the efficient score vanishes. The second
derivative is given in SI Text. Despite its algebraic complexity, the
efficient score has again the form of a linear combination of the
pairwise IBD relations, with coefficients depending on the
responses and on the statistical model for the response.

Calculating the Variance
The efficient scores for testing association are described in Eq.
5 for the generalized linear models and in Eq. 8 for the Cox
regression model. The statistics are a linear combination of the
vector U � �0(U) in the case of generalized linear models and of
pairwise differences of the elements of this vector in the case of
Cox regression. To use these quantities to test for association, we
standardize them by the square root of estimators of their
(conditional) variances calculated under the parameter �0 (3).
The covariance matrix of the vector U is

�0�UU� � �	A:U
2 � �	D:U

2 .

Hence the conditional variance, given Y, of the efficient score
(Eq. 5) is

�ar0��̇��0; U�Y��Y� � ��̂��̂�	A:U
2 � ��̂��̂�	D:U

2 , [9]

where �̂ � �0(��Y).
For the Cox regression model one should consider the n2 � n2

covariance matrix involving

�ov0 �Ui � Uj, Uk � Ul� � �ov0�Ui, Uk� � �ov0�Uj, Ul�

� �ov0�Uj, Uk� � �ov0�Ui, Ul� .

The variance of the efficient score (Eq. 8) is obtained by
summing up these covariances multiplied by the appropriate
cross products of the linear coefficients.

In the case of the efficient score for linkage observe that

�ar0�U �vt� � �ar0�U� � ��̂ � ��	A:U
2 � ��̂ � ��	D:U

2 .

The general form of the efficient score in Eq. 7 is a quadratic
form, with coefficients depending on the phenotype and on the
statistical model used. The variance of the statistic is a sum of
pairwise products of weights and the covariances between the
different pairwise IBD counts. To write it compactly, it is
convenient to use the vec notation to arrange the elements of a
matrix into a vector column by column, so

¥�̂�̂ � �ov0 �vec��̂�� ,

¥ �̂�̂ � �ov0�vec��̂�� ,

¥ �̂�̂ � �ov0�vec��̂� , vec��̂�� .

Observe that the covariance matrices can be computed by
knowing the relatedness of the different members of the pedi-
grees. Letting ŵ denote the vec of the matrix with entries
�0(�i�j�Y) from Eq. 7, we have

�ar0 � �̈��0; vt�Y� �Y� � �ŵ¥ �̂�̂ŵ�	A:U
4

� 2�ŵ¥ �̂�̂ ŵ�	A:U
2 	D:U

2

� �ŵ¥ �̂�̂ ŵ�	D:U
4 . [10]

Nuisance Parameters and Latent Covariates
The phenotype-dependent coefficients appearing in the efficient
scores and in their (conditional) variances involve unknown
parameters and the latent covariates G, E. To deal with these we
must (i) estimate the nuisance parameters and (ii) calculate
appropriate functionals of the conditional distribution of the
predictor �, given the response Y. Assuming that we have solved
the second task, the first one can be carried out by using either
maximum-likelihood estimation, which involves the maximiza-
tion of Eqs. 3 or 4, or by a least-squares approach, which involves
minimization of the variances considered in the previous section.
In the normal case, these two are equivalent.

Exact computation of functionals of the conditional distribu-
tion of � given Y that appear in the efficient scores may be quite
complicated, so it is useful to consider approximations. Recall
that �(�0) � z�z � G�G � E�E. Suppose we model the
distribution of �(�0) to be Gaussian with mean z�z and covari-
ance matrix R � R(�G, �E), where the structure of the covariance
matrix, as a function of �G and �E reflects our knowledge and
beliefs regarding the effect of the within pedigree relations and
the environment on the trait. Based on this assumption regarding
the marginal distribution of �, one can see that up to an additive
term, which does not involve �, the conditional log-likelihood of
�, given Y, is equal to

���0� � �� � z�z� R�1 �� � z�z�/2,

where �(�0) is specific to the generalized linear model or the Cox
regression model.

If the response Y is also normally distributed with the identity
link function, the conditional distribution of �, given Y is normal
with mean z�z � R	�1(Y � z�z) and covariance matrix R �
R	�1R. In the case when the response is not Gaussian, one may
produce an explicit Gaussian approximation of the conditional
distribution by taking a quadratic expansion of �(�0) with respect
to � and completing the squares. Alternatively, instead of
attempting to find explicit results, one may employ the Metrop-
olis algorithm to produce random draws from the required
conditional distribution. Averaging the evaluations of the vector
of linear coefficients as a function of � over the random draws
will produce an approximation of the conditional mean.

Except in the normal case, the estimation procedure outlined
here can be quite complicated. Even in the normal case, it can
become complicated if, as occurs in many linkage studies,
pedigrees are not randomly sampled, but are ascertained
through one or more probands. See refs. 8 and 9 and the
references given there for a more complete discussion.

The Noncentrality Parameter
The power to detect a QTL depends on many factors that
complicate the comparisons of different methods. The primary
determinant is the noncentrality parameter, i.e., the asymptotic
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expected value of the score statistic when there is a local genetic
factor. Some of the secondary considerations are discussed
below.

We simplify the following discussion by assuming (i) that the
generalized linear model and the Cox regression model are roughly
correct and (ii) that the various nuisance parameters can be
estimated without error. [In family-based linkage analysis using an
assumed normal model, it is known (9) that, under weak conditions
on the structure of the pedigrees, replacing the nuisance parameters
by n1/2-consistent estimates does not affect the noncentrality pa-
rameter, and this appears be true in other contexts as well.] These
simplifications allow us to focus on what we believe is an important
and rarely discussed ingredient in evaluating the noncentrality
parameter, namely the the adequacy of the model of the local
genetic covariate U, which is often taken to be biallelic and additive.
Recall that, in our development of the score tests for association and
linkage, we used U as a substitute for the true but unknown factor
Q. When U is additive, �U is scalar. We denote by  the log-
likelihood under the true model, which uses Q�Q instead of U�U,
so in this section, � � (�z, �Q, �G, �E) [and �0 � (�z, 0, �G, �E)].
Without loss of generality, we assume that  has been standardized
to satisfy (�0; Q�Q; Q�Y) � 0.

Observe that the conditional expectation given Y of any
standardized test statistic Z under a local alternative determined
by �Q may be approximated to the first order by taking the linear
term in the Taylor series of  around �Q � 0. By virtue of the
functional form of  and of �, this leading term is �̇(�0; Q�Q�Y).
Hence, because exp(x) � 1 � x and �0(Z) � 0,

���Z�Y� � �0 �Ze��;Q�Y��Y� � �0�Z�̇��0; Q�Q�Y��Y�.

If �̇ is identically 0, as it is for family based linkage analysis (cf.
Eq. 10), one may use a quadratic expansion to obtain

���Z�Y� � 2�1 �0�Z�̈��0; Q�Q�Y��Y�.

Consider first the the association statistic, say Za, which equals

Za � ��
i�1

n

�̂i
Ui � �0Ui��/��ar0� �̇��0; U �Y� �Y��1/2,

where the denominator is given by Eq. 11. Hence, the first-order
approximation of the (conditional) noncentrality parameter is

���Za�Y� � ���̂��̂�	A:U,�Q � ��̂��̂�	D:U, �Q�/���̂��̂�	A:U
2

� ��̂��̂�	D:U
2 �1/2,

where 	A:U,�Q
is the additive covariance between Q�Q and U and

	D:U,�Q
the dominance covariance. Observe that �̂��̂ and �̂��̂

are determined by structure of the pedigrees, the phenotypes,
and the null distribution of the model. Given Y, these terms are
constant weights. In the simplest case that no individuals in the
sample are related, then � and � are the identity matrix. In the
special case that the original assumed model is correct, 	A:U,�Q

�
	A:U

2 �Q and similarly for 	D:U,�Q
, so �Q factors out of the

quadratic form in the numerator.
If one wants to use the noncentrality parameter as a consid-

eration of experimental design before observing the data, one
can under general sets of conditions appeal to the law of large
numbers to replace the conditional expectation given Y by the
(asymptotic) unconditional expectation under an assumed
model, which need not be the same as the model on which the
statistic is based. In this way one can also study robustness of the
asymptotic noncentrality parameter to violations of the assumed
model. If the assumed model is indeed correct, the coefficient of

�Q is the square root of the Fisher information, as one expects
from general large sample statistical theory (2).

The asymptotic noncentrality parameter depends on the ad-
ditive and dominance correlations between U and Q�Q. Maxi-
mum noncentrality is achieved if these correlations equal one,
and the power will be compromised if the correlations are small.
A similar result, albeit for different weights, holds for the Cox
regression model.

We now turn to the linkage score statistic, say Zl, and recall
that its general form is

Zl �
�ŵ vec��̂ � ��	A:U

2 � ŵ vec��̂ � ��	D:U
2 �

��ar0 ��̈��0; vt�Y��Y��1/2 ,

where the denominator is given by Eq. 10. Because �̇(�0; Q�Q�Y)
vanishes, the leading term in the approximation of the noncen-
trality is obtained from the correlation of the statistic with the
quadratic term in the Taylor series for . After taking expecta-
tions with respect to the distribution of haplotypes among
pedigree founders the approximation becomes

���Zl�Y� �

�W�̂�̂	A:U
2 	A:�Q

2 � W�̂�̂ �	A:U
2 	D:�Q

2 � 	D:U
2 	A:�Q

2 �

� W�̂�̂	D:U
2 	D:�Q

2 �
2�W�̂�̂	A:U

4 � 2W�̂�̂	A:U
2 	D:U

2 � W�̂�̂ 	D:U
4 �1/2 ,

where W �̂�̂ � ŵ¥W �̂�̂ŵ , W�̂�̂ � ŵ¥�̂�̂, and W �̂�̂ � ŵ ¥�̂�̂ŵ .
As above, given the pedigree structure and the phenotypes Y, the

W terms are conveniently regarded as fixed constants, which could
be simplified under more specific assumptions. If the assumed
model is indeed correct, �Q

2 can be factored out of the numerator;
and under general conditions that permit an application of the law
of large numbers the remaining fraction is again asymptotically the
square root of the Fisher information. Note also that even if 	D:U

2 �
0, i.e., there is no attempt to model dominance, the dominance
variance 	D:�Q

2 nevertheless appears in the noncentrality paramter.
(This is not true for association analysis.)

Because, in linkage mapping, the linear term in the expansion
vanishes, there is an apparent reduction in the noncentrality
parameter, a fact that in one form or another has been noticed
by many and is the basis for the belief that linkage mapping is less
efficient than association mapping. As we have observed the
approximation is asymptotic to ��Q�2 for linkage and to ��Q� for
association, and because we have already assumed that ��Q� is
small in our asymptotic analysis, its square is smaller still.
However, one may also observe that linkage analysis is relatively
robust to an incorrect assumed model about the mode of
inheritance of the QTL. For the linkage statistic, reduction in the
noncentrality parameter results from failing to give the right
weights to the additive and dominance variances in the formation
of the statistic, whereas the noncentrality of the association
statistic depends on the correlation between U and Q�Q, which
is usually much more sensitive to the exact mode of inheritance
of the QTL, as the following example shows.

Remark 4. One may easily construct biallelic examples where the
additive variance of Q is zero, whereas the dominance variance is
positive. Similarly, one can construct examples where two genes
interact to affect the phenotype, but each gene has no marginal
effect. In these cases a simple biallelic-additive model for U will
result in a noncentrality of zero. However, as follows from our
noncentrality calculations in the first case and has been pointed out
in refs. 5 and 10, a family-based linkage statistic for the same model
will have a nonzero (although not maximal) noncentrality. One can
also modify the example of ref. 11 concerning allelic heterogeneity.
Suppose there are more than two alleles at a single locus affecting
the trait with one allele in complete linkage disequilibrium with
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allele B of a biallelic marker, whereas another has the same relation
with b. If these trait alleles have (additive) effects �1 and �2 and
occur with frequencies p1 and p2 (whereas other alleles have no
effect on the trait), and if p1�1 � p2�2 � 0, the correlation of Q and
U is zero, so the simple association statistic has zero noncentrality.
Again the linkage statistic will have nonzero noncentrality. These
examples are admittedly extreme and there are different strategies
for mitigating their effects. But the point remains that, although
association studies offer great promise, they are more sensitive than
family based linkage studies to the inadequacy of necessarily
simplified models in approximating the unknown underlying genetic
reality.

Discussion
We have introduced a unified method of statistical analysis for
population based association studies and pedigree based linkage
studies to map QTL. Our method uses suitable conditional score
statistics, given the phenotypic values, which makes the analysis
robust with respect to false positive errors. The generality of our
model and unified method of analysis make it relatively simple to
compare the noncentrality parameters of the two statistics to
determine conditions under which one statistic might be preferable
to the other, and to examine conditions where the simplifying
assumptions commonly used in the definition of the local genetic
covariate may lead to substantial loss of power. In particular, we
have shown by example and by examining relevant explicit formulae
that association studies are less robust than linkage studies with
respect to violations of the assumed mode of inheritance. The
efficient scores for association and for linkage are uncorrelated, so
by squaring and adding the two standardized statistics, one obtains
a two degree of freedom statistic that may be more powerful than
either statistic individually.

A class of issues we have not discussed are those associated
with genome wide searches for anonymous DNA variants. In
general a QTL and nearby marker loci will not be at exactly the
same genetic locus. In addition to the adequacy of the genetic
models, the power of association mapping depends on the
linkage disequilibrium between QTL and marker loci, whereas
the power of family based linkage mapping depends on the
recombination fraction. In both cases the noncentrality param-
eter at the marker is reduced by the correlation of the (observed)
value of the test statistic at the marker and its (unobserved) value
at the QTL. Because the effects of linkage disequilibrium usually

extend over much shorter genomic distances than those of
recombination, many more markers are required to achieve
adequate power in association mapping. Consequently, the
threshold required to achieve an acceptable false positive error
rate is higher in association than in linkage mapping. This also
affects comparisons of power.

One can consider multiple, possibly interacting QTL by letting
t denote a vector of genetic loci and by taking partial derivatives
with respect to the coordinates of t to obtain efficient scores.
Detailed calculations will reinforce the relatively greater robust-
ness of linkage statistics compared with association statistics.

The assumption of random mating is stronger than is required
for family based linkage analysis. It would suffice for the
population to be composed of subpopulations, within which
random mating occurs, with no or little mating across subpopu-
lations. In this case quantities such as 	A:U

2 and 	D:U
2 would in

principle vary from one subpopulation to another, which would
make various formulas somewhat more complicated, but would
not change any essential features of the analysis. With regard to
association analysis, if the population is not randomly mating,
there may be problems of spurious association, which can lead
population based association tests to have unacceptably large
false positive rates, unless one can identify randomly mating
subpopulations correctly and stratify the analysis accordingly.
Family-based association tests (e.g., refs. 12 and 13) ameliorate
this problem, but can lead to a loss of power.

Although the discussion in this paper has been entirely
conceptual, one point is perhaps worth making with regard to
computational algorithms for implementation. For linkage map-
ping in pedigrees, given a suitable program for estimating
identity by descent from marker data (e.g., ref. 14) perhaps
complemented by Monte Carlo methods to take care of large
pedigrees, calculation of the score statistic is much simpler than
calculation of the likelihood ratio statistic for the same model,
because segregation parameters are estimated under the null
model, �U � 0, and only once, not at each marker. Consequently,
one can use general statistical programming languages and
extend the methods more easily to complex models incorporat-
ing, for example, gene–gene or gene–covariate interactions.
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