
Processing and classification of chemical data
inspired by insect olfaction
Michael Schmuker* and Gisbert Schneider†

Beilstein-Endowed Chair for Cheminformatics, Johann Wolfgang Goethe-Universität, Siesmayerstrasse 70, 60323 Frankfurt, Germany

Edited by Richard Axel, Columbia University, New York, NY, and approved October 23, 2007 (received for review June 18, 2007)

The chemical sense of insects has evolved to encode and classify
odorants. Thus, the neural circuits in their olfactory system are
likely to implement an efficient method for coding, processing, and
classifying chemical information. Here, we describe a computa-
tional method to process molecular representations and classify
molecules. The three-step approach mimics neurocomputational
principles observed in olfactory systems. In the first step, the
original stimulus space is sampled by ‘‘virtual receptors,’’ which are
chemotopically arranged by a self-organizing map. In the second
step, the signals from the virtual receptors are decorrelated via
correlation-based lateral inhibition. Finally, in the third step, ol-
factory scent perception is modeled by a machine learning classi-
fier. We found that signal decorrelation during the second stage
significantly increases the accuracy of odorant classification. More-
over, our results suggest that the proposed signal transform is
capable of dimensionality reduction and is more robust against
overdetermined representations than principal component scores.
Our olfaction-inspired method was successfully applied to predict-
ing bioactivities of pharmaceutically active compounds with high
accuracy. It represents a way to efficiently connect chemical struc-
ture with biological activity space.

bioinformatics � chemical biology � computational model �
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The mechanisms that enable olfactory discrimination are
remarkably similar across species and even phyla (1, 2), and

several principles of organization have been observed in insects
and vertebrates. One such principle is that each primary olfac-
tory sensory neuron (OSN) specifically expresses one type of
olfactory receptor (OR), as has been demonstrated, e.g., in mice
(3, 4) and in Drosophila (5, 6), although exceptions to this rule
exist (7, 8). ORs represent the largest family of seven-
transmembrane G protein-coupled receptors (9–12). Several
studies addressed structure–activity relationships (SARs) of
ORs (13–19). A general observation is that one odorant typically
activates a number of different ORs, and each OR has rather
broad ligand selectivity. Investigation of Drosophila OR neurons
(20) also indicated that each receptor preferably responds to a
specific combination of chemical features; that is, each receptor
samples a specific region of ‘‘chemical space.’’

Another characteristic of olfactory systems is that OSNs express-
ing a specific OR make synaptic contacts with a defined subset of
second-order neurons in downstream neural populations, namely
the olfactory bulb of vertebrates (21) or the antennal lobe of insects
(22, 23). These connections are formed in spatially discrete areas,
the glomeruli. It has long been speculated, and in part also shown,
that glomeruli are chemotopically ordered, such that neighboring
glomeruli receive input from OSNs that prefer ligands with similar
chemical characteristics (5, 24–27). There is some evidence that the
spatial distance of glomeruli in the olfactory bulb is related to the
distance between their genomic sequences (5). It has also been
demonstrated that receptor sequence similarity at least in some
cases correlates with the chemical properties of preferred ligands
(28–30). Such a chemotopic organization in the secondary process-
ing stage of olfactory information can be exploited for computa-
tional processes to decorrelate input signals (31). In particular,

correlation-based lateral inhibition can explain the processing of
receptor activation patterns in the antennal lobe (32).

Neurons extrinsic to the secondary structure project to overlap-
ping regions in brain areas that receive input from all sensory
modalities (33–37). All information necessary to assign a perceptual
quality to a chemical stimulus is present there.

In summary, insect and vertebrate olfactory systems can be
subdivided into three stages of functional organization. In the
first stage, OSNs encode the stimulus features into neuronal
signals. The second stage decorrelates these signals. In the third
stage, the processed representations (‘‘patterns’’) are associated
with perceptual qualities. Regarding these parallels in organi-
zation of neural connectivity, the question arises as to whether
this architecture has properties that make it superior to other
coding strategies for chemical information. Here, we present a
general computational model that processes chemical informa-
tion following this three-steps design. We show that signal
decorrelation in the second stage of olfactory signal processing
facilitates odorant classification, which might be relevant for the
perception of scent qualities.

Results
In the olfactory system, chemical information is translated into
neuronal signals, which undergo processing as they are relayed
to higher brain centers. We wondered whether the processing
principles in the olfactory systems can generally be applied to
information processing and enhance our ability to classify chem-
ical data. To address this issue, we designed a simplified com-
putational model of the three basic processing stages in the
olfactory system.

Step 1: Modeling Response Patterns. In the first step of the model,
odorant stimuli were encoded by using ‘‘virtual receptors.’’ Just
as real ORs respond to ligands sharing similar properties, a
virtual receptor will respond to ligands that occupy the same
region in chemical space. Fig. 1A illustrates the concept of the
virtual receptor: The smaller the distance between an odorant
and the virtual receptor in descriptor space, the higher the
response (or activation) of this virtual receptor will be. For our
analysis, 836 odorants were taken from the Sigma–Aldrich
Flavors and Fragrances (38). Odorants were represented by 184
molecular descriptors. Hence, each odorant is described by a
184-dimensional vector, each element of which encodes a chem-
ical property, forming the basis of a 184-dimensional ‘‘chemical
space.’’

Considering an array of n virtual receptors, each receptor has a
position described by a coordinate vector p in the m-dimensional
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descriptor space. The response of a virtual receptor to an odorant
should increase with decreasing distance between an odorant and
the receptor in chemical descriptor space. We defined the response
ri of the ith receptor (i � 1, 2, . . . n) to an odorant, s, as

r
i
� 1 �

d1�s , p
i
� � d

min

d
max

� d
min

, [1]

where pi represents the coordinates of the ith receptor, d1(s, pi)
is the Manhattan distance (Minkowski metric with k � 1, the sum
of absolute coordinate differences) between s and pi, and dmin
and dmax are the minimal and maximal distance between any s
and pi. Thus, ri � 0 if d1(s, pi) is maximal and ri � 1 if d1(s, pi)
is minimal.

The coordinates of the receptors should be chosen such that
they cover all relevant parts of chemical space. We used a
self-organizing map (SOM) to arrange our virtual receptors in
this data space (39). SOMs are capable of preserving local
topology in their low-dimensional projections (40). This
neighborhood-preserving organization naturally leads to a che-
motopic arrangement such that neighboring units are more
similar in their ligand characteristics than units that are more
separated on the SOM (Fig. 1B). The activity pattern can be
arranged on a two-dimensional plane according to the projection
that is defined by the SOM’s topology (Fig. 1C). Each rectangle

corresponds to the output of one virtual receptor, shades of gray
indicate different degrees of their activation by the odorant
stimulus.

The SOMs we trained had toroidal architecture and thus can
be visualized as two-dimensional grids. In the scope of our
model, a trained SOM corresponds to the arrangement of
glomeruli in the antennal lobe. Fig. 2 depicts two odorants (Fig.
2A, butyl phenylacetate; Fig. 2D, butyl levulinate) and the
respective response patterns (Fig. 2 B and E) from an SOM with
12 � 15 virtual receptors. Due to the toroidal grids, the upper
and lower edges of the patterns are connected, as are the left and
right edges.

Within the scope of the model, the evoked response patterns
correspond to activation of glomeruli in the antennal lobe. The
patterns generated by our model are similar to those observed
in animals: Each odorant activates multiple receptors (glomer-
uli), and each receptor is activated by several odorants. Most of
the patterns showed multiple ‘‘islands’’ of high activation; thus,
most odorants activated several units that are not necessarily
neighbors on the SOM grid. These activation islands reflect that
the SOM corresponds to a manifold rather than a hyperplane in
the descriptor space; i.e., it is ‘‘folded’’ and not planar. In part,
the curvature is due to the toroidal structure of the SOM but may
also be a consequence of the neighborhood structure in odorant
space.

A B C

Fig. 1. Creation of virtual response patterns, schematic. (A) Arrow weight and shading depict the degree of activation of a virtual receptor (gray disk) by
odorants (squares). (B) Activation of a grid of virtual receptors by one odorant. Lines connecting receptors symbolize neighborhood relationships in the SOM
topology. (C) The resulting response pattern. Each rectangle corresponds to one receptor, where shades of gray indicate the strength of activation, as depicted
on the scale to the right.

Fig. 2. Virtual response patterns for two odorants before and after processing. (A and D) Odorants and their scent qualities. (B and E) Virtual response patterns
evoked by the odorants. (C and F) Processed response patterns. Black corresponds to maximal activation, and light gray corresponds to minimal activation.
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In summary, the virtual response pattern adequately mirrors real
receptor activation by odorants and their downstream targets, that
is, the glomeruli. The patterns represent the raw signal evoked by
a chemical structure. The next step of olfactory information pro-
cessing is decorrelation of these receptor responses.

Step 2: Pattern Processing by Lateral Inhibition. It has been proposed
that processing in the antennal lobe implements correlation-
based lateral inhibition (32). If two glomeruli respond similarly
to a set of ligands, they will inhibit each other’s response. This
enforces a ‘‘winner takes most’’ situation such that the glomer-
ulus with the stronger response will inhibit the response of the
weaker glomerulus, effectively making their output more dis-
similar. The more correlated the firing patterns of the two
glomeruli, the more pronounced this effect will be.

To account for lobal processing, we computed the postlobal
pattern vector r� from the prelobal input vector r (compare with
Eq. 1) by Eq. 2

r� � r � q �C � rT

n � , [2]

where n is the number of virtual receptors, q is an arbitrary
weight, and C is a matrix, with Ci,j containing the Pearson
correlation coefficient for the responses of the ith and jth
receptor. Negative elements and all elements on the diagonal of
C were set to zero.

Fig. 2 C and F shows computed postlobal response patterns.
The most salient difference between the patterns is that there is
less overall activation. Notably, the sites of highest activation
remain unchanged (in the center in Fig. 2C and in the lower left
in Fig. 2F), whereas large portions of the remaining pattern get
sparser (i.e., show less activity).

In summary, lateral inhibition between correlated units results
in more focused signals. The decorrelated response patterns
form the basis for subsequent scent perception.

Step 3: Pattern Classification by Machine Learning. The third step of
olfactory information processing, the assignment of a perceptual
quality, was modeled as a machine learning process. We per-
formed a retrospective scent prediction experiment to examine
the impact of the above processing stages on the accuracy of
scent quality prediction.

We used odor annotations to 836 odorants from the 2004
Sigma–Aldrich Flavors and Fragrances (38) as targets to train a
Naive–Bayes classifier, as implemented in the WEKA machine
learning suite (41). We chose this particular method because it has
no tunable parameters and, thus, is optimally suited for classifica-
tion without the need to optimize additional free variables. In this
study, the Naive–Bayes approach served the sole purpose of
providing a parameter-free classifier for measuring the relative
effect of the first two steps of our olfactory information processing
model.

After removing scents that occurred less than five times in the
data set, we obtained a total of 66 scent qualities. Each odorant
was allowed to have several scent annotations. We trained the
classifier separately for each scent class; hence, each of the 66
resulting classifiers only distinguished between, e.g., ‘‘smoky’’
and ‘‘not smoky’’ or ‘‘fruity (Banana)’’ and ‘‘not fruity (Banana)’’
of the 836 compounds bearing this attribute. We assessed
prediction performance by the area under the receiver–
operating characteristic curve [area under curve (AUC)] (41). A
classifier was trained 50 times by using 5-fold cross-validation (80
� 20 data split of training and test data), obtaining 50 AUC
values per scent quality, of which we formed the median.

Our three-steps approach has only two free parameters that
both affected classification performance: the SOM size (i.e.,
number of virtual receptors) and q (the weight of correlational

inhibition; compare with Eq. 2). To analyze their effect, we
trained SOMs containing between 2 and 180 virtual receptors
(abscissa in Fig. 3) and used different values of q to process the
activation patterns. Results are depicted in Fig. 3: Patterns
generated with q � 2 outperformed q � 0 (no processing) and
q � 1 for almost all SOM architectures. For the 12 � 15
representations, the median AUC values were 0.68 (q � 2), 0.65
(q � 1), and 0.63 (q � 0). These differences are significant (P
�10�7; Wilcoxon rank sum test). Performance also gradually
decreased with dimensionality, but only 2 � 5 and smaller
representations significantly differ from the larger representa-
tions in their median AUC values (P � 0.05; Wilcoxon rank sum
test). Hence, overall classification performance did not suffer
from a reduction of dimensionality by a factor of five. For
comparison, we also tested the Naive–Bayes classifier on the
initial 184 chemical descriptors without processing (except scal-
ing and centering) and yielded a median AUC of 0.67. This value
indicates that the olfaction-inspired decorrelation step does not
lead to a loss of information but can even help to improve
classification.

The Influence of Signal Decorrelation on Classification. One hypoth-
esis for the functional meaning of processing in the antennal lobe
is that it decorrelates receptor signals (42). In the present work,
this decorrelation is achieved through mutual inhibition between
projection neurons that innervate glomeruli with correlated
response patterns. To quantify the amount of decorrelation, we
calculated the residual correlation between virtual receptors for
various settings of q.

Although in the unprocessed receptor responses there was
high residual correlation (q � 0; mean correlation � 0.38), it
gradually decreased with increasing q; for q � 1 the mean
residual correlation is 0.24, whereas it decreased to 0.02 for q �
2. Also for q � 2, there is some residual correlation, although its
values are distributed around zero, hence the small mean
correlation. In contrast, the dimensions produced by principal
component analysis (PCA) are orthogonal and have zero resid-
ual correlation. PCA is frequently used for dimensionality
reduction before training machine learning classifiers (43).

PCA by definition achieves maximum decorrelation of the
data, but it is not clear beforehand if the resulting patterns also
are better suited for classification. To investigate whether max-
imum decorrelation also corresponds to maximal classification
performance, we compared the classification performance of
our method with the performance that can be achieved by using
PCA for dimensionality reduction on the original descriptor set.
Fig. 4 shows median AUC values from retrospective classifica-
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Fig. 3. Impact of SOM architecture and correlational processing on classifi-
cation performance. Median AUC values for scent prediction using unproc-
essed patterns (q � 0) and patterns processed by correlational inhibition, with
q � 1 and q � 2. The ordinate was truncated to emphasize differences.
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tion using patterns processed with q � 2 and using the first n
principal components of the original data set that explained most
variance. We chose the dimensionality of the reduced data to
match the dimensionality of the patterns.

The patterns filtered by correlation-based lateral inhibition
yielded higher AUC values for higher dimensionalities (maxi-
mum � 0.68 by using 180 dimensions), whereas the principal
components seemed to work best for low dimensionalities (max-
imum � 0.67 by using four dimensions). A possible explanation
for this behavior is that, with PCA, the dimensions explaining
less variance introduce noise, leading to inaccurate training and
decreased performance of the classifier.

Therefore, PCA may be a method of choice for data prepro-
cessing if dimensionality reduction is important, e.g., if compu-
tational resources are limited, but care must be taken not to use
too many principal components for data representation. Due to
their highly parallel architecture of ‘‘real’’ brains, data dimen-
sionality may not be the limiting factor. Rather, robustness to
noise and capacity of the code may be more important. The latter
is provided by the higher dimensionality of the proposed coding
scheme, whereas robustness can be increased by the residual
redundancy due to nonabsolute decorrelation.

Prediction of the Pharmacological Activity of Compounds. We then
tested whether our method also is suited for pharmaceutical
data. This time, chemical space was given by the COBRA
database (version 6.1) containing pharmacologically active sub-
stances (44). We used the same processing scheme as for the
odorant data. Classifiers were trained on the activation patterns,
and their ‘‘perceptual qualities’’ were given by the annotated
activity at 115 pharmaceutical targets (e.g., cyclooxygenase 2 or
thrombin) and their superclasses (e.g., enzyme, G protein cou-
pled receptor, or ion channel). We repeated cross-validation only
10 times (in contrast to 50 times in the previous experiment) to
save computing time. We also trained classifiers on the original
descriptors processed by PCA. Fig. 5 shows the median AUC
values obtained for the pharmaceutical data.

One point of difference to the results above is that overall
performance was better on the pharmaceutical data set. For
example, the 2 � 5 architecture with q � 2 yielded a median
AUC value of 0.78 on the drug data set, in contrast to 0.66 on
the odorant set. In addition, 49 of 115 targets yielded AUC values
of 	0.8, indicating that our method is indeed suited for predic-
tion of biological activity.

Another difference to the odorant set is in the performance
for high dimensionalities. Although the virtual response patterns
outperformed principal components for the highest dimension-
ality, this trend is less obvious than in the odorant data set. Still,

when retaining maximum dimensionality, the virtual response
patterns perform best.

A third point of difference is that patterns transformed with
q � 2 were not always performing best. Analysis of the filtered
patterns revealed that, for q � 2 and dimensionalities higher than
2 � 5, many virtual receptor responses vanished because the
subtractive term in Eq. 2 became equal or greater than ri (data
not shown). Thus, only the virtual receptor signals with highest
activation ‘‘survived’’ lateral inhibition, effectively replacing the
soft winner-takes-most situation by a hard winner-takes-all one,
with an overall negative impact on classification. This result
points out the need for q to be adjusted to obtain optimal results.
It also shows that there is not one optimal setting of q but rather
that this optimum depends on the input data.

Discussion
We have presented a computational framework that implements
processing principles observed in olfactory systems. This method
effectively captured relevant properties of the original data that
allowed a machine learning classifier to learn odorant classifi-
cation. Besides reducing dimensionality of the original data, it
also exhibited robustness against overdetermined representa-
tions, a situation where principal components of the original data
failed. In addition, the application of this framework is not
limited to the olfactory domain but can also be efficiently used
for virtual screening of a pharmaceutical compound database.
The results may be further improved if optimal model parame-
ters are chosen and more advanced machine learning systems are
used. We see primary applications of our decorrelation tech-
nique for low-dimensional mapping of complex data manifolds
(45), for example, in SAR modeling and virtual compound
screening, especially in a highly parallel context.

The processing scheme we present here provides a simplified
model of neural computation in the olfactory system. Our focus
was on providing a framework that enables us to study certain
aspects of computational principles, instead of trying to build a
biologically accurate simulation of the olfactory system. We tried
to keep the simulation overhead as small as possible so that the
essence of the processing strategies would stay obvious. More
realistic models in terms of biological plausibility are particularly
useful when one tries to answer biological questions (42, 46, 47).
Consequently, we use the prediction performance as a relative
measure to compare different mechanisms for processing in the
antennal lobe. The results should not be interpreted as providing
an actual prediction method for scent.

The q factor showed to have a large impact on the outcome of
the correlational filtering step, with classifiability of the patterns
improving for rising values of q, up to a certain level. Finding
optimal values of q for a given data set may be a worthwhile topic
for further research. Possible approaches include the use of
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Fig. 4. Classification performance using patterns processed by correlation-
based inhibition vs. PCA scores of the original descriptors.
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Fig. 5. Classification performance for pharmaceutical activity data.
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metaoptimization techniques to derive q empirically, as demon-
strated for the number of hidden neurons in an artificial neural
network (48), or its estimation from statistical properties of the
data, like variance or cross-correlation.

Among the questions we did not address here are the effects
of odorant concentration and combinations of odorants (mix-
tures). For both questions, we can suggest straightforward
implementations: Odorant concentration could be implemented
via ‘‘gain control’’ of the activation patterns, i.e., multiplication
of the pattern with a concentration-dependent scalar, whereas
odorant mixtures could be represented by additive or even
nonlinear combinations of their activation patterns. The effects
of processing in the virtual antennal lobe on those extensions as
well as their impact on classification power provide a tantalizing
prospect for future research.

Methods and Data
Source Data. The chemical space for this experiment was defined by a set of 836
odorants from ref. 38, with scent qualities obtained from the ‘‘organoleptic
properties’’ section of the catalog.

Descriptor Calculation. Molecules and their odor components were extracted
from the Sigma–Aldrich Flavors and Fragrances catalog (38). Using their accession
numbers, all compounds were carefully checked for correctness with the
machine-readableformoftheSigmacatalog.Three-dimensionalmolecularmod-
els were obtained with CORINA (Molecular Networks) by using one conformer
per molecule. Partial charges were computed with MOE Version 2005.06 (Chem-

ical Computing Group) by using the MMFF94x force field [a modified version of
MMFF94s (49)].

Before descriptor calculation, we performed an additional energy minimi-
zation by using MOE and the MMFF94x force field, stopping at a gradient of
10�4. Descriptors were calculated by using MOE. We used the complete set of
available 2D descriptors, resulting in a 184-dimensional descriptor space.
Although we used only 2D descriptors, we calculated the 3D models because
a molecule’s conformation affects the distribution of partial charges, which is
relevant for some 2D descriptors.

SOM Training. We used SOMMER for SOM training (39). Molecular descriptors
were scaled to unit variance and zero mean before SOM training. We used the
Manhattan distance function, tmax � 70,000, �i � 5.0, �f � 0.1, �i � 0.7, and �f �
0.01 for SOM training for all variants except the 1 � 2 SOM, for which we used
tmax � 100 and �f � 0.5. Descriptor vectors were presented in random
sequence.

Machine Learning and Performance Assessment. We used the Naive–Bayes
classifier as implemented in the WEKA machine learning suite (41) for all
classification experiments. Probabilities were estimated assuming a normal
distribution for the feature vectors. ROC curves were generated by arranging
compounds by decreasing predicted probability of class adherence and cu-
mulatively calculating rates of false and true positives.
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