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As whole-genome protein–protein interaction datasets become
available for a wide range of species, evolutionary biologists have
the opportunity to address some of the unanswered questions
surrounding the evolution of these complex systems. Protein
interaction networks from divergent organisms may be compared
to investigate how gene duplication, deletion, and rewiring pro-
cesses have shaped the evolution of their contemporary structures.
However, current approaches for comparing observed networks
from multiple species lack the phylogenetic context necessary to
reconstruct the evolutionary history of a network. Here we show
how probabilistic modeling can provide a platform for the quan-
titative analysis of multiple protein interaction networks. We apply
this technique to the reconstruction of ancestral networks for the
bZIP family of transcription factors and find that excellent agree-
ment is obtained with an alternative sequence-based method for
the prediction of leucine zipper interactions. Further analysis
shows our probabilistic method to be significantly more robust to
the presence of noise in the observed network data than a simple
parsimony-based approach. In addition, the integration of evi-
dence over multiple species means that the same method may be
used to improve the quality of noisy interaction data for extant
species. The ancestral states of a protein interaction network have
been reconstructed here by using an explicit probabilistic model of
network evolution. We anticipate that this model will form the
basis of more general methods for probing the evolutionary
history of biochemical networks.

biological networks � computational biology � molecular evolution �
probabilistic modeling

The complex relationship between an organism’s genotype
and phenotype is mediated by many interrelated biochemical

networks. As our knowledge of these network structures im-
proves, we can start to ask questions about the evolution of
cellular systems as a whole, as opposed to studying individual
genes and their products in isolation (1, 2). This article extends
recent work on the reconstruction of ancestral protein sequences
(3, 4) by focusing on interactions between ancestral proteins.
Greater understanding of the ancestral configurations of inter-
action networks would be of immense value in uncovering the
processes involved in the evolution of cellular systems.

Analogous to the inference of evolutionary history at the level
of the DNA or amino acid sequence, evolutionary biologists
would like to be able to infer ancestral protein interactions based
only on their observations of networks from extant species.
However, current methods of network alignment are generally
lacking in any phylogenetic context (5–8). Hence, they have only
limited value as quantitative tools for the study of evolution.
Here we report the development of a general methodology for
the reconstruction of ancestral protein–protein interaction net-
works by inference over a probabilistic model of interaction
network evolution. By applying these methods to the bZIP
transcription factor interaction network in chordates, we are able
to predict ancestral networks with much greater robustness to
measurement error than would be possible by using a naive
parsimony-based approach.

The bZIP transcription factors are a family of homo- and
heterodimerizing proteins involved in the regulation of devel-
opment, metabolism, circadian rhythm, and many other cellular
processes (9). The characteristic bZIP domain consists of a basic
region (contacting the DNA major groove) and a leucine zipper
(LZ) that mediates dimerization-specificity. Gene duplication
has played a major role in the evolution of the bZIP subfamilies,
which are known to have broadly conserved patterns of inter-
actions with each other (10, 11). The relative strengths of
pairwise interactions between bZIP proteins have previously
been measured experimentally for humans and the yeast Sac-
charomyces cerevisiae (12). In addition, the relatively simple
biophysics of the coiled-coil LZ interaction means that pairs of
proteins that form strongly interacting dimers can be predicted
reliably from their LZ sequences alone by using computational
methods (13): 93% sensitivity at 98% specificity based on a
subset of human bZIP pairs with unambiguous experimental
results. This combination of accurate genome-scale experimen-
tal data (12) and the capacity for highly accurate computer-
based interaction prediction directly from amino acid sequences
(13) makes the bZIP system useful as a model for investigating
methods for ancestral network inference.

Inference of Ancestral Protein Interaction Networks
Our method starts with the assumption that it is possible both

to construct a reliable phylogeny for the gene family of interest
and reconcile this phylogeny with the known species tree, such
that all internal nodes are labeled as gene duplication or
speciation events (14). Although it would be possible to incor-
porate phylogenetic uncertainty into a probabilistic model of
network evolution, this result would add greatly to the compu-
tational burden undertaken. Complete sets of bZIP protein
sequences from four chordates [Ciona intestinalis (sea squirt),
Takifugu rubripes (pufferfish), Danio rerio (zebrafish), and Homo
sapiens (human)] were used to construct such a reconciled gene
tree (Fig. 1a). These organisms were selected to give a broad
view of chordate evolution while keeping the overall computa-
tional problem tractable. By considering all possible homo- and
heterodimerizations between pairs of bZIP proteins and how
they are related by gene duplication, the gene tree can be
transformed into an interaction tree representation (Fig. 1b).
Each node in the new tree represents a potential interaction
between a pair of proteins. Each directed arc that connects two
nodes represents a period between evolutionary events: either
speciation or gene-duplication events as derived from the rec-
onciled gene tree. A probabilistic graphical model for the
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evolution of the protein–protein interaction network is then
constructed (Fig. 1c) based directly on the interaction tree. Each
potential interaction corresponds to a binary node, which may be
on (present) or off (absent). An extra set of terminal nodes is
added to the tree to represent binary observations of each
potential interaction in each extant species. The arcs connecting
to these observation nodes, therefore, represent the process of
measurement, which may be expected to be subject to experi-
mental uncertainty. The strengths of the interactions between
the LZ regions for each pair of bZIP proteins from these four
extant genomes were predicted by using a sequence-based
approach (13), and the numerical scores for each pair of proteins
were converted to binary data by using an appropriate score
threshold. Although these input data were derived from se-
quence-based analysis, in principle, any discrete or continuous
experimental data (e.g., from high-throughput studies) could be
used.

The two different types of arcs in Fig. 1c represent the two
processes to consider in parametrizing the model: Changes in
specificity among the interacting proteins (i.e., rewiring of the
interaction network caused by the evolution of protein se-
quences) and the measurement of the interactions actually
present in the extant networks. It is difficult to construct a
general mechanistic model for the gain and loss of interactions
as a protein interaction network evolves because the relationship
between protein sequence and interaction-specificity depends on
many factors (1, 15). However, in the case of the bZIP network,
the interactions are mediated mainly by the LZ regions. There-
fore, we are able to use the experimental data for human
proteins (12) to estimate the probabilities of gain and loss of
strong interactions as a function of sequence divergence. These
probabilities are accurately approximated by logistic functions of
the sum of the evolutionary divergence of two proteins [sup-
porting information (SI) Fig. 5]. Beyond a certain evolutionary
distance, both of these probabilities plateau off to values rep-

resenting the overall fraction of possible bZIP pairs that interact.
Interaction between two randomly selected bZIP proteins is
much more likely than would be expected between two generic
proteins. Hence, the maximum probability of interaction gain of
0.08 may appear surprisingly high, but is nonetheless valid for
this system. Parameters for the observation nodes were esti-
mated by comparing the experimental human data with the
sequence-based predictions (13). Specifically, we calculate two
score distributions for pairs of proteins that either interact
strongly or do not interact (SI Fig. 6) and, hence, derive
conditional probability distributions for the derived binary data.

Using the sequence-based predictions for every possible inter-
action between a pair of proteins in each of our four extant species
as input, we compute the probability of a strong interaction between
each pair of proteins in each ancestral species (labeled ‘‘Teleost,’’
‘‘Vertebrate,’’ and ‘‘Chordate’’) according to the model. The tree-
like structure of our probabilistic graphical model has the conse-
quence that the inference of the ancestral network states is tractable
by using belief-propagation techniques (16).

Of course the inference of ancestral states for traits not
directly related to gene sequence is not a new problem, and it
might reasonably be expected that a parsimony-based approach
would yield comparable results without the complications of
parameter estimation that are required in the case of the
probabilistic method. As a comparison, we therefore recon-
structed the ancestral networks by applying an algorithm for
finding maximally parsimonious evolutionary histories (17) to
our interaction tree (Fig. 1b).

With most protein–protein interaction datasets, it would be
impossible to determine which method for ancestral network
inference was the more successful because we do not have
protein interaction data for the ancestral species. However, the
ability to make reliable predictions (13) of interaction strength
directly from pairs of LZ sequences permits the construction of
a benchmark dataset for the bZIP family by using inferred

a Reconciled gene tree
for a family of dimerising proteins.

b Interaction tree representing evolution of all
potential protein-protein interactions.

c Probabilistic graphical model for evolution and
measurement of protein-protein interactions.
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Fig. 1. Derivation of a probabilistic graphical model for the evolution of the bZIP protein interaction network. (a) Starting with a gene phylogeny for a family
of dimerizing proteins, this gene phylogeny is first reconciled (14) with a species phylogeny to produce a tree in which every internal node is labeled as a gene
duplication or speciation event. (b) The reconciled gene tree can be transformed into an interaction tree, in which each node represents a potential dimerization
interaction and each directed edge represents a period of evolutionary time. (c) The interaction tree forms the basis of our probabilistic graphical model, in which
potential interactions are represented by binary (on/off) nodes, and a further set of binary leaf nodes is used to represent observations of protein–protein
interactions in the extant species. The model can be used to infer the probability of a strong interaction at every internal node and, hence, to reconstruct a protein
interaction network for each ancestral species.
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probability distributions for the amino acid sequences at each
ancestral node.

Results and Discussion
Fig. 2 shows a summary of the results obtained by our probabilistic
method of network inference for each of the species in our
phylogeny. Many features of the evolution of the bZIP network can
clearly be seen in the inferred ancestral networks, including the gain

and loss of interactions by sequence divergence, the multiplication
of interactions after gene duplication (e.g., in the large number of
genes duplicated and retained between Chordate and Vertebrate),
and the loss of various genes in the different lineages. As predicted
in our earlier work (11), the inferred ancestral Chordate network
shares much of its overall topology, in terms of interfamily inter-
actions, with the present-day vertebrate networks. However, the
loss of many of its genes during evolution (18) has left the C.
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Fig. 3. ROC evaluations of the ancestral Chordate networks inferred by our probabilistic method (black line) and a parsimony-based method (gray line) at
varying degrees of input noise. (a) No noise added. (b) Adding Gaussian noise with a SD of 10 to interaction scores. (c) Adding Gaussian noise with a SD of 20
to interaction scores.
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Fig. 2. Evolutionary history of the bZIP interaction network in chordates as inferred by our probabilistic method. Each protein is shown as a colored node, and an
edge is drawn between two proteins if they have �50% probability of sharing a strong interaction. Filled circles, homodimerizing proteins; open circles, proteins
without self-interactions. Proteins are grouped into families by the larger gray circles. Only those bZIP families included in our study are shown. For simplicity, we have
combined families where they are closely related (ATF6/XBP and OASIS/OASIS-B). Network visualizations were prepared by using InterView (31).
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intestinalis bZIP network with little resemblance to those of the
other chordates in our study.

For comparison with these networks, results from the bench-
mark sequence inference method are shown in SI Fig. 7 and from
the alternative, parsimony-based method in SI Fig. 8. To com-
pare the performance of the probabilistic and parsimony-based
methods fairly, receiver-operator characteristic (ROC) curves
were plotted for the Chordate results (Fig. 3a). Taking the area
under curve (AUC) as a measure of predictive power, both
methods provide good results (AUCprob � 0.95; AUCpars �
0.96). Similarly good results are found for Vertebrate and
Teleost (SI Fig. 9a).

Clearly the parsimony-based approach performs well for this
system, and this finding is attributable, in part, to the high quality
of the input data provided by the LZ interaction prediction
software. However, experimental protein–protein interaction
datasets usually have many false-positive and false-negative
observations (1). We can simulate this situation by adding
Gaussian noise with different variances to the interaction scores
from which the input data are derived. The results, summarized
by the ROC curves for Chordate in Fig. 3 b and c, show that the
parsimony-based approach is quite sensitive to measurement
error (AUCpars � 0.81, 0.67), whereas the probabilistic method

continues to perform well (AUCprob � 0.93, 0.88). The levels of
noise added correspond to false-positive rates (defined as the
proportion of asserted interactions that are false) of 47% and
67%, respectively, relative to the original input data. For com-
parison, estimated false-positive rates of high-throughput exper-
iments, such as yeast two-hybrid, range from �50% to �90% in
the worst cases (19). Again, similar results are seen for the other
two ancestral species (SI Fig. 9 b and c).

Given these extremely high experimental error rates, there is
currently a great deal of interest in methods for increasing the
accuracy of protein interaction datasets (19, 20). In addition to
predicting interactions for ancestral species, our probabilistic infer-
ence method offers a principled way to combine multiple interac-
tion datasets to improve interaction predictions in extant species.
Fig. 4 illustrates just such an improvement in the quality of
interactions predicted to be present in man, compared with the
corresponding input data at varying degrees of noise. Taking a
subset of human bZIP pairs with unambiguous experimental results
as a gold standard, predictions based on the probabilistic model
remain remarkably reliable, compared with the noisy data.

The availability of a comprehensive experimental dataset (12)
for the bZIP transcription factor system has enabled us to
calculate parameters for modeling the network rewiring process
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Fig. 4. Evaluation of the probabilistically inferred human bZIP interactions with various levels of noise applied to the input interaction scores. (a) No noise
added. (b) Adding Gaussian noise with a SD of 10. (c) Adding Gaussian noise with a SD of 20. The phylogenetic tree for the human bZIPs is derived from the LZ
regions of the bZIP proteins (see Methods). An interaction is represented by a filled cell in the matrix; within-family interactions are colored. (Lower) Input human
interaction data. (Upper) Interactions predicted at �50% probability by inference over the full evolutionary model. ROC plots show the quality of each input
(dashed gray line) and output (black line) dataset by comparison to a subset of human bZIP pairs with unambiguous experimental interaction data. Interaction
matrices were prepared by using TVi (31).
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as a function of evolutionary distance, which is an approach that
may prove applicable to more general types of protein interac-
tion. Our probabilistic method for the inference of ancestral
networks is significantly more robust to experimental noise than
a naive maximum parsimony approach. In addition, the same
inference process could be used to improve the quality of
network datasets for extant organisms by combining evidence
across multiple species and/or experiments.

The probabilistic model presented in this study represents an
important step forward in the evolutionary analysis of biochem-
ical interaction networks. We currently have a detailed under-
standing of the important contribution of both small-scale- and
whole-genome-mediated gene duplication to evolution both
generically (21, 22) and specifically to transcription factor net-
works (11, 23). However, gene duplication only contributes by
providing the raw material for innovation. Functional evolution
is a consequence of changes in specificity between proteins,
resulting in both the gain and/or loss of interactions. Our
approach permits the inference of the evolutionary history of
these rewiring events. In conclusion, detailed knowledge of the
ancestral states of protein interaction networks will bring insights
into the functional evolution of the interactome and the nature
of conservation and change in divergent evolutionary lineages.

Methods
The identification of protein sequences for bZIP transcription factors and LZ
regions from H. sapiens, D. rerio, T. rubripes, and C. intestinalis was described
in our previous study (24). An interaction score was calculated for each
potential bZIP interaction within each species by using the software of Fong
and Singh (13) with base-optimized weights. Because of atypical features,
interactions involving smMaf, lgMaf, and CNC proteins could not be predicted
reliably (13), so these families were excluded from the analysis.

LZ regions from all species were aligned by using MUSCLE (25). A consensus
maximum likelihood (ML) phylogeny was built by using PROML (26) with the JTT
model of amino acid replacement (27). Branch lengths for this consensus tree
were calculated by using PAML (28). This tree was reconciled with the species
phylogeny by using NOTUNG2 (14) with default settings.

A probabilistic graphical model (Fig. 1c) was built by using Bayes Net Toolbox
(BNT) (29).Thetopologyofthemodel isbasedonaninteractiontreederivedfrom
the reconciled gene tree by considering all potential protein–protein interactions
that couldbedescendedfromaputativeancestralhomodimerization interaction
by gene-duplication events. Multiple gene duplications occurring between spe-
cies are assumed to take place in the order given by considering relative branch
lengths. Each of the 6,851 internal nodes in the model is binary, representing the
presence or absence of a potential interaction. Probabilities for the gain and loss
of interactions were modeled as logistic functions (30) of the sum of the branch
lengths of the two genes concerned. Parameters were estimated by using exper-

imentally determined true-positive and true-negative human bZIP interactions
(12, 13) by considering all potential moves in sequence space, starting from each
strongly interacting protein pair (modeling the probability of interaction loss as
a function of the sum of JTT evolutionary distances calculated by using PROTDIST)
(26) or each noninteracting protein pair (modeling the probability of interaction
gain) (SI Fig. 5). Actual values for the probability of interaction gain [i.e.,
P(interaction present�interaction absent at parent node)] ranged from 0 to 0.08
and for the probability of interaction loss [i.e., P(interaction absent�interaction
present at parent node)] from 0 to 0.92. The same experimental data were used
to derive score distributions (13) for strongly interacting and noninteracting
protein pairs (SI Fig. 6). Normal distributions fitted to these data were used to
compute the conditional probability distribution for an additional set of 2,227
binarynodes, representingtheFong/SinghpredictionsforallbZIPpairs inthefour
extant species. Numerical scores were converted to binary input data by using
a threshold of 30.6, corresponding to the score value for which
P(interaction�score) � 0.5. The BELPROP belief-propagation algorithm imple-
mented in BNT (29) was then used to compute the marginal likelihood for the
existence of a strong interaction at every internal node given the binary input
data for the extant species.

An implementation of the PARS algorithm (17) was applied to the inter-
action tree to infer the presence of ancestral interactions by maximum parsi-
mony based on the binary interaction evidence for extant species as described
earlier. The ratio of penalties (loss of interaction:gain of interaction) used was
1:11.4, corresponding to the relative probabilities in the plateau regions of SI
Fig. 5.

A benchmark set of interactions was constructed by using ancestral se-
quence inference, against which the interactions inferred by the probabilistic
and parsimony-based methods could be compared. Probability distributions
for the amino acid sequences of every ancestral bZIP protein in the gene tree
were inferred by using PAML (28). Taking 1,000 random samples from these
distributions, the Fong/Singh software (13) was then used to predict a mean
interaction score for every bZIP pair in each ancestral species. Each pairwise
score was then converted to a binary prediction of interaction by using a
threshold of 30.6. ROC curves were plotted to evaluate performance of the
probabilistic and parsimony inference methods against these predictions for
the ancestral Chordate (Fig. 3), Vertebrate (SI Fig. 9i), and Teleost (SI Fig. 9ii)
networks. In the case of the probabilistic results, a variable cutoff was used on
the output interaction probabilities to produce the curve. However, the
parsimony-based method gives binary interaction predictions as output. Thus,
for these ROC plots, a variable threshold was applied to the scores used as
input data. The ROC curves shown in Fig. 4 were derived in a similar manner
by using a set of known unambiguous, strongly interacting, or noninteracting
human bZIP interactions taken from experimental data (12, 13) as the gold
standard.
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