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Visual face identification requires distinguishing between thou-
sands of faces we know. This computational feat involves a
network of brain regions including the fusiform face area (FFA) and
anterior inferotemporal cortex (aIT), whose roles in the process are
not well understood. Here, we provide the first demonstration that
it is possible to discriminate cortical response patterns elicited by
individual face images with high-resolution functional magnetic
resonance imaging (fMRI). Response patterns elicited by the face
images were distinct in aIT but not in the FFA. Individual-level face
information is likely to be present in both regions, but our data
suggest that it is more pronounced in aIT. One interpretation is that
the FFA detects faces and engages aIT for identification.

fMRI � information-based � population code

When we perceive a familiar face, we usually effortlessly
recognize its identity. Identification requires distinguishing

between thousands of faces we know. A puzzle to both brain and
computer scientists, this computational feat involves a network of
brain regions (1) including the fusiform face area (FFA) (2, 3) and
anterior inferotemporal cortex (aIT) (4). There is a wealth of
evidence for an involvement in face identification of both the FFA
(1, 5–18) and aIT (4, 16, 19–26).

The FFA responds vigorously whenever a face is perceived (2, 3,
27). This implies that the FFA distinguishes faces from objects of
other categories and suggests the function of face detection (27, 28).
An additional role for the FFA in face identification has been
suggested by three lines of evidence: (i) Lesions in the region of the
FFA are frequently associated with deficits at recognizing individ-
ual faces (prosopagnosia) (6, 9, 10). (ii) The FFA response level
covaries with behavioral performance at identification (11). (iii)
The FFA responds more strongly to a sequence of different
individuals than to the same face presented repeatedly (8, 12–17).

For aIT as well, human lesion and neuroimaging studies suggest
a role in face identification. Neuroimaging studies (4, 22–24, 26)
found anterior temporal activation during face recognition with the
activity predictive of performance (22). Lesion studies (19, 20, 25)
suggest that right anterior temporal cortex is involved in face
identification. In monkey electrophysiology, in fact, face-identity
effects appear stronger in anterior than in posterior inferotemporal
cortex (29–31).

These lines of evidence suggest an involvement of both the FFA
and aIT in face identification. A region representing faces at the
individual level should distinguish individual faces by its activity
pattern. However, it has never been directly demonstrated that
either the FFA or aIT responds with distinct activity patterns to
different individual faces.

We therefore investigated response patterns elicited by two
face images by means of high-resolution functional magnetic
resonance imaging (fMRI) at 3 Tesla (voxels: 2 � 2 � 2 mm3).
We asked whether response patterns associated with the faces
are statistically distinct. This would mean that the activity
patterns allow the decoding from the fMRI signals (32–42) of
the perceived individual.

The decision to use only two particular face images involves a
trade-off. The disadvantage consists in the fact that any two face

images necessarily differ along many dimensions. We are, thus,
throwing a wide net: effects are expected in any brain region that
represents at least one of the dimensions distinguishing the face
images. Although these regions should include the putative indi-
vidual-face representation, interpretation will be difficult if several
regions are found to distinguish the faces.

The advantage of using only two face images consists in the fact
that we do not need to average response patterns elicited by
different images. For each image, averaging responses to its re-
peated presentation yields a sufficiently stable response pattern,
which can be regarded as an estimate of the response on a single
perceptual trial. In contrast, previous studies using large numbers
of images needed to average response patterns elicited by different
images, usually from the same category. Such average response
patterns are hard to interpret, because it is unclear whether they
actually arise on any single trial of perception.

The faces (one male, one female; Fig. 1) were presented in the
same size, view, and lighting. Because of this matching of the two
images and because faces in general are similar in their overall
shape, the two face images are by many measures (e.g., spatial image
correlation) much more similar than the images conventionally
contrasted in object-vision neuroimaging. This raises the question
whether fMRI will have sufficient resolution and sensitivity to
detect any effect at all.

To be able to replicate previously described face-category effects
(2), we included two house images (43) in the experiment as control
stimuli. To minimize low-level confounds, we processed the four
images to have identical histograms and, thus, identical light and
spatial-signal energy. Subjects were presented with the images in a
rapid event-related design, in which they performed an anomaly-
detection task, requiring them to pay close attention to each
repeated presentation of an image [Fig. 1; and see supporting
information (SI) Figs. 4 and 5 for behavioral performance during
fMRI].

Results
Conventional Activation-Based Analysis. Conventional univariate
mapping analysis of our data yielded the category effects expected
on the basis of the literature. Face-category activation (faces–
houses) was very strong in the right and left fusiform gyrus,
revealing the FFA (SI Fig. 6a, single subject; SI Fig. 7, Talairach-
space group map). Weaker face-category activation was found in
right and left aIT in the group analysis (SI Fig. 7). Single-subject and
group mapping analyses also revealed the parahippocampal place
area (43).

Responses to single images from the same category have not
previously been contrasted with fMRI. Contrasting the two faces in
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a conventional univariate mapping analysis did not yield significant
effects either in single subjects or at the group level for either
unsmoothed or smoothed (6-mm full-width at half-maximum) data.
Contrasting the two houses did reveal effects in early visual areas.
This is plausible, given that the two house images have very
different distributions of low-level features, whereas the two faces
are very similar in terms of low-level image features. (For further
activation-based control analyses, see SI Text, Results of Control
Analyses.)

Information-Based Activity-Pattern Analysis. The signature of a dis-
tributed face-exemplar representation would be a subtle difference
between the fine-grained regional response patterns elicited by the
two face images—despite their visual similarity. Because univariate
mapping is not sensitive to subtle response-pattern differences, we
performed an information-based multivariate analysis, which is
designed for this type of effect (44, 45). A significant multivariate
difference between the response patterns elicited by the two faces
in a given region of interest (ROI) would indicate the presence of
face-exemplar information. The information estimate (in bits)
reflects how accurately the face exemplar could be decoded from
the ROI’s multivariate response on a single trial (main results in Fig.
2, see Methods, SI Fig. 8 and SI Text). Independent data were used
for (i) defining the regions and voxel weights and (ii) testing the
multivariate effects and estimating face-exemplar information. All
pattern-information analyses were performed on unsmoothed data.

Is There Face-Exemplar Information in the FFA? The FFA was defined
by the category contrast (faces–houses) in each individual subject
(false-discovery rate, q � 0.05). No significant face-exemplar in-
formation was found in the FFA in any subject (P � 0.05). To
maximize statistical power, we combined the data from the indi-
vidually defined FFAs in a fixed-effects group analysis (see Meth-
ods). The FFA face-exemplar information was insignificant (P �
0.05) in the group analysis as well.

Could the threshold used to define the FFA have excluded
face-exemplar voxels at the fringe of the region? To include more
voxels at the fringe of the FFA, we systematically varied the
threshold of the category contrast to select a contiguous set of
10–4,000 voxels in each subject. Although the resulting extended
‘‘FFA’’ at 4,000 voxels is a huge region reaching far into occipital
and anterior temporal cortices, this did not reveal any significant

face-exemplar information in either hemisphere (Fig. 2, blue lines,
multivariate fixed-effects group analysis, P � 0.05).

Could the conventional definition of the FFA by the category
contrast have entailed a bias against inclusion of voxels carrying
face-exemplar information? Face-exemplar voxels excluded by the
conventional definition of the FFA might nevertheless belong to the
same functional unit. Another possibility is that the use of a
different reference category (e.g., objects instead of houses) would
change the precise ROI for the FFA and reveal face-exemplar
information. A third possibility is that the face exemplar is encoded
in a more widely distributed fashion in the FFA and its vicinity.

To exclude all three possibilities, we asked whether there is
face-exemplar information in the vicinity of the FFA (including the
FFA itself). To find face-exemplar information, we searched for it
in each subject separately using a multivariate searchlight (44): For
each voxel, we selected the 3-mm-radius spherical neighborhood
(comprising 19 voxels) and computed the Mahalanobis distance
reflecting the difference between the activity patterns elicited by
the two faces. The Mahalanobis distance for each voxel’s spherical
neighborhood was entered in a descriptive map called the ‘‘face-
exemplar information map.’’ This information-based map (as well
as the activation-based map used to define the FFA) was based on
half the data (data set A) of each subject. Statistical tests and
information estimates were based on independent data (the other
half: data set B).

The ‘‘FFA vicinity’’ was then defined, for each subject and
hemisphere, as 4,000 cortical voxels within a sphere centered on
(and including) the FFA (SI Fig. 6 c and d, magenta). For each
subject and hemisphere, the FFA vicinity was tested for face-
exemplar information by the following procedure for n � 10 to n �
4,000 voxels: (i) Select the n voxels (of the 4,000) with the greatest
values in the face-exemplar information map. (ii) Perform a mul-
tivariate fixed-effects group analysis on this voxel set using inde-
pendent data (see Methods). Fig. 2 shows the results. Face-exemplar

Fig. 1. Stimuli and anomaly-detection task. (a) The four particular images
whose inferotemporal response patterns are investigated in this study. Each
image was processed to have a precisely uniform histogram. The images were
presented sequentially while subjects fixated a central cross (not shown).
Subjects performed an anomaly-detection task: �12% of the images were
subtle variations (b) of the four originals (a), in which the global shape of the
object as well as details had been slightly distorted (red arrows). Anomalies
were unpredictable because several anomalous versions were used for each
original. The task required subjects to attend to each image presentation even
after many repetitions and allowed us to monitor attentive viewing.

Fig. 2. Face-exemplar information as a function of region size. When we
define the FFA by the category contrast (SI Fig. 6) and vary the threshold to
select between 10 and 4,000 contiguous voxels, significant face-exemplar
information is not found at any threshold (blue dashed line, left FFA; blue solid
line, right FFA). When we define the ‘‘FFA vicinity’’ as the 4,000 cortical voxels
in a sphere centered on the FFA in each subject and hemisphere (SI Fig. 6) and
select the n voxels containing most face-exemplar information on indepen-
dent data, significant face-exemplar information is not found for any thresh-
old (magenta dashed line, left FFA vicinity; magenta solid line, right FFA
vicinity). When we define aIT in each subject and hemisphere as the 4,000 most
anterior voxels in temporal cortex and, again, select the n voxels containing
most face-exemplar information on independent data, no significant face-
exemplar information is found for the left hemisphere (red dashed line).
However, robust face-exemplar information is found in right aIT (red solid
line) The figure shows group results for regions of interest defined in each
individual subject. Independent data were used for (i) defining the regions
and voxel weights and (ii) testing the multivariate effects and estimating
face-exemplar information.
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information remains insignificant in the FFA vicinity of either
hemisphere (magenta), independent of the number of voxels
included.

Is There Face-Exemplar Information in aIT? Analogously to the FFA
vicinity, we defined aIT in each subject and hemisphere as the 4,000
most anterior voxels in temporal cortex within our inferotemporal
imaging slab (SI Fig. 6 c and d, red). We then tested aIT in exactly
the same way as the FFA vicinity: we selected between 10 and 4,000
voxels with the greatest values in the face-exemplar information
map in each subject and performed the same multivariate group test
on independent data.

Fig. 2 shows the results. In left aIT (red dashed line),
face-exemplar information remains insignificant, independent of
the number of voxels included. In right aIT, by contrast, face-
exemplar information becomes highly significant (P � 0.01)
when more than approximately 200 voxels are included.

Finding Face-Exemplar Information by Searchlight Mapping. To ad-
dress more broadly whether face-exemplar information is present in
any region within our fMRI slab, we performed a group-statistical
information-based brain mapping (44) with randomization infer-
ence. We first computed face-exemplar information maps with a
3-mm-radius searchlight in each subject separately, as above, but
using all data. These maps were transformed into Talairach space
and subjected to group-statistical inference (see Methods).

This method provides an alternative perspective, (i) because it is
not restricted to predefined regions of interest and (ii) because
informative regions need to correspond in Talairach space to be
sensitively detected [although their intrinsic pattern representations
can be unique to each individual subject (45)]. Despite these
differences to the ROI-based analysis, results were consistent:
Face-exemplar information was found only in right aIT (global
maximum of the group-statistical map shown in Fig. 3 and SI Fig.
9b, Talairach coordinates of centroid: 38, 2, �38, P � 0.0001 at peak
voxel).

Summary of Results. Information-based multivariate ROI and map-
ping analyses indicate that right aIT responds with a distinct activity
pattern to each of the faces. We found no evidence of face-exemplar
information in any other region within our temporal-occipital
imaging slab in either the information-based searchlight mapping or
the multivariate ROI analyses performed on the FFA and its
vicinity.

Discussion
Individual-Face Information Is Unlikely to Be Completely Absent in the
FFA. At face value, our findings could be taken to suggest that the
FFA is invariant to differences between faces. However, given
the evidence from previous studies (1, 5–18, 51), we do not believe
that the FFA is cleanly invariant to face identity.

We have made every effort to optimize sensitivity to fine-scale
effects and go beyond previous work by combining high-resolution
fMRI and information-based multivariate analysis of local response
patterns. Nevertheless, the use of blood oxygen-level dependent
(BOLD) fMRI with isotropic 2-mm-width voxels limits the neuro-
nal activity pattern differences we are capable of detecting. Unde-
tected information could reside in the fine-grained activity patterns
beyond the limits imposed by voxel size and hemodynamics. Alter-
natively, face-exemplar information could be encoded in the tem-
poral activity pattern, to which our statistical model here is insen-
sitive. Our results therefore clearly do not imply the absence of
face-exemplar information in the FFA or elsewhere in the brain.§

Our findings do suggest that any face-identity effect is much weaker
than the category effect in the FFA.

Individual-Face Information Appears Most Pronounced in the aIT. That
fMRI could detect face-exemplar information in aIT, but not in the
FFA or its vicinity, suggests that individual-level face information
is, by at least one measure, more pronounced in aIT than in the FFA
and its vicinity. The FFA and other regions are likely to contain
face-exemplar information as well, at lower levels. In particular, the
face images must have elicited subtly different activity patterns in
early visual cortex with its retinotopic maps of low-level features.
Because the faces were matched in size, view, lighting, and histo-
gram, neither information-based mapping nor ROI analysis re-
vealed a face-exemplar effect in early visual cortex, although all
other pairs of stimuli could be distinguished (see SI Fig. 10 and SI
Text, Results of Control Analyses). That our methods revealed the
face-exemplar information in aIT, but not early visual cortex,
suggests that the subtle differences in the early visual representation
are magnified in ventral-stream processing to yield a much larger,
and thus detectible, difference in aIT. The sensitivity of fMRI to the
difference in aIT indicates that there are massive neuronal face-
exemplar effects in that region. This suggests a functional role of this
region in distinguishing individual faces (SI Fig. 11).

Low-Level Confounds Cannot Account for the aIT Face-Exemplar
Effect. The absence of significant face-exemplar information in the
early visual fMRI patterns (see SI Fig. 10 and SI Text, Results of

§The absence of an effect (however small) can never be statistically demonstrated. This is
a general limitation in science, but particularly severe here, because each fMRI voxel
reflects the activity of hundreds of thousands of neurons pooled across seconds.

Fig. 3. Peak of distributed face-exemplar information in aIT. We used
information-based functional brain mapping (44) to determine where locally
distributed face-exemplar information was greatest within our occipitotem-
poral fMRI slab. The only region found was in right aIT (Talairach coordinates
of centroid 38, 2, �38). The full information-based Talairach-space group map
is shown in SI Fig. 9b. A single subject’s map and the event-related spatial
response patterns in the anterior face-exemplar region are shown in SI Fig. 11.
The group map was thresholded to highlight voxels with P � 0.001, uncor-
rected (orange-yellow). The peak voxel had P � 0.0001 (yellow). Information-
based mapping was performed in each subject by using a 3-mm-radius spher-
ical information searchlight (44) (see Methods, SI Fig. 8b, and SI Text:
Information-Based Group Mapping in Talairach Space); thus, each high-
lighted voxel indicates face-exemplar information distributed within a more
extended local neighborhood (volume highlighted: 8 voxels � 64 mm3,
volume contributing information: 56 voxels � 448 mm3). Single-subject
information-based maps were transformed into Talairach space and averaged
across subjects. Statistical inference was performed at each voxel by a ran-
domization test involving random relabeling of the face trials. The back-
ground shows the MNI template brain transformed into Talairach space.
Green boxes indicate the cuboid subvolumes of Talairach space. Anterior
commissure (AC) and posterior commissure (PC) are indicated. The right
hemisphere is on the right side in the coronal and axial slices.
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Control Analyses) suggests that the faces were appropriately
matched for our purposes. This is plausible for a number of reasons.
(i) Faces, in general, are similar in feature set and global configu-
ration. One consequence of this is a similar spatial frequency
spectrum. (ii) In addition, the faces were matched in size, view, and
lighting, which yielded similar retinotopic images. (iii) Furthermore,
we matched the image histograms. As a consequence, our stimuli
also had identical light and spatial-signal energy. The two face
images were, thus, much better matched for low-level confounds
than can be achieved, for example, when a set of face images is
contrasted against a set of other object images to localize face-
sensitive regions including the FFA.

Both the FFA and aIT May Be Necessary for Face Identification. Our
findings may appear at odds with the studies suggesting a role for
the FFA in face identification (1, 5–18). However, the contrasting
evidence can be reconciled: the FFA may detect faces (2, 3, 27, 28),
engage aIT to identify them (4, 16, 19–26), and subsequently receive
feedback from aIT. In this view, face identification requires both
regions, and the activity of both should predict success and failure
of the process. This would explain why (i) lesions in the region of
the FFA are associated with deficits at recognizing individual faces
(6, 9, 10) and why (ii) the FFA response level reflects behavioral
performance at identification (11).

The face-processing stages of detection and identification have
been associated with the successive components M100 and M170 in
a magnetoencephalography study (46). Having detected a face, the
FFA may not only trigger identification in aIT but, more generally,
engage specialized nodes of the core and extended face network (1,
5) for detailed analysis, including analysis of facial expression in
STS (7).

Our interpretation is also consistent with the third line of
evidence for a role for the FFA in identification, namely that (iii)
the FFA responds more strongly to a sequence of different indi-
viduals than to the same face image presented repeatedly (8, 12–17).
The greater response to face-identity change than face-identity
repetition is usually taken to indicate neuronal information about
face identity. This interpretation is based on the idea of ‘‘fMRI
release from adaptation’’ (47), which is expected to occur if each
identity drives a different set of FFA neurons. If each set of neurons
representing a face drove each of our voxels approximately equally,
we might well have failed to detect the information, because our
approach of direct measurement and analysis of the response
patterns is limited by fMRI spatial resolution. The fMRI adaptation
technique, by contrast, is not limited by the fMRI resolution. The
presence of some amount of individual face information in the FFA
appears likely and would be consistent with our interpretation here.

However, the interpretation of the fMRI adaptation results
requires some caution (48, 49), because release-from-adaptation
effects can carry over from a region A to another region B, even if
the projection pools responses so that the selectivity causing the
release in A is not present in B. For example, release from
adaptation in a low-level region could carry over to the FFA, even
if the projection pools responses so that the low-level selectivity is
lost in the FFA. Similarly an aIT release from adaptation upon
identity change as previously reported (16) could carry over to the
FFA as an unspecific activation, even if identity could not be
decoded from FFA neuronal responses. More generally, a change
of perceived face identity is likely to trigger an attentional response
entailing widespread activation. All affected regions (either within
the face network or beyond it) would then exhibit a release-from-
adaptation effect. Furthermore, if exact-image repetition defines
the baseline (as in most cases, but see refs. 12, 15, and 16), it is
unclear whether the release from adaptation is caused by face-
identity change or low-level feature change.

From a computational perspective, face detection is a difficult
task, particularly for cluttered scenes, and might well merit a
dedicated functional region. There is no strong theoretical reason

to believe that detection and identification must be colocalized. In
fact, the representational basis functions optimal for face detection
are very different from those optimal for distinguishing individuals.
In a simple template-matching framework, detection would require
something like an average-face template, whereas identification
would require multiple templates sensitive to the subtle differences
between faces.

Our Findings Are Consistent with a Wide Range of Monkey and Human
Studies. Monkey electrophysiology, neuroimaging, and lesion studies.
Our aIT finding is consistent with monkey cell recordings, where
face-specific responses are found in many locations, but identity-
specificity is strongest in the anterior temporal cortex (29–31). The
monkey aIT representation has recently been described as a norm-
based code for individual faces (50). Another recent study (51)
investigated single-cell responses in the monkey middle face patch,
which might be the homologue of the human FFA (52). These
authors show that cell responses in the monkey middle face patch
contain both face-category and face-identity information. However,
category information is more pronounced, and identity information
becomes available at a greater latency. An earlier monkey study
(53) showed that bilateral ablation of the monkey STS (includ-
ing the region of the middle face patch) does not entail face-
identification deficits, suggesting that the middle face patch might
not be the main locus of face identification.

All these results are consistent with the interpretation that the
middle face patch detects faces, engages aIT to individuate them,
and then receives feedback from aIT. It is unclear, however, how
closely the human FFA resembles the monkey middle face patch at
the level of single-cell responses.
Human electrophysiology and neuroimaging. An early study using
positron emission tomography (PET) describes bilateral anterior
temporal activation associated with performance of a face-
identity task (4). Bilateral anterior temporal lobe exhibits a
reduced response to repeated presentations of familiar faces
(24). Right temporal polar cortex, in particular, has been found
to be active during face perception and recognition (with its
activity predictive of performance) (22), during discrimination
of familiar and unfamiliar faces (23), and during the naming of
faces (54). The latter study suggests that the right temporal pole
serves a face-specific function, whereas the left temporal pole is
domain-generally involved in naming unique entities (54). These
human imaging studies all used PET.

Using fMRI, right anterior temporal cortex has also been found
active during face-from-name retrieval (26), but the region is
superior to ours. Some fMRI studies may have missed aIT effects,
because aIT is often affected by a large fMRI-signal dropout (55,
56) caused by heterogeneous magnetic susceptibility of the local
anatomy. This would explain why studies employing PET (4, 22–24,
54) or higher-resolution fMRI (16) [which is less affected by the
dropout (55)] more consistently report anterior temporal activity
related to face recognition. For example, there is fMRI-adaptation
evidence (16) for an involvement of both the FFA and bilateral aIT
in face-identity representation. This study used 2-mm slices (1-mm
gap) with 3 � 3-mm2 in-plane voxel size.

Our findings are also consistent with three related studies
describing intracranial electrophysiological recordings in human
patients exposed to face stimuli (57–59). The authors describe a
human ‘‘anterior face area’’ located in the right hemisphere and
giving rise to the face-specific AP350 potential (57), which is shown
to be reduced on repetitions of the same face (59). This response
reduction on repetition is consistent with an identity representation
in right aIT. A reduction on repetition was not found in the earlier
face-specific N200 originating in more posterior ventral cortex (59).
Acquired prosopagnosia. Prosopagnosia is the inability to recognize
individual faces. This disorder can be acquired by brain damage. In
particular, it can be caused by lesions in the general region of the
FFA (6, 9, 10). Damage to the FFA in these cases may impair
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engagement of aIT for identification. Prosopagnosia can also occur
in the presence of a face-selectively responding FFA (17, 60),
demonstrating that other face-specific regions besides the FFA are
needed for identification. In the patient in question (PS) (17, 60),
the FFA responses to sequences of faces of different identity appear
altered (17), which could be caused by altered input or feedback to
the FFA. Prosopagnosia can also be caused by anterior temporal
lesions (19, 20, 25). Lesions in the right temporal polar cortex can
impair face identification (19). Right anterior temporal atrophy is
frequently associated with progressive prosopagnosia (20). Gainotti
et al. (25) describe a patient with a right anterior temporal focal
atrophy associated with impaired identification of familiar people
from their faces or voices. The authors suggest that the impairment
may be caused by damage to face-recognition units (61) in the right
anterior temporal cortex.
Congenital prosopagnosia. Prosopagnosia can also be congenital in
the absence of any apparent brain damage (62). Like acquired
prosopagnosics, congenital prosopagnosics can detect faces (63)
and often exhibit intact FFA activity (64, 65). However, they cannot
identify faces, and there is evidence of decreased cortical volume in
the right anterior temporal cortex (62, 66).

What Is the Nature of the Human aIT Face Representation? The
presence of face-exemplar information in aIT suggests that aIT
contains a population code representing the subtle differences
between individual faces. However, many questions remain.
What face properties are represented in the aIT? First, individual faces
in general and our stimuli in particular differ along many dimen-
sions. There is an extended literature addressing face-space dimen-
sions (67, 68) including gender, age, attractiveness, overall config-
uration, local features and skin texture. The relative importance of
these dimensions in the aIT face representation needs to be
elucidated.
How does aIT face representation relate to memory? Anterior temporal
activity has been found to be greater for familiar than unfamiliar
faces and has therefore been associated with access to memory
about people (1, 5, 24) (see also refs. 69 and 70). In our study, faces
were perceptually familiar to the subjects from a task training
immediately preceding the experiment, but subjects did not have
any conceptual knowledge (e.g., names, biographical information)
about the individuals. A perceptual representation of face identity
in interaction with medial temporal memory regions might be
expected to show greater activity for familiar faces. Feedback from
memory could provide a priori information serving to stabilize the
activity pattern representing the individual, thus reducing percep-
tual noise. As a consequence, familiar faces may elicit more distinct
individual-face representations. This would be consistent with a
report of an aIT face-identity-change effect correlated with face
familiarity (16) (see also ref. 71). Clearly memory and perception
depend on each other; in fact, it is difficult to draw a bold line
between them (72). Another possibility, then, is that the aIT face
representation itself contains long-term memory traces. For exam-
ple, the basis patterns of the representation (or the attractors of its
dynamics) may correspond to known faces. Haxby et al. (1, 5)
suggest that anterior temporal cortex contains representations of
person identity, name, and biographical information (see also refs.
73 and 74).
Is the right aIT representation face-specific or domain-general? The
anterior temporal cortex is thought to represent complex feature
conjunctions suited for fine-grained discriminations (75–77), in-
cluding the discrimination between individual faces. The right aIT
representation did not distinguish the houses—despite their greater
visual dissimilarity (SI Figs. 9c and 10). It thus does not appear to
be completely domain-general. Previous studies suggest that right
anterior temporal cortex processes face information (22, 23, 26, 54,
57, 59). However, the region could, for example, distinguish ani-
mate objects in general. Establishing face-specificity [as has been

done for the FFA (11, 28, 78, 79) (but see refs. 80 and 81)] will
require testing with exemplars from a range of different categories.

Methods
In this section, we give only an abbreviated methods description. Details on
subjects, stimuli, task, design, and analysis are in SI Text.

Design and fMRI Measurements. We used a rapid event-related design with a
basic trial duration of 3 s (minimal stimulus–onset asynchrony), corresponding to
two functional volumes (volume acquired every 1,500 ms). Each image was
presented for 400 ms. We measured 15 transversal functional slices (including
early visual regions as well as the entire ventral visual stream) with a Siemens
Magnetom Trio scanner (3 Tesla). Voxels were isotropic: (2 mm)3.

Statistical Analysis. Significance testing of activity-pattern effects. We used a
standard univariate t test to determine whether two images elicit distinct re-
sponse patterns in an ROI (Fig. 2). The t test is performed after projecting the data
onto a multivariate discriminant dimension determined with independent data
(SI Fig. 8a). This univariate t test on the multivariate discriminant constitutes a
multivariate test of response-pattern difference. Compared with classical multi-
variate tests, this test has the advantage of not requiring the assumption of
multivariate normal errors; univariate normality (as is commonly assumed in
univariate fMRI analysis) suffices.

For each subject, two data sets (A and B) of the same experiment are used in
the analysis. Set A is used to form a subject-specific hypothesis regarding (i) the
precise ROI discriminating the images and (ii) the multivariate dimension discrim-
inating the images. Set B is then used to test this hypothesis.

For example, to test for a face-exemplar effect in a given ROI, we first deter-
mine the response patterns elicited by the faces in data set A by using standard
linear modeling. We then determine the weighting of the voxels that best
discriminates the two faces in set A (face-exemplar discriminant). This weighting
is closely related to the t map for the contrast between the two faces (but
normalized by error variance instead of standard error, equivalent to a Fisher
discriminant with diagonal covariance). If the contrast pattern represents an
actual difference between the response patterns elicited by the two face images
intheROI, it shouldreplicate indatasetB.Wethereforecomputeaweightedsum
oftheROItimecourses indatasetBusingtheweightsdeterminedfromsetA.This
yields a single time course (the discriminant time course), which can be subjected
to a t test as commonly used in fMRI analysis. We use this approach to perform a
fixed-effects group analysis, using prewhitening to account for temporally au-
tocorrelated errors.
Information estimates. As a measure of the amount of information a region
contains about which of two images is being perceived, we estimate the mutual
information between the stimulus and the multivariate response it elicits on a
single trial. For the two faces, one bit of single-trial face-exemplar information
(Fig. 2) would imply that a single trial’s fMRI response pattern (20 s of fMRI data
acquired after a single 400-ms presentation of a face image) always suffices to
determine, with perfect certainty, which of the two faces was shown. We apply
this measure to all pairs of the four image conditions and refer to it as the
single-trial pair-wise condition information. Because fMRI measurement is noisy
and limited in resolution and because our estimate depends on assumptions (see
SI Text), the pair-wise condition information is an estimate of a lower bound on
the actual information present in the region.
Information-based mapping. Face-exemplar information was mapped by infor-
mation-based functional brain mapping (44, 45). This method scans the imaged
volume with a spherical searchlight to find regions whose response pattern
distinguishes the faces (SI Fig. 8b). More precisely, we used a spherical searchlight
of3-mmradius tohighlight19voxels [size: (2mm)3]ata time.This searchlightwas
centered at each imaged voxel in turn, highlighting overlapping spherical sets of
voxels.Usingthe linearmodel,weestimatetheresponsepatternsassociatedwith
the two faces within the searchlight and compute the Mahalanobis distance as a
multivariatecontrast statistic.TheMahalanobisdistance is recordedinastatistical
map at the voxel at the center of the searchlight. This method yields a continuous
map indicating the evidence for face-exemplar information in the local neigh-
borhood of each voxel.

For the ROI-based analysis of face-exemplar information in the FFA and aIT (SI
Fig. 6 and Fig. 2), we performed a descriptive information-based mapping for
each subject separately using only data set A. The resulting face-exemplar infor-
mation map served to define the ROI at a given number of voxels (see SI Fig. 6 and
SI Text). Independent data (data set B) was then used to perform statistical
inferencefor theROIbymeansof thepattern-discriminant t testdescribedabove.

In addition, we also performed an information-based group mapping in
Talairachspace(Fig.3andSIFig.9b)usingalldata.Here,weusedarandomization
scheme involving permutation of the condition labels for statistical inference
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(details in SI Text). All information-based mapping analyses were performed with
custom software developed in Matlab.
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