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Abstract
We study the effects of Parkinson's disease (PD) on the long-term fluctuation and phase
synchronization properties of gait timing (series of interstride intervals) as well as gait force profiles
(series characterizing the morphological changes between the steps). We find that the fluctuations
in the gait timing are significantly larger for PD patients and early PD patients, who were not treated
yet with medication, compared to age-matched healthy controls. Simultaneously, the long-term
correlations and the phase synchronization of right and left leg are significantly reduced in both types
of PD patients. Surprisingly, long-term correlations of the gait force profiles are relatively weak for
treated PD patients and healthy controls, while they are significantly larger for early PD patients.
The results support the idea that timing and morphology of recordings obtained from a complex
system can contain complementary information.
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1The subjects in this study are a subset of previously described investigations [12,13].
2We have chosen a power of two to avoid zero padding in the FFT when computing the power spectra (see below). A value of 26 = 64
is justified since the stance time is around 60% of the gait cycle, the cycle time during comfortable walking is around 1 s and our sampling
frequency was 100 Hz.
3Since the data are normalized in time, frequency values must be taken as an approximation. More exactly, the defined frequency limits

for each step k before normalization correspond to 1 ∕ (tkto,l − tk
hs,l) ≤ f < 15 ∕ (tkto,l − tk

hs,l).
4The standard deviations of stride-to-stride times and morphology series were calculated for each subject by averaging the variances of
both legs.
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1. Introduction
Time series of fluctuating, but approximately periodic processes, are studied in many complex
natural systems to characterize their control dynamics with methods from statistical physics
such as fluctuation analysis and phase synchronization analysis [1,2]. A well-known example
is the electro-physiological recording of the heart activity, using the conventional
electrocardiogram (ECG). On the one hand, records of interbeat intervals (‘tachograms’) are
analyzed to understand and characterize the control exerted by the autonomous nervous system
[3–7]. On the other hand, the morphology of the ECG waveforms of each heartbeat
(‘morphograms’) contain important information on the physical status of the heart itself [8].
Although derived from the same recordings, both, intervals and morphology have been shown
to contain complementary information, e.g., distinguishing healthy subjects from heart failure
patients [3–5,7,8].

Gait analysis is used to augment the diagnosis and prognosis of various neurological diseases.
For example, it has been shown that increased stride-to-stride variability is associated with
Parkinson's disease (PD) [9]. Furthermore, increased gait variability was found to be a risk
factor for falls occurring from unknown reasons among elderly people [10,11]. Many gait
analysis systems also provide information about the force profile exerted by each foot on the
ground during walking. As this represents the temporal pattern of the contact between the foot
and the ground, it is hypothesized that force profiles would contain information about the
quality of gait. More specifically, the consistency by which foot–ground contact is performed
along a given walking path may reflect the level of gait stability.

In this paper, we study recordings of gait force profiles obtained for both legs in PD patients
and healthy controls. Similar to the approach for ECG data, we extract and study interstride
interval series (corresponding to tachograms in ECGs) and series of stride force profiles
(corresponding to morphograms in ECGs). Analyzing both the fluctuation and synchronization
behavior of these time series, we find that the information in the data is fully complementary.
Fluctuation and phase synchronization analysis of the interstride interval series yield different
results for PD and early PD (EPD) patients compared to elderly healthy controls. At the same
time, fluctuation analysis of gait force profiles yields similar behavior for treated PD patients
and controls, while EPD patients who were not treated with medication differ.

The paper is organized as follows: In Section 2, we describe the database used and the
methodology for the extraction of the two types of series from the recordings. We present brief
descriptions of the detrended fluctuation analysis (DFA) method and the closely related central
moving average (CMA) method which we employed to study the long-term scaling behavior
of the fluctuations. Furthermore, a phase synchronization approach is introduced to quantify
bilateral synchronization in step timing. Section 3 reports our results for the fluctuation
behavior of both types of time series as well as for the synchronization between both legs. We
discuss our results and conclude in Section 4.

2. Database and methodology
2.1. Subjects and extraction of time series

PD patients (n = 29, mean age ± standard error: 67.0 ± 1.3 yr) were compared to healthy elderly
subjects (n = 24, 64.3 ± 1.3 yr) (‘controls’) and to 13 subjects (68.9 ± 2.3 yr) with de novo PD
(early PD: EPD), i.e., patients who were diagnosed as suffering from PD but have not yet been
treated with any anti-Parkinsonian medications.1 The age difference between the three groups
was not significant; patients and subjects did not suffer from any other neurological disease.
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The subjects wore force-sensitive insoles [14] that recorded with a sampling frequency of 100
Hz the normal force exerted by the floor while stepping during a period of 2 min of comfortable
walking. Subjects walked along a 25 m long corridor, turned when they reached an end, and
continued walking. The PD patients were examined during the time in which the medication
was effective (‘ON’ stage).

In Fig. 1 (a) typical force profiles of both legs are shown for one subject. Beginning and end
of stance times (e.g., the duration when the foot is on the ground) are defined by heel-strikes
and toe-offs, respectively; stride times are defined as the duration between consecutive heel-
strikes of the same leg. To study the data of each subject and each leg, we defined two different
time series. First we used the series of time differences τk

hs,l = tk+1
hs,l − tk

hs,l between two
consecutive heel-strikes of one leg (l = right [ri] or left [le] leg, hs = heel-strike, see Fig. 1(a))
to determine the fluctuation behavior of stride timing. These series do not contain any
information about the shape of the force profiles during stance time. Therefore, we extracted
a second time series from the morphology of the gait force profiles in order to study their
fluctuations over time. More precisely, we rescaled each profile curve of each stance period to
the interval [0, 1]. Furthermore, the rescaled data was normalized in time to a fixed number of
L = 64 data points2 (see Fig. 1(b)). This process of rescaling and time normalization properly
removes biases which are related to the measurement device (e.g., different amplification levels
in different insoles), the body weight of the subjects, as well as stride-to-stride variations in
stride timing. As one can see in the power spectra of two different force profiles in Fig. 1(c),
the lower frequencies (f < 15 Hz3) contain most of the power and are thus more significant for
the signal shape. Hence, to characterize the shape of the kth gait force profile, we considered

only the spectral power Φ
‒
k
l

 of the frequencies 1 ≤f < 15 Hz, and defined a morphology series
P l = (Pkl) (integrated power) by

Pk
l = ∑

1≤f<15Hz
Φ
‒
k
l
( f ) (1)

for both legs, l = ri or le, separately. Note that we did not consider the first Fourier coefficient

since Φ
‒
( f = 0 Hz) is only a constant proportional to the mean of the force profile.

Fig. 2(a) shows the normalized histograms of the standard deviations of stride-to-stride times,
σ(τhs), and Fig. 2(b) shows the normalized histograms of the standard deviations of the
morphology series, σ(P), for all three groups.4 As one can see, the standard deviations for EPD
and PD patients are increased for τk

hs and Pk (see also Tables 1 and 2 for a summary and
statistical comparison).

2.2. Detrended fluctuation analysis (DFA)
A widely used method to study long-term fluctuations and correlations in time series is
detrended fluctuation analysis (DFA) [15–18]. In this approach, the time series (xk), k = 1, ...,
N is first integrated, Y (n) = ∑k=1

n (xk − x )(with x = (1 ∕ N )∑k=1
N xk ). After dividing Y(n)

into Ns ≡ [N/s] non-overlapping segments of equal length (scale) s, a piecewise polynomial
trend ys

v(n) is estimated within each segment v = 1 + [(n − 1)/s] and the detrended series is
calculated by

Y
∼
s(n) = Y (n) − ys

v(n). (2)

The degree of the polynomial can be varied in order to eliminate linear, quadratic or higher
order trends of the integrated time series [6]; here we used DFA1 (linear polynomials for
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detrending). The variance of the detrended series, Fs
2(v) = Y

∼
s
2
(n) , calculated in each segment

v, yields the fluctuation function on scale s

F (s) = 1
Ns

∑
v=1

Ns
Fs
2(v)

1∕2

= 1
sNs

∑
n=1

sNs
Y
∼
s
2
(n)

1∕2

, (3)

which—for scaling data—increases with s as F (s) ∼ s α (α is called the scaling or ‘Hurst’
exponent). The asymptotic value α = 0.5 indicates the absence of long-range correlations in
the data. If 0.5<α<1.0 the data are long-range correlated, i.e., they are characterized by a power-
law decay of the autocorrelation function C(s) = ( xk − x )( xk+s − x ) ∼ s −γ with γ = 2 −

2α and a power spectrum P( f ) ∼ f −β with β = 2α − 1 [15,16]. The higher α, the stronger the
correlations in the signal.

2.3. Central moving average (CMA) analysis

A possible drawback of the DFA method is the occurrence of abrupt jumps in Y
∼
s(n) (Eq. (2))

at the boundaries of the segments, since the fitting polynomials in neighboring segments are
not related. As a simple way to avoid these jumps the central moving average (CMA) method
was suggested recently [19] (see also [20], where this method is compared with the backward
moving average technique). In CMA, Eq. (2) is replaced by

Y
∼
s(n) = Y (n) − 1

s ∑
j=−(s−1)∕2

(s−1)∕2
Y (n + j), (4)

while Eq. (3) stays the same. In some cases, the scaling behavior of F(s) vs. s is more smooth
for CMA than for DFA, as we see in Fig. 3. Here we used both methods for comparison.

2.4. Corrected DFA for very short data
It has been shown that conventional DFA and CMA systematically overestimate the scaling
exponent α on very small scales [16,21]. This might be a problem for very short time series,
where scales s<15 need to be included in the fitting procedure to determine α. As suggested
by Kantelhardt et al. [16], a more reliable procedure involves the comparison with the
corresponding analysis of shuffled data. Hence, we also consider

Fmod(s) =
F (s)s 1∕2

Fshuff
2 (s) 1∕2

, (5)

where Fshuff
2 (s) 1∕2 denotes the DFA (or CMA) fluctuation function (Eq. (3)) averaged over

several configurations of shuffled data, taken from the original series (xk).

2.5. Synchronization analysis
The methods described above can be used to study the properties of signals derived from each
leg separately. In order to focus on the interrelation between both legs, we calculated the degree
of phase synchronization between them. Note that we did not filter our data, since bandpass
filtering could lead to an overestimation of phase synchronization [24].

First we determined the phase difference between right and left leg via marker events (e.g.,
heel-strikes [hs] and toe-offs [to]):

Δφk
m = 2π

tk
m,ri − tk

hs,le

tk+1
hs,le − tk

hs,le , (6)
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where tk
m,ri refers either to the heel-strike (mode m = hs) or the toe-off point (m = to) of the

right leg. This approach is equivalent to the technique of Poincare section, which is a widely
used method to analyze chaotic systems [22]. The resulting phase differences typically form a

time series ψ = Δφ1
hs, Δφ1

to, …, Δφk
hs, Δφk

to, … with means Δφ
‒hs

≠ Δφ
‒to

. For the sake of a

uniform analysis of Δφhs and Δφ to, we calculated the time series of the normalized phase

differences ψ
∼
= Δφ

∼
1
hs
, Δφ

∼
1
to
, …, Δφ

∼
k
hs
, Δφ

∼
k
to
, … with Δφ

∼
k
hs

= Δφk
hs − 1

2 (Δφ
‒hs

− Δφ
‒to) and

Δφ
∼
k
to

= Δφk
to + 1

2 (Δφ
‒hs

− Δφ
‒to). Plotting the histogram of the normalized phase differences

would lead to a single peak in case of high synchronization between both legs. Contrary, an
absence of synchronization will show a uniform distribution. To reliably quantify the
distribution of phase differences, one can calculate the Shannon entropy S = − ∑ j=1

N pj ln pj

of the corresponding histogram (pj is the relative frequency of finding ψ
∼

 within the jth bin of
the histogram and N is the number of bins). An index which measures the degree of phase
synchronization is defined by

ρ :=
Smax − S

Smax
, (7)

where Smax = ln N is the maximal entropy, meaning a uniform distribution of the phase

differences ψ
∼

 [22]. According to this definition, no synchronization corresponds to ρ = 0

(uniform distribution of ψ
∼

), whereas ρ = 1 means the distribution is localized in one point (δ-
function). The value of ρ strongly depends on the number of bins of the histogram. It is
suggested to estimate the optimal number of bins as N = exp[0.626 + 0.4 ln(M − 1)] where
M is the number of samples [22,23]. However, to be able to compare our results among all
subjects) (with different number of samples) we chose a sufficient number of bins and set N =
100 for all analyses.

3. Results
3.1. Fluctuation analysis of stride-to-stride time series

We analyzed time series of stride-to-stride intervals using DFA1, CMA and the corrected
DFA1. For this purpose, we manually removed all data related to the walking turns and
calculated the fluctuation function of both legs by F(s)hs = ([F2(s)hs,ri + F2(s)hs,le]/2)1/2 (cf.
Eq. (3)). Fig. 3 depicts results for a typical control subject (circles), an EPD patient (triangles)
and a PD patient (crosses). Whereas the scaling exponent of the healthy elderly subject is close
to α = 1.0, suggesting strong long-range correlations, the EPD and the PD patients show more
random behavior.

The group averages of the scaling exponents are summarized in Table 1. In general, the values
obtained for the three methods show the same qualitative behavior. The differences are clearly
due to the overestimation of α by DFA1 and—to a much lesser extent—by CMA, while
corrected DFA1 consistently yields the smallest and probably most reliable results. The scaling
exponents of the controls are significantly higher than for EPD and PD patients. The scaling
exponents of EPD patients are higher than for PD, however, the differences are not significant.

To verify our interpretation that the estimated scaling exponents of α>0.5 are due to long-range
correlations and not a result of a broad distribution of the data, we shuffled each time series of
each leg in each subject and obtained αshuff ≈ 0.5 in all cases.
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We further compared the first and second half of each subject's walk to evaluate the possible
role of fatigue. For all subject groups, the mean and SD of the stride time was not different in
the two halves (paired T-test, P>0.1), indicating that at least for these parameters, fatigue did
not have a strong effect.

3.2. Fluctuation analysis of gait force profile series

As described in Section 2.1, we also extracted form sensitive time series (Pkl) to study variations
in the gait force profiles with time. Fig. 4 shows results for one typical subject of each group
after applying DFA1, CMA and the corrected DFA1 (walking turns were again removed
manually). The computed scaling exponents of the EPD subject are clearly increased compared
to controls and PD patients, suggesting that the stride-to-stride variability of the ground reaction
force does not change monotonously with the progression of the disease.

Table 2 summarizes the results of each subject group, showing that the scaling exponents of
EPD are significantly increased when compared to controls and PD patients. Again, the values
obtained for the three analysis methods show the same qualitative behavior. All differences
between DFA1, CMA, and corrected DFA1 are clearly due to the overestimation of α by DFA1
and—to a lesser extent—by CMA, while corrected DFA1 consistently yields the smallest and
probably most reliable results. We also compared all resulting Hurst exponents to those of the
corresponding shuffled data. Since αshuff ≈ 0.5, we can assume that the enhancements in
αDFA1, αCMA and αDFA1cor

 are due to long-range correlations in (Pkl).

3.3. Phase synchronization analysis applied to stepping periods of either legs
The stepping of each leg can be considered as a periodic process. We assume that the enhanced
fluctuations in stride timing in PD and EPD will also effect the level of phase synchronization
between left and right leg, since large fluctuations might disturb regular synchronization
patterns. However, increased random noise levels might increase phase synchronization in
weakly coupled or uncoupled oscillators as studies of model systems recently showed [25]. It
is thus interesting to study the phase synchronization between left and right leg in our
experimental data.

We estimated the level of phase synchronization by calculating ρ (see Eq. (7)) for controls,

EPD subjects, and PD patients. Fig. 5 depicts ψ
∼

 series taken from one control and one PD

subject. It is clear that the variance in ψ
∼

 is lower for the control subject as compared to the PD
patient. Likewise the value of ρ was higher for that subject. As Fig. 5 suggests, control subjects
usually performed more walking turns than EPD and PD patients due to higher gait speed. In

order to compare ρ-values between the three groups we only considered the values of ψ
∼

 until
the middle of the third interturn interval.

Fig. 6 shows the normalized histograms of the synchronization indices ρ for each group. As
one can see, synchronization is larger in the group of controls when compared to EPD and PD
patients, see also Table 3.

4. Discussion and conclusions
In this study, we applied statistical physics methods to the investigation of normal and impaired
gait. We demonstrated that these methods allow refined examination of the Parkinsonian gait,
revealing disturbances not always apparent to the clinical eye.
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4.1. Fluctuations in stride-to-stride time series and in the morphology of stepping force
profiles

Our results show that PD leads to a more random timing of patient's gait (recall Section 3.1),
consistent with previous findings [26,27]. Large values of α indicate persistent gait, i.e., slow
steps are followed by relatively slow steps and fast steps by relatively fast steps. This
persistence can also be observed in both PD and EPD patients, but it is significantly lower. In
addition, the magnitude of the gait timing fluctuations is significantly increased in PD and EPD
patients (see σ(τhs) in Table 1 and Fig. 2). Both changes indicate alterations in the motor and
step-to-step regulation of the stride pattern. Fluctuations in the morphology of stepping force
profiles were characterized by scaling exponents that were significantly increased for EPD
patients who were not yet treated with any anti-Parkinsonian medication (Fig. 4 and Table 2).
This finding is surprising, since the magnitude of the fluctuations, characterized by the standard
deviation, is intermediate for EPD patients. As shown in Table 2, the standard deviation σ(P)
increases from controls to EPD to PD as does the standard deviation of the interstride intervals
(see Table 1). Nevertheless, gait profile morphologies are significantly more persistent in EPD
subjects. These results show that the information contained in stride-to-stride intervals and in
stride morphology is complementary. One possible explanation for this surprising behavior is
that long-term usage of medication attenuates fluctuations in the morphology of gait force
profiles, but not fluctuations in gait cycle timing.

4.2. Phase synchronization analysis of the Parkinsonian gait
The decrease of phase synchronization of gait timing in PD and EPD patients is most probably
not due to the decreased long-term correlations in common fluctuations, since less correlated
common noise, externally imposed on two weakly coupled oscillators, seems to increase phase
synchronization, whereas strongly correlated noise suppresses it [28]. The random fluctuations
are much stronger in PD and EPD patients than in the healthy controls (see σ(τhs) in Table 1
and Fig. 2). Hence, in this example, the noise is likely disturbing the synchronization between
the legs rather than causing it. This might suggest that the noise is generated separately in each
of two oscillators rather than equally imposed on them externally by a central process. Indeed
several recent physiological studies support the hypothesis of motor disassociation between
the legs during the walking of PD patients (e.g., Refs. [29,30]).

4.3. Clinical implications
In general, classical medical methods are effective for the purposes of the diagnosis and
treatment of PD patients. At the same time, gait disturbances are among those disease
implications that may require deeper inspection and evaluation, in particular due to the potential
grave consequences that they have on independence, e.g., falls [31,32]. In the present study,
by the use of fractal analysis we confirm that long-term gait variability in the timing of
generation of consecutive gait cycles is a marker for Parkinsonian gait [33]. More equivocal
are the results regarding the variation in the shape of the force profiles. While PD patients
untreated with drugs have higher degrees of long-term fluctuations as compared to elderly
subjects, PD patients who have longer duration of the disease, show comparable long-term
variations in the force profiles to that existing among healthy elderly subjects. This finding
warrants further investigations, especially in light of the possibility that when under the
influence of the anti-Parkinsonian drugs, foot placement during walking is partially stabilized.
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Fig. 1.
(a) Typical force profiles of the right (broken line) and left (solid line) leg during walking.
Times of heel-strikes and toe-offs are marked by crosses and circles, respectively. (b) Extracted
and rescaled force profile of one step (as indicated by the bold line in (a), crosses) after time
normalization. For comparison another rescaled force profile of a different subject is shown
(circles). (c) Corresponding power spectra of the normalized force profiles shown in (b).
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Fig. 2.
Normalized histograms of the standard deviations of (a) stride-to-stride times τk

hs and (b) the
morphology parameters Pk of controls (circles), EPD (triangles) and PD patients (crosses).
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Fig. 3.
Fluctuation functions vs. time scale s after applying DFA1 (left), CMA (middle) and corrected
DFA1 (right) of stride-to-stride time series τhs of a control subject (circles), an EPD patient
(triangles) and a PD patient (crosses). The scaling exponent of each subject was derived by a
least square fit of F(s) vs. s in the scaling range 3≤s≤smax. For the control subject,
αDFA1 = 0.90, αCMA = 0.82, αDFA1cor

= 0.79 (with smax = 20), for the EPD patient,

αDFA1 = 0.82, αCMA = 0.78, αDFA1cor
= 0.70 (with smax = 18) and for the PD patient,

αDFA1 = 0.77, αCMA = 0.68, αDFA1cor
= 0.65 (with smax = 16) (for the sake of clarity, F(s)

functions of the PD patient were multiplied by a factor of 1.5).
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Fig. 4.
Fluctuation analysis of the form sensitive time series P of a control subject (circles), an EPD
patient (triangles) and a PD patient (crosses) by means of DFA1 (left), CMA (middle) and
corrected DFA1 (right). The scaling exponent of each subject was derived by a least square fit
of F(s) vs. s in the scaling range 3≤s≤smax. For the control subject one finds
αDFA1 = 0.73, αCMA = 0.66, αDFA1cor

= 0.61 (with smax = 17), for the EPD patient

αDFA1 = 0.92, αCMA = 0.82, αDFA1cor
= 0.78 (with smax = 14) and for the PD patient

αDFA1 = 0.76, αCMA = 0.70, αDFA1cor
= 0.63 (with smax = 14) (for the sake of clarity, F(s)

functions of the EPD patient were multiplied by a factor of 1.5).
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Fig. 5.

The normalized phase differences ψ
∼

 between both legs are plotted against time for (a) one
control subject and (c) one PD patient. Note that data become irregular during turns for both

subjects. However, clear increased variation of ψ
∼

 can be detected in the interturn periods of
the PD patient as compared to the control subject. Panels on the right-hand side show the
corresponding normalized histograms and ρ-values, (b) for the control subject, and (d) for the
PD patient. Turn times of control subject: 14.7, 29.6, 45.0, 59.4, 75.3, 90.1, 105.9 s; turn times
of PD patient: 29.8, 62.5, 95.7 s.
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Fig. 6.
Synchronization index ρ after analyzing the synchronization between right and left leg for
controls (circles), EPD (triangles) and PD patients (crosses). The normalized histogram for the
controls is significantly different for the EPD and PD patients (see also Table 3). The lines are
guides to the eye.
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Table 1
Standard deviation and scaling exponents of stride-to-stride time series τhs; the values are given as mean ±
standard error

σ(τhs) (s) αDFA1 αCMA αDFA1cor

Controls 0.027 ± 0.001a 0.92 ± 0.03b 0.84 ± 0.03c 0.80 ± 0.03c
EPD 0.047 ± 0.007a 0.88 ± 0.05 0.79 ± 0.05 0.73 ± 0.04
PD 0.053 ± 0.013a 0.84 ± 0.02b 0.76 ± 0.03c 0.72 ± 0.03c

Scaling exponents calculated by the DFA1, CMA and corrected DFA1 method are significantly increased for controls compared to PD patients. The
scaling exponents of EPD and PD patients are not significantly different.

Mann—Whitney test:

a
Controls vs. EPD, Controls vs. PD: P<0.0001.

b
Controls vs. PD: P<0.05.

c
Controls vs. PD: 0.05<P<0.06.
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Table 2
Standard deviation and scaling exponents for gait force-sensitive time series (the values are given as mean ±
standard error)

σ(P) (a.u.) αDFA1 αCMA αDFA1cor

Controls 0.0062 ± 0.0003,ab 0.74 ± 0.02c 0.65 ± 0.01c 0.61 ± 0.02c
EPD 0.0082 ± 0.0008b 0.86 ± 0.03,ce 0.76 ± 0.03,cd 0.70 ± 0.02,cd
PD 0.0099 ± 0.0013a 0.75 ± 0.02e 0.68 ± 0.02d 0.63 ± 0.02d

Scaling exponents calculated by means of DFA1, CMA and corrected DFA1 are significantly larger for EPD subjects when compared to controls and PD
patients. The scaling exponents of controls and PD patients are not significantly different.

Mann—Whitney test:

a
Controls vs. PD: P = 0.01.

b
Controls vs. EPD: P = 0.05.

c
Controls vs. EPD: P<0.01.

d
EPD vs. PD: P<0.05.

e
EPD vs. PD: P<0.01.
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Table 3
Synchronization index ρ for healthy elderly subjects, EPD and PD patients (the values are given as mean ±
standard error)

ρ

Controls 0.62 ± 0.01
EPD 0.55 ± 0.02
PD 0.53 ± 0.02

The values of ρ for the control group are significantly higher (Mann—Whitney test: P<0.001) when compared to EPD and PD patients.
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