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Abstract
The spectral representation of stationary Gaussian processes via the Fourier basis provides a
computationally efficient specification of spatial surfaces and nonparametric regression functions
for use in various statistical models. I describe the representation in detail and introduce the
spectralGP package in R for computations. Because of the large number of basis coefficients, some
form of shrinkage is necessary; I focus on a natural Bayesian approach via a particular parameterized
prior structure that approximates stationary Gaussian processes on a regular grid. I review several
models from the literature for data that do not lie on a grid, suggest a simple model modification,
and provide example code demonstrating MCMC sampling using the spectralGP package. I describe
reasons that mixing can be slow in certain situations and provide some suggestions for MCMC
techniques to improve mixing, also with example code, and some general recommendations grounded
in experience.
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1. Introduction
Smoothing in the context of spatial modeling and nonparametric regression, often in an additive
modelling scenario such as a generalized linear mixed model (GLMM) or generalized additive
model (GAM), is a common technique in applied statistical work. A basic general model is

(1)

where Yi, i = 1, … n, is the ith outcome, F is commonly an exponential family distribution, κ
is a dispersion parameter, h(·) is the link function, xi is a vector of covariates for the ith
observation, and g(si; θ) is a smooth function, parameterized by θ, evaluated at the location or
covariate value of the ith observation, si, depending on whether the smooth function is in the
spatial domain or covariate space. In this work I focus on settings in which g(·; θ) is a spatial
surface, but results hold generally for one dimension and potentially for higher dimensions.

There have been two basic approaches to modelling the smooth function, g(·; θ), each with a
variety of parameterizations. One approach considers the function as deterministic within a
generalized additive model (GAM) framework (Hastie and Tibshirani 1990; Wood 2006), for
example, using a thin plate spline or radial basis function representation with the function
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estimated via a penalized approach. The other takes a random effects, or equivalent stochastic
process, approach in which the smooth function is treated stochastically, potentially via a
Bayesian approach. Within this latter approach, one might consider a collection of correlated
random effects, in which case (1) is a generalized linear mixed model (GLMM) (McCulloch
and Searle 2001; Ruppert, Wand, and Carroll 2003). Alternatively, stochastic process
representations such as kriging (Cressie 1993) or Bayesian versions of kriging (Banerjee,
Carlin, and Gelfand 2004) usually take g(·; θ) to be a Gaussian process. The random effects
approach can also be considered as a stochastic process representation based on the implied
covariance function of the process induced by the covariance structure of the random effects.
Note that by considering a prior over functions or equivalently over the coefficients of basis
functions, the additive model can be expressed in a Bayesian fashion, and there are connections
between the thin plate spline and stochastic process approaches (Cressie 1993; Nychka 2000)
and also between thin plate splines and mixed model representations (Ruppert et al. 2003).
When interest lies in the linear coefficients and the smooth structure/spatial covariance is a
nuisance, one approach to fitting such models is via estimating equations (e.g. Heagerty and
Lele 1998; Heagerty and Lumley 2000; Oman, Landsman, Carmel, and Kadmon 2007). My
primary interest is in situations in which the smooth function is the outcome of interest, for
example, in predicting exposure to pollutants or spatial surfaces of climate variables, in which
case such methods are not useful.

While models of the form (1) have a simple structure, unless the responses are Gaussian and
the sample size is limited, fitting them can be difficult for computational reasons. If the response
were Gaussian, there are many methods, both classical and Bayesian, for estimating β, g(·;
θ), and θ. Most methods rely on integrating g(·; θ) out of the model to produce a marginal
likelihood or posterior, thereby moving the smooth structure out of the mean and into the
variance, such that the observations have a simple, mean structure, (in (1) this is linear in a set
of covariates), and a variance that is a sum of independent noise and spatially correlated
structure. This leaves a small number of parameters to be estimated, often using numerical
maximization or MCMC. However, for large n, computations can be burdensome as they
involve matrix calculations of O(n3). In the non-Gaussian case and in hierarchical modeling
in which the unknown process lies in the hierarchy of the model, this integration cannot be
done analytically, which leads to substantial difficulty in fitting the model because of the high
dimensional quantities that need to be estimated, as well as burdensome matrix calculations.
One set of approaches to the problem focuses on the integral in the GLMM framework, using
EM (McCulloch 1994,1997;Booth and Hobert 1999) and numerical integration (Hedeker and
Gibbons 1994;Gibbons and Hedeker 1997) to maximize the likelihood or approximating the
integral to produce a penalized quasi-likelihood that can be maximized by iteratively weighted
least squares (IWLS) (Ruppert et al. 2003). Likelihood and covariance approximations can
reduce the computational complexity of the matrix calculations (Stein, Chi, and Welty
2004;Furrer, Genton, and Nychka 2006), while the gam() function in the mgcv package in R
uses the reduced rank thin plate spline approach of Wood (2004) fit by penalized IWLS. Rue
and Tjelmeland (2002) exploit computationally efficient methods for fitting Markov random
field (MRF) models by approximating stationary GPs using MRFs.

An alternative is to fit a Bayesian version of the model using a computationally efficient basis.
The approach introduced by Wikle (2002) approximates a stationary GP structure for g(·; θ)
using a spectral representation to decompose the function in an orthogonal basis, in particular
using Fourier basis functions and employing the FFT for fast computation (Wikle 2002; Royle
and Wikle 2005; Paciorek 2007). While the Fourier basis approach has some adherents and is
one of the few efficient alternatives within the Bayesian paradigm, the intricacies and
bookkeeping involved in working with the complex-valued basis coefficients make it hard to
simply apply the methodology and replicate results. My goal here is to present the
representation in detail (Section 2), and provide an R (R Development Core Team 2006)
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package, spectralGP, (freely available from CRAN, http://CRAN.R-project.org/) for working
with the representation that handles the bookkeeping and sampling of coefficients for use
within Markov chain Monte Carlo (MCMC) (Section 3). I describe several parameterizations
for exponential family data (Section 4), and discuss detailed MCMC implementation and
mixing issues that arise in fitting models, as well as general recommendations on
parameterizations and sampling techniques (Section 5). I note that my experience shows slower
mixing than one would desire; advances in this area are an open area for research.

2. Fourier basis representation
To simplify the notation I use gs to denote the vector of values calculated by evaluating g(·)
for each of the elements of s (e.g., for each observation location), namely gs = (g(s1), …, g
(s n))⊤, suppressing the dependence on hyperparameters. Also, where necessary, I denote a set
of unspecified parameters as θ. Proposal values are denoted with a *, e.g., θ*, and vectors of
augmented quantities with a tilde, e.g., Ỹ.

2.1. Basic process model
In many Bayesian models, the unknown function, be it a spatial surface or regression function,
is a represented as a Gaussian process or by a basis function representation. Diggle, Tawn, and
Moyeed (1998) formalized the idea of generalized geostatistical models, with a latent Gaussian
spatial process, as the natural extension of kriging models to exponential family responses.
They used Bayesian estimation, suggesting a Metropolis-Hastings implementation, with the
spatial function sampled sequentially at each observation location at each MCMC iteration.
However, as shown in their examples and discussed elsewhere (Christensen, Møller, and
Waagepetersen 2000; Christensen and Waagepetersen 2002; Christensen, Roberts, and Sköld
2006), this implementation is slow to converge and mix, as well as being computationally
inefficient because of the covariance matrix involved in calculating the prior for gs.

An alternative approach that avoids large matrix calculations is to express the unknown
function in a basis, gs = Ψu, where Ψ contains the basis function values evaluated at the
locations of interest, and estimate the basis coefficients, u. These coefficients are taken to have
a prior distribution; constraints on the function, such as degrees of smoothness, are imposed
through this prior distribution and the basis choice. When the coefficients are normally
distributed, this representation can be viewed as a GP evaluated at a finite set of locations, with
Cov(gs) = ΨCov(u)Ψ⊤.

Isotropic GPs can be represented in an approximate fashion using their spectral representation
as a Fourier basis expansion, which allows one to use the Fast Fourier Transform (FFT) to
speed calculations. Here I describe the basic model in two-dimensional space, following Wikle
(2002).

The key to the spectral approach is to approximate the function g(·) on a grid, s#, of size M =
M1 × M2, where M1 and M2 are powers of two. Evaluated at the grid points, the vector of
function values is represented as

(2)

where Ψ is a matrix of orthogonal spectral basis functions, and u is a vector of complex-valued
basis coefficients, um = am + bmi, m = 1, … , M. The spectral basis functions are complex
exponential functions, i.e., sinusoidal functions of particular frequencies; constraints on the
coefficients ensure that gs# is real-valued and can be expressed equivalently as a sum of sine
and cosine functions. The basis functions represented in the basis matrix, Ψ, capture behavior
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at different frequencies, with the most important basis functions for function estimation being
the low-frequency basis functions. To approximate mean zero stationary, isotropic GPs, the
basis coefficients have the prior distribution,

(3)

where the diagonal (asymptotically; see Shumway and Stoffer (2000, Section T3.12))
covariance matrix of the basis coefficients, Σθ, parameterized by θ, can be expressed in closed
form (for certain covariance functions) using the spectral density of the covariance function
desired to parameterize the approximated GP.

To make this more explicit, consider the Matérn covariance popular in spatial statistics,

(4)

where τ is distance, σ2 is the variance of the process, ρ is the range (correlation decay) parameter,
and Kν(·) is the modified Bessel function of the second kind, whose order is the differentiability
parameter, ν > 0. This covariance function has the desirable property that sample functions of
GPs parameterized with the covariance are ⌊ν − 1⌋ times differentiable. As ν → ∞, the Matérn
approaches the squared exponential form, with infinitely many sample path derivatives, while
for ν = 0.5, the Matérn takes the exponential form with no sample path derivatives.

The spectral density of this covariance, which is used to calculate the elements of Σθ, evaluated
at spectral frequency, ω, is

(5)

where D is the dimension of the space (two in this case) and the parameters are as above. For
an appropriate set of spectral frequencies, the diagonal elements of Σθ are the values of ϕ(·; ρ,
ν) at those frequencies, and the off-diagonals are zero.

To construct real-valued processes with the approximate GP distribution based on the complex-
valued coefficients given above, some detailed bookkeeping and constraints are required.
These details are provided in the Appendix A.1, while details on accounting for the periodicity
of the Fourier domain appear in Appendix A.2.

2.2. Computations and statistical modeling of observations
The process at the observation locations is calculated through an incidence matrix, K, which
maps each observation location to the nearest grid location in Euclidean space,

(6)

For a fine grid, the error induced in associating observations with grid locations should be
negligible and the piecewise constant representation of the surface tolerable. This approach
amounts to binning the data, with square bins defined by the grid points. An extension would
be to do local interpolation between the grid points to define the process values at the data
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locations, but I do not pursue that here. The computational efficiency comes in the fact that the
matrix Ψ, which is M × M, need never be explicitly formed, and the operation Ψu is the inverse
FFT, and so can be done very efficiently (O (M log2(M))). In addition, evaluating the prior for
u is fast because the coefficients are independent a priori. This stands in contrast to the standard
MCMC setup for GP models, in which the prior on gs involves an n × n matrix and therefore
O(n3) operations. Of course the gridding could be done without the Fourier basis approach,
but this would only reduce the computations to O ((M/2D)3) (the division by 2D occurs because
the padding of Appendix A.2 would not be required). Note that with the gridded approach, the
number of observations affects the calculations only through the likelihood, which scales as O
(n), because the observations are independent conditional on gs. The complexity of the
underlying surface determines the computational efficiency by defining how large M should
be; simple surfaces can be estimated very efficiently even if n is large.

3. R spectralGP package
The spectralGP package for R provides an object-oriented representation of the Fourier basis
approach to computation with GPs. The primary purpose of the package is to handle the
bookkeeping details, allowing one to easily simulate and plot processes and sample the Fourier
basis coefficients within an MCMC. This allows developers to write code to fit models in which
a Gaussian process is a component, easily drawing MCMC samples of the coefficients of the
process, as described in Section 3.3. Also note that C. Wikle has released Matlab code for the
Fourier basis computations on his website (http://www.stat.missouri.edu/~wikle/).

3.1. Description of the package
The key functions in spectralGP are a constructor function, gp(), that creates a gp object,
and a number of S3 methods: two MCMC sampling methods for the coefficients,
Gibbs.sample.coeff.gp() and propose.coeff.gp(); a method for calculating the
proposal density of the current coefficients for use in Metropolis-Hastings sampling,
Hastings.coeff.gp(); a method for simulating GPs, simulate.gp(); a method for
changing the GP hyperparameter values, change.param.gp(); calculation of the logdensity
of the coefficients, logdensity.gp(); and prediction and plotting methods. The function
updateprocess.gp() updates the process values based on the current values of the
coefficients, while calc.variances.gp() calculates the coefficient variances given the
current covariance/spectral density parameters. These latter two functions are generally
intended for internal use, but the template code in Appendix B makes use of
updateprocess.gp() after changing the coefficient values during a particular type of
MCMC step. Auxiliary functions allow for copying, copy.gp(); determining the basic grid
used, getgrid.gp(); and extracting the object element names, names.gp(). Several
functions deal with conversion between coordinate systems: a simplistic lon/lat to Euclidean
x/y projection, lonlat2xy(); mapping a Euclidean domain to (0, 1)D, xy2unit(); and
mapping locations in the domain to the closest grid points, new.mapping(). Several auxiliary
functions are borrowed from the fields package, namely rdist.earth() as well as
image.plot() and its auxiliary functions, image.plot.info() and image.plot.plt
().

I have used native R code for the entire package both for simplicity and because the essential
computations within the package are already compiled code, namely the functions, fft(),
rnorm(), and dnorm().

spectralGP includes only the spectral density function for the Matérn covariance (and thereby
the special case of the exponential covariance) but is easily extendible by writing user-defined

Paciorek Page 5

J Stat Softw. Author manuscript; available in PMC 2007 December 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.stat.missouri.edu/~wikle/


spectral density functions that can be used in the constructor function for a creating a new
process, gp().

Some additional intricacies included in the package are mentioned parenthetically in Sections
4 and 5 and in Appendix A. Note that in the package, the process is scaled by , as
described in Section 4.1, relative to the exact process values (21).

3.2. Using environments as objects to allow pass-by-reference
Since a gp object will be used repeatedly during MCMC sampling, I chose to use a pass-by-
reference scheme in the coding, using R environments to mimic object-orientation in traditional
languages, as suggested by E.A. Houseman. In this way, one can operate on a gp object and
change internal elements without having to pass the entire object back from the method function
and thereby create a new copy of the gp object or overwrite the old copy by assigning the
output to the same name. This is possible because unlike other R objects, environments are not
copied when passed to functions. Each instantiation of a gp object is an environment, initialized
with a call to new.env() and assigned the class “gp”. The elements of the object, e.g.,
myFun here, are local variables within the environment, accessed via list-like syntax, e.g.,
myFun$process. S3 methods are used to operate on the gp objects, with the difference from
standard R that global changes can be made to the elements of an object within the method by
virtue of those elements residing within an environment. For example, the call, simulate.gp
(myFun), samples new coefficients and updates the process based on those coefficients
without having to pass myFun back to the calling environment, yet the changes to myFun are
effective in the calling environment. Also note that care must be taken when assigning gp
objects because environments are not copied when used in assignments; I have created an
explicit copy.gp() function to make a new copy of a gp object; assignment merely creates
an additional name (i.e., pointer) referencing the existing object, so any changes to the original
gp object also occur within the ’new’ object, which just references the original object. I chose
not to use S4 methods because my understanding is that their implementation is still somewhat
slow and spectralGP works with large objects and substantial computation.

This use of R environments as objects that can be passed by reference is not a standard approach
in R, which uses a pass-by-value system. As a result, the package can be nonintuitive to the
user, producing changes in the objects as a side effect of the call to a method function, and then
returning a null value. However, I believe this is a feature of the approach that is more natural
for setting up MCMC sampling, rather than a drawback. There is a single copy of each
parameter object that is changed during a sampling step instead of passing back a new copy of
the changed object to the calling environment. Unlike most cases in R in which an object is
created and then used as an input for additional work but is not modified subsequently (such
as use of lm(), following by summary() and plot()), in the MCMC sampling setting, a
parameter object needs to be modified repeatedly. It is more natural to pass by reference in this
context.

3.3. Using and extending the package
A basic use of the package is to simulate and plot GPs. After setting up the gp object, one can
simulate a realization and plot an image of the realization as follows:

myFun=gp(c(256,256),matern.specdens,c(0.3,2))

simulate(myFun)

plot(myFun)
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This is computationally efficient because of the use of the FFT. The constructor function isgp
(gridsize,specdens,specdens.param,variance.param,const.fixed=FALSE)

The argument gridsize is a scalar for processes on ℜ1 or vector of length two for processes
on ℜ2. If gridsize=c(M1,M2), then the effective grid is M1/2 + 1 by M2/2 + 1, after
accounting for periodicity of the Fourier basis, as discussed in Appendix A.2. Note that if
M1 ≠ M2, the scaling in the two dimensions is different, which produces an anisotropic process.
The argument, specdens, is a spectral density function; currently only a Matérn function,
matern.specdens(), with the exponential as a special case, is implemented but users can
write their own. The argument, specdens.param, is a scalar or vector of parameters required
by specdens; in the Matérn case the first value is the spatial range parameter, ρ, and the second
the smoothness or differentiability parameter, ν. The argument, variance.param, is the
spatial process variance, σ2, while const.fixed=TRUE indicates whether the first basis
coefficient, u0,0, should be fixed to be zero, which eliminates a non-identifiability in the MCMC
when a separate mean, μ, is included in the model (Appendix A.3); for simulation of realizations
one should use const.fixed=FALSE to preserve the approximate specified covariance for
the GP realizations. The plot.gp() method uses arguments similar to those in image while
the only argument to simulate.gp() is the gp object itself. While fast simulation of GPs on
a discrete grid may be of interest, the primary use of the package is to ease the sampling of the
coefficients via MCMC in a Bayesian model context, as follows.

The simplest approach is to sample the coefficients in blocks grouped by basis function
frequency, with the code

propose.coeff(object,block,proposal.sd)

where block specifies the block to be sampled (the blocks are created with add.blocks.gp
() and using block=0 proposes all of the coefficients at once) and proposal.sd is the user-
tunable Metropolis-Hastings proposal standard deviation. The user then needs to write code to
accept or reject the proposal by calculating the probability density of any model quantities that
depend on the process values (extracted using predict.gp()) and the prior density of the
coefficients using logdensity.gp(). predict.gp() by default makes predictions on the
effective grid of size M1/2 + 1 by M2/2 + 1, but can take the argument newdata as a matrix of
prediction locations or the argument mapping as a set of indices indicating the grid cells whose
values should be extracted. The set of indices can be created using the method new.mapping
(object,locations), where locations is a two-column matrix of location coordinates. More
details on this approach are given in Section 4.3, and Appendix B provides template code
illustrating this usage.

In certain models, the coefficients can be sampled by a Gibbs sampling step from their exact
conditional distribution. The following conditional distribution for the coefficients,

(7)

arises when the coefficients have prior distribution, u ∼ N(0, Σθ) as in (3) and the gridded data
or latent process values whose distribution depends on the GP have the distribution,

. Here m is a mean term, s is a standard deviation term, and
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 is a residual variance term. Section 4 shows how this conditional distribution arises in several
model structures for non-gridded data. Sampling is done with the code

Gibbs.sample.coeff

(object,z,sig2e,meanVal,sdVal,returnHastings=FALSE)

where the mapping of the method arguments to the parameters above should be clear. Note
that the prior variance structure of the coefficients, Σθ, is already part of the gp object. One
can also sample coefficients from the distribution (7) even if it is not the exact conditional
distribution and base acceptance on the Metropolis-Hastings algorithm. One can calculate the
log proposal density, π(u|·), using

Hastings.coeff.gp(object,z,sig2e,meanVal,sdVal)

or as the return value of Gibbs.sample.coeff() with the argument
returnHastings=TRUE. To calculate the ratio of proposal densities for the Metropolis-
Hastings algorithm, one would first calculate the log proposal density of the current (original)
coefficients as the output, oldDensity, from

oldDensity=Hastings.coeff.gp(object,z,sig2e,meanVal,sdVal)

Then, possibly after changing hyperparameter values as part of a joint proposal of
hyperparameters and coefficients (Section 5.2) one makes the proposal, u*, using

newDensity=Gibbs.sample.coeff

(object,z,sig2e,meanVal,sdVal,returnHastings=TRUE)

which assigns the log proposal density of the proposed coefficients to newDensity. The
difference of oldDensity and newDensity is then used as part of the Metropolis-Hastings
acceptance decision.

Together these functions allow a developer to easily sample the coefficients within the context
of a larger model without worrying about the bookkeeping and technical details of the Fourier
basis representation. In Appendix B I provide R template code for various forms (Section 4)
of the simple model (1) for data from an exponential family distribution: normal, Poisson, or
binomial. The code assumes a constant mean, μ, in place of , and Matérn covariance
function with ν fixed. While this is a simple setting, users could take the template code and use
it within a more complicated hiearchical model or easily extend to a regression structure in the
mean. For example, Paciorek and McLachlan (2007) use a set of gp objects to represent
compositional data in a spatial setting with a complicated multinomial-Dirichlet likelihood
based on a transformation of the GPs, making use of the block sampling approach. The template
code includes code for joint sampling of covariance parameters and process coefficients, which
I discuss in Section 5.2 as a way to improve mixing. Developers could build on the template
code to include this type of sampling in their own models.

4. Basic MCMC sampling schemes for coefficients
In this section, I describe several parameterizations for simple Bayesian exponential family
models with associated MCMC sampling schemes for the Fourier basis coefficients. Bayesian
estimation of unknown processes in this framework relies on shrinkage to estimate the large
number of coefficients; coefficients of low-frequency basis functions are strongly informed by
the data while those of high-frequency basis functions are shrunk strongly toward their prior
distributions. These following basic parameterizations can also be used with relatively
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straightforward modifications in more complicated hierarchical models, although the added
complexity may make the simple blocked sampling scheme (Section 4.3) the most feasible
approach in that case. Note that for simplicity I consider a scalar mean parameter, μ, but this
could be replaced by a regression term, e.g., Xiβ, or other additive components. Also, for more
compact notation, I suppress the dependence of Σθ on the covariance/spectral density
parameters, θ.

4.1. Data augmentation Gibbs sampling for normal data
For Gaussian data with mean function based on the latent process, g(·), a missing data scheme
allows for Gibbs sampling of the coefficients. This is a simplification of the Gibbs sampling
scheme of Wikle (2002), which is described in Section 4.2.

Take the data model to be

(8)

where μ is the process mean and γ is the process standard deviation with σ2 in (4-5) set to one.
Since the prior for the coefficients is normal, we have conjugacy, and the conditional
distribution for u is

(9)

The sample of u represents precision-weighted shrinkage of the data-driven estimates of the
coefficients towards their prior mean of zero.

However, this sampling scheme requires calculation of Ψ⊤K⊤KΨ, which is not feasible for
large number of grid points; note that if K were the identity of dimension M, since Ψ is an
orthogonal matrix, this simplifies to

(10)

which because Σ is diagonal, is easy to calculate. Assuming no more than one observation per
grid cell, K = I can be achieved using a missing data scheme by introducing latent pseudo-
observations for all grid cells without any associated data, including grid cells in which no data
can possibly fall because of padding to account for periodicity (Appendix A.2). Collecting
these pseudo-observations into a vector, Ỹ , they can be sampled within the MCMC using a
Gibbs step as

(11)
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where the K̃ matrix picks out grid cells with no associated data. With this augmentation, Y in
(8-9) is a vector of values on the full grid, Y = (Y obs, Ỹ), combining actual observations with
pseudo-observations, and K = I.

The coefficients can be sampled under this approach (9-10) using

Gibbs.sample.coeff.gp(object,z,sig2e,meanVal,sdVal)

where z is Y , sig2e is η2, meanVal is μ, and sdVal is γ. Note that this straightforward
expression conceals some details required in working with the complex-valued coefficients.
In calculating (γ2/η2 + (Σ−1)ii), one needs to multiple γ2/η2 by one-half for all the elements
corresponding to complex-valued coefficients to ensure that the scaling is correct as described
in Appendix A.1. Also, the operation Ψ⊤(y-μ1) is the FFT and the correct scaling needs to
occur so the result is on the scale of the coefficients. In R, I specify the coefficient variances
as M1M2ϕ(ω; θ) and update the process as . If I then divide Ψ⊤(y − μ1) by

 when sampling the coefficients (9-10), the desired approximate covariance structure
for the process is preserved, namely , where the matrix, Cθ is defined by
Cθ,ij = C(|| si − sj ||; θ) and C(·; θ) is the covariance function whose spectral density defines ϕ
(·; θ), e.g., (5). The exact algorithm is given in the Gibbs.sample.coeff.gp() function in
the spectralGP package. In Appendix B I provide template code for fitting this
parameterization, denoted as Code A.

If there is more than one observation per grid cell, some possible solutions are to use a finer

grid or to take , namely the average of the observations in the grid cell. Ideally, one

would set , but this would require calculation of Ψ⊤η−1Ψ, where

, which is computationally infeasible. Instead, I suggest using constant
η2 so long as there are relatively few locations with multiple observations per grid cell. One
could also use more extensive data augmentation to supplement the existing observations such
that there are nj pseudo plus true observations per grid cell, with nj equal to the maximum
number of true observations in a cell over all of the grid cells.

Wikle (2002) recommends the uncentered (sensu Gelfand, Sahu, and Carlin 1996)
parameterization for the process variance (8), with γ allowed to vary and σ2 ≡ 1 in defining the
variance of the coefficients (5). He notes that moving the parameter closer to the data improves
mixing and helps avoid dependence with ρ. Note that I follow this approach in some cases,
while in others, I allow σ2 to vary and fix γ ≡ 1. In the spectralGP package, a value of σ2 not
equal to one is specified with the variance.param argument to gp() and the
new.variance.param argument to change.param.gp().

For non-normal data from the exponential family, , where fi = μ + γKiu, one
might use a Metropolis-Hastings version of this Gibbs sampling scheme, again with data
augmentation, making use of the linearized observations and working variances used in fitting
GLMs in place of y and η2 in (9-10). As above, one would need to use a single homoscedastic
value for η2. I do not pursue this approach for non-normal data further, as I had little success
in tuning the proposals to achieve reasonable acceptance, but further research in this area may
be worthwhile.

One approach to speeding mixing in the case of normal data is to jointly sample η2 and Ỹ by
first proposing η2* and then, within the same proposal, sampling from [Ỹ|η2*, ·] via a Gibbs
sample, conditional on the proposed value, η2*. Because this joint sample is not from the joint
full conditional [Ỹ, η2|·], we need to use Metropolis-Hastings in determining acceptance based
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on the ratio of the prior for η2 and likelihood, π(η2*)L(Y obs|η2*, ·)/(π(η2)L(Y obs|η2, ·)), where
Y obs is the actual data. Acceptance does not depend on the value of the augmented observations,
Ỹ. So one can propose η2, decide on acceptance based on the likelihood of the true observations,
and then, if accepted, do a Gibbs sample for Ỹ (11). We have effectively integrated Ỹ out of
the joint conditional density, π(η2, Ỹ|yobs, ·), thereby sampling η2 without dependence on Ỹ
(Rue and Held 2005, pp. 141-143). In the iterations, one may also wish to do a separate Gibbs
sample for Ỹ alone, apart from the joint sample with η2. Template code A in Appendix B also
includes modifications for this sampling approach.

4.2. Latent layer Gibbs sampling for exponential family data
Parameterizing with two latent layers (the Wikle parameterization)—For non-
normal data, rather than losing the Gibbs sampling structure for the coefficients, Wikle
(2002) and Royle and Wikle (2005) embed the spectral basis representation in a hierarchical
model with additional latent processes and associated variance components. This approach
allows one to do Gibbs sampling in various generalized models in which exponential family
outcomes are related to a latent spatial process in the mean structure (1).

To take a concrete example, the model for Poisson data is

(12)

where Ψu is the Fourier basis representation with the prior structure (3). One can easily modify
the likelihood and link for other exponential family distributions. The model introduces two
variance components, η2 and , corresponding to two latent processes, one, λ, defined only
at the observation locations, and the second, z, defined for each of the grid cells, including
those in which no data can fall, as discussed in Appendix A.2. Note that the variance
components account for overdispersion. In Section 5.1, I discuss issues that arise when the data
are not overdispersed.

Wikle (2002) suggests a Metropolis-Hastings proposal for λ, with conjugate normal Gibbs
sampling for z and u:

(13)

Similar calculations to those in the previous section are needed in the Gibbs sampling for u to
account for the complex-valued coefficients and to scale the proposal correctly. In the
spectralGP package, u is sampled using

Gibbs.sample.coeff.gp(object,z,sig2e,meanVal,sdVal)

where z is z, sig2e is  , meanVal is 0, and sdVal is 1. Template code is given in Appendix
B as Code B.
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Note that sampling can require long chain lengths; Royle and Wikle (2005) used eight chains
of length 520,000, retaining every 50th iteration, which suggest slow mixing of the sort I have
experienced as well.

A simplified parameterization with a single latent layer (modified Wikle
parameterization)—I propose a modification of the model above to eliminate one of the
latent layers, thereby moving the coefficients closer to the data in the hierarchy and eliminating
z and , which can be difficult to interpret and may not informed by the data (see Section 5.1).
The simplified model for Poisson data is

(14)

where the ith row of K maps the observation to the grid cell in which it falls. One can easily
modify the likelihood and link for other exponential family distributions. Here η2 accounts for
overdispersion. Inference about the unknown smooth function should be based on μ1+γΨu
rather than λ, as simulations indicate that inference based on λ has larger posterior variances
and is overly conservative for the unknown mean function because λ includes heterogeneity
from overdispersion.

One can use Gibbs sampling for the values of λ corresponding to the J grid cells with no
observations, denoted λ̃, and for u:

(15)

Again, u can be sampled with

Gibbs.sample.coeff.gp(object,z,sig2e,meanVal,sdVal)

where z is λ, sig2e is η2, meanVal is μ, and sdVal is γ. For the elements of λ corresponding
to grid cells in which observations fall, λobs, I suggest Metropolis proposals, done individually
for each individual element, but computed in an efficient vectorized fashion in R. Some
intuition for how the information from the data diffuses to the level of the basis coefficients is
that the latent layer, λ, allows for some fluidity between the process values and the data:
individual sampling of λobs for individual grid cells allows the latent layer to accomodate the
data based on adjustments to λobs at individual locations, while the Gibbs sample of u translates
these adjustments to the coefficients. A single joint sample for the elements of λobs would likely
have slower mixing as it would be trying to sample many grid locations at once, with a single
acceptance decision, thereby slowing local adjustments. Template code C is given in Appendix
B.

In similar fashion to joint sampling of ( η2, Ỹ) in Section 4.1, with the parameterization above,
one can improve mixing by jointly sampling η2 and λ̃. First propose η2* and then, within the

same proposal, sample from . Because this joint sample is not from the joint

conditional of , we need a Metropolis-Hastings acceptance decision based on the ratio
of the prior for η2 and likelihood, π(η2*)L(Y|η2*, λobs, ·)/(π(η2)L(Y|η2, λobs, ·)), with acceptance
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not depending on the value for the augmented locations, λ̃, thereby effectively integrating λ̃

out of the joint conditional density, . So in practice one can propose η2*,
decide on acceptance, and then, if accepted, do a Gibbs sample for λ̃ (15). In the iterations, one
may also wish to do a separate Gibbs sample for λ̃ alone. Template code C in Appendix B also

includes modifications for joint sampling of .

4.3. Blocked Metropolis sampling for exponential family data (simple parameterization)
An alternative to Gibbs sampling that avoids the use of the additional hierarchical layers and
variance components in Section 4.2 is a simple model with straightforward Metropolis
sampling for the coefficients described in Paciorek (2007). This approach has the advantage
of tying the coefficients to the data by involving the coefficients directly in the likelihood,
without intervening layers. For data that are not overdispersed, the simple model avoids
introducing the overdispersion parameter(s), η2 (and ).

The basic approach is to specify the obvious parameterization in which the data are directly
dependent on the latent spatial surface, which for Poisson data is

(16)

I suggest sampling the coefficients in a blocked Metropolis scheme, with blocks of coefficients
whose corresponding frequencies have similar magnitudes (Paciorek 2007). I use smaller
blocks for the low-frequency coefficients, thereby allowing these critical coefficients to move
more quickly. The high-frequency coefficients have little effect on the function and are
proposed in large blocks. The first block is the scalar, u0,0, corresponding to the frequency pair,

 (but note that in Appendix A.3 I suggest not sampling this coefficient because
of lack of identifiability with respect to μ). The remaining blocks are specified so that the block
size increases as the frequencies increase. For example, the next block might include the
coefficients whose largest magnitude frequencies are at most one, i.e.,

, but excluding the previous block, giving the block of
coefficients, {u0,1, u1,0, u1,1, uM1−1,1}. Recall that there are additional coefficients whose
largest magnitude frequencies are at most one, e.g., uM1−1,0 and uM1−1,M2−1, but these are
complex conjugates of the sampled coefficients. The next block might be the coefficients whose

largest magnitude frequencies are at most two, i.e., , but
excluding the previous block elements. The real and imaginary components of the coefficients
in each block are proposed jointly, Metropolis-style, from a multivariate normal distribution
with independent elements whose means are the current values. Since the coefficients have
widely-varying scales, I take the proposal variance for each coefficient to be the product of a
tuneable multiplier (one for each block, the proposal.sd argument to propose.coeff.gp
()) and the prior variance of the coefficient, which puts the proposal on the proper scale. In
the add.blocks.gp() function in spectralGP package, the default blocks are set by grouping
coefficients based on the frequency thresholds, 0, 1, 2, 4,…, 2Q, where Q = log2(max(M1,
M2)) − 1. The coefficients can be proposed in spectralGP using propose.coeff.gp
(object,block,proposal.sd), with the numbered block to be proposed specified as the
argument block. Template code for fitting by this approach is given in Appendix B as Code
D.
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4.4. Hyperparameter priors
Assuming the Matérn covariance (4-5), the hyperparameters in the various parameterizations

are , with η2 and  not present in some cases. Royle and Wikle (2005) use
inverse gamma priors for η2 and  with a diffuse normal prior for μ. For ρ they use the reference
prior of Berger, De Oliveira, and Sansó (2001) for the Gaussian likelihood case to avoid the
use of an improper diffuse prior that could lead to an improper posterior. Paciorek (2007)
specifies independent, proper, but non-informative priors for the elements of θ, except for ν,
which cannot be estimated for a grid-level process (even for the continuous case, this is difficult
to estimate without some observations very close together) and which is fixed in advance ( ν
= 4 gives smooth processes with a small number of derivatives).

Gelman (2006) suggests truncated uniform and folded non-central t distributions on the
standard deviation scale for variance components and argues against  priors as these
have a sharp peak at small values that can strongly affect inference when the data do not
constrain the parameters away from zero. Berger et al. (2001) argue for reference priors and
against proper but non-informative priors, including truncated distributions, in part because
they are concerned about the posterior concentrating at extreme values or on the truncation
limit. In the setting here, I believe that the exact form of the priors is not critical, except that it
is desirable to keep the parameters in a finite interval to prevent them from wandering in
extreme parts of the space in which the likelihood is flat. In cases with sufficient data, the prior
should play little role in estimation and prediction. The situations that concern Berger et al.
(2001) with regard to truncation and vague proper priors arise when the data provide little
information, in which case their concern about the posterior concentrating on the truncation
limit seems little different than having it constrained by the reference prior. I discuss
identifiability and priors for  and η2 in more detail in Section 5.1.

5. MCMC sampling considerations
In Sections 5.1-5.2, I describe some factors that impede mixing and some modifications to the
basic sampling schemes discussed above that can help to improve mixing. In Section 5.3 I
compare the approaches of Section 4 and make broad recommendations. Appendix A.3
discusses the lack of identifiability of u0,0 with respect to an overall mean, μ, Appendix A.4
considers reparameterizing the covariance parameters for improved mixing, and starting values
are discussed in Appendix A.5. Note that for any particular application, my recommendations
may not provide the best mixing, and consideration of alternatives discussed in this paper may
improve matters.

I explored sampling effectiveness using a few simulated datasets, meant to provide a range of
function complexity and data intensity. All have Poisson data with the sampling locations
sampled uniformly in (0, 1)2: Data1 has 225 observations while Data2 has 1000 observations,
both with the mean function, f(x1, x2) = 1.9 · (1.35 + exp(x1) sin(13 ·(x1 − 0.6)2) · exp(−x2) sin
(7x2)), used by Hwang, Lay, Maechler, Martin, and Schimert (1994)(Figure 1), a fairly simple
function that when fit with a GP has . Data3, Data4, and Data5 use the same mean
function; a GP with ρ = 0.05, μ = 0, γ = σ = 1 (Figure 1); and 400, 800, and 2500 observations,
respectively (Figure 1).

I fit the data with the various parameterizations and sampling schemes using MCMC with a
burn-in of 10,000 iterations and runs of 100,000 additional iterations. To assess mixing speed,
I considered the trace plots, autocorrelations, and effective sample sizes (ESS) (Neal 1993, p.
105),
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(17)

where Cord(θ) is the autocorrelation at lag d for a given posterior quantity, θ, truncating the
summation at the lesser of d = 10000 or the largest d such that Cord(θ) > 0.05. I focus on ESS
for 1.) the overall log posterior density, π(·|y) (as suggested in Cowles and Carlin (1996) and
calculated up to the normalizing constant), 2.) the critical smoothing parameter, ρ, and 3.) a
random subset of 200 function estimates.

5.1. Variance component magnitudes and mixing speed
Here I discuss how the magnitude of a key variance component influences mixing.

The influence of the error variance in the normal model—Under the normal model
(8), as η2 → 0, we have an interpolating surface that passes through the observations. In spatial
statistics, such interpolation may arise relatively frequently when measurements are made with
little measurement error or there is little fine-scale heterogeneity (Cressie 1993, p. 59).
However, a key sampling consideration arising from small values of η2 is that the size of
MCMC moves for the basis coefficients is quite small. As η2 → 0,

(18)

for the Gibbs sample proposal variance (10). For the coefficients of low-frequency basis
functions, which most influence the process estimate, as η2 get small, the proposal variance is
a small fraction of the magnitude of the coefficient (Figure 2). When η2 ≈ 0, the process
estimates are specified nearly exactly at the observation locations, and any proposal at those
locations is constrained by the observations. This constrains the proposal for the entire spatial
process. Mixing can be challenging even if uncertainty away from the observations is
substantial and of real interest. While this issue seems likely to arise in other GP representations,
except when the process values can be integrated out of the model, the issue is particularly
clear with the spectral representation.

The influence of the dispersion parameter(s) in the exponential family model—
Under the single latent layer model of Section 4.2, the magnitude of the variance component,
η2, that accounts for overdispersion affects the proposal variances for the coefficients in similar
fashion. When there is not overdispersion, the posterior for η2 should concentrate near zero.
While this might be the correct inference, if the value of η2 does approach zero in the MCMC
sampling, the chain will mix very slowly, as in the case of normal data, because in (15) V (ui|
η2, ·) → 0 as η2 → 0 as in (18). Small values of η2 result in small proposal variances and slow
movement of the coefficients. Figure 3a shows the ESS for the log posterior density and for a
sample of function values as a function of fixed η2 for Data3, Poisson data generated without
overdispersion.

In the case of overdispersion, the data can inform η2, and inverse gamma prior distributions
such as those of Wikle (2002) and Royle and Wikle (2005) may suffice. When there is little
overdispersion, these priors are more problematic. Note that the inverse gamma prior has a
rapidly-decaying left tail, dropping off as exp(−1/x), so the inverse gamma prior assigns no
mass to small values of η2, preventing the posterior from having mass in this area. For example,
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the  prior has very little mass at values less than 0.05 while the  has very
little mass at values less than 0.006. Fitting the model of Section 4.2 to Data2 with the

 prior shows that the constraints imposed by the prior cause the posterior to have its
mass in the extreme lower range of the prior, while using a truncated lognormal prior results
in most of the posterior mass lying at very small values of η2 near the truncation point (Figure
3b). This suggests that when the observations exhibit little overdispersion, the prior has
substantial impact on the posterior for η2.

A prior that weights the model away from small values of η2 has the desirable impact of
improving mixing at the cost of forcing overdispersion, while use of a prior that allows for
small values of η2 carries the risk of very slow mixing. This suggests that we might choose a
prior or even fix η2 in advance to achieve optimal mixing, treating η2 as an MCMC tuning
parameter. The danger of using large values of η2 is that while mixing will improve, the
posterior variances of key quantities such as the function estimates will increase, with overly
conservative inference and poor predictive ability because of oversmoothing (Table 1). In
contrast, for the smallest value of η2, coverage is low and predictive ability is poor because of
poor mixing. A compromise value of η2 (say 0.32 in this case) trades off well between mixing
and statistical performance.

In general, to obtain reliable inference about overdispersion, one would want to initially allow
sufficient freedom in one's prior for η2 to allow small values of η2. However, if the data appear
to not be overdispersed and one wants to achieve reasonable mixing, one may want to run a
version of the model with a fixed, larger value of η2 and report inference for the other aspects
of the model based on that MCMC. One can examine interval length as a function of η2 in
comparison with mixing properties to determine a good value of η2. Cross-validation may be
helpful for assessing coverage.

Turning to the model (12), there are two variance components, η2 and . Interpretation of
these parameters is difficult as the parameterization divides any inherent overdispersion into
seemingly non-identifiable components. Royle and Wikle (2005) claim that both η2 and  are
identifiable with sufficient within-cell replication, with η2 accounting for overdispersion within
cell, while  represents uncorrelated variability across grid cells, inducing a lack of spatial
smoothness beyond that induced by the discretization. Wikle (2002) and Royle and Wikle
(2005) sample both components and find reasonable mixing, perhaps because their inverse
gamma distributions prevent small values of the components and perhaps because their
empirical count data have real overdispersion that provides information about a functional of

the variance components , while replication provides information about η2. In
contrast, I have had difficulty achieving reasonable mixing for the two variance components

in simulations with no overdispersion  (Figure 4), presumably because of the lack
of identifiability and lack of overdispersion. Note how the posteriors for the variance
components concentrate on the smallest values allowed by the priors, while at the same time
the likelihood mixes well, indicating that the process values, λ, are well-identified by the data
and mix well.

5.2. Joint sampling of hyperparameters and process
The covariance hyperparameters in GP models frequently mix poorly. For illustration, consider
ρ. The difficulty in sampling ρ is that a simple Metropolis-Hastings proposal for ρ results in a
new set of variances for the coefficients, u. Since these coefficients are not part of the proposal,
proposing ρ* can easily produce a low prior density, π(u|ρ*, ·), because the new prior is
inconsistent with the current u. For example, with a process generated based on ρ = 0.1, the
prior logdensity, log π(u|ρ = 0.1, ·), is 50411 while the prior logdensity, π(u|ρ* = 0.101, ·), is
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50387, a change of 24 in the logdensity, despite the fact that surfaces generated based on ρ =
0.1 compared to ρ = 0.101 are indistinguishable even with massive amounts of data, assuming
non-negligible error variance. Note that the issue here is not a matter of whether we can sample
from the full conditional for ρ; the primary obstacle in sampling ρ is the strong dependence of
ρ and u (Rue, Steinsland, and Erland 2004). A better proposal would account for the strong
dependence between ρ and u by proposing them jointly, allowing the lower levels of the model
hierarchy close to the data to arbitrate between different values of ρ. In the context of Markov
random field models, Rue and Held (2005, pp. 142-143) suggest a similar strategy of jointly
sampling process values and their hyperparameters.

My strategy is to tie the covariance hyperparameters more closely to the coefficients and hence
to the data by having the effects of proposing new hyperparameter values ripple down through
the hierarchy of the model. I do this by jointly proposing a hyperparameter, generically denoted
θ ∈ {ρ, σ2}, and, then conditional on that hyperparameter and within the same Metropolis-
Hastings proposal, proposing the process coefficients from [u|θ*, ·]. This provides a joint
proposal for (θ, u) that adjusts u in such a way that it is more consistent with the proposed
value, θ*. Parameterizations that permit proposing from the full conditional, [u|θ, ·], are likely
to particularly benefit from this approach, with u effectively integrated out of the joint density.
Provided the correct Hastings adjustment (ratio of proposal densities) is made, this joint
proposal is a standard, valid Metropolis-Hastings sampling scheme, implemented as a marginal
proposal for θ and a conditional proposal for [u|θ, ·], with a single acceptance decision, as
discussed in Rue and Held (2005, p. 142). I now detail these joint proposals in the three basic
sampling schemes described in Section 4.

For the data augmentation sampling approach for normal data, one proposes θ*, and then
proposes from the full conditional, [u|θ*, ·] (9). Acceptance is then determined based on the
ratio of the proposed and current posterior densities, π(u, θ|y, ·) divided by the Hastings ratio
for u (and θ as well if not proposed symmetrically). Note that the proposal for u is conditional
on the proposed θ*, so a Metropolis-Hastings acceptance decision is needed because we are
not doing a joint Gibbs sample for (u, θ). The Hastings ratio is based on the proposal mean (9)
and variance (10), with the variances for complex-valued coefficients scaled by one-half (22)
and not including the coefficients that are complex conjugates of sampled coefficients. This is
calculated in the spectralGP package using the Hastings.coeff.gp() method or by
providing returnHastings=TRUE as an argument to Gibbs.sample.coeff.gp().
Template code is provided in Appendix B as Code E.

In the modified Wikle approach, the presence of the latent λ̃ values (14) distances the
coefficients from the data. However, one can mimic the proposal just described by sampling
θ and then u from [u|λ, θ*, ·], conditioning on λ rather than y, and being satisfied with a proposal
for u that is consistent with the new proposed θ* and the current λ, albeit without any direct
influence of the data. Again a Hastings correction is needed, and can be calculated using the
Hastings.coeff.gp() function, but with λ taking the place of y. Template code is given as
Code F. For the original Wikle approach, z takes the place of λ above.

However, in neither the modified nor original Wikle parameterizations does the sampling
directly link θ to the observations, causing there to be no influence of the likelihood on the
acceptance. An alternative that carries the changes through to the level of the data is to avoid
sampling from the conditionals as described above and instead propose to move u and λ (and
z in the Wikle parameterization) in such a way that their prior densities remain constant.

First propose θ*. Then, deterministically propose,
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(19)

Modifying ui based on its prior variance, (Σθ)i,i, allows the hyperparameters to mix more
quickly by avoiding proposals for which the original coefficients are no longer probable based
on their new prior variances. In the modified Wikle parameterization, one next proposes

(20)

while in the Wikle parameterization, one proposes  and finally
. This approach propagates the changes through the model in a way that

ties θ directly to the likelihood. Such deterministic proposals are valid MCMC proposals so
long as the Jacobian of the transformation is included in the acceptance ratio, based on a
modification of the argument in Green (1995). The Jacobian of the transformation for u cancels
with the ratio of the prior distributions for u, π(u*|θ*)/π(u|θ), to give the final Metropolis-
Hastings acceptance for the entire joint proposal of (θ*, u*, λ*) or (θ*, u*, z*, λ*) based only
on the ratio of the proposed and current prior densities for θ, the proposed and current
likelihoods, and any required Hastings ratio to account for non-symmetric proposals for θ. Note
that the transformations for z and λ have Jacobian of one. The validity of the deterministic
proposal can be seen intuitively by considering Metropolis proposals in place of the
transformation (19) with very small proposal variances, ζ2 ≈ 0, e.g.,

, and calculating the acceptance ratio of such a proposal.
Template code for the modified Wikle parameterization is given in Appendix B as Code G.
Note that a similar joint proposal could be made for  to tie this hyperparameter more
closely to the data.

For the coefficient block sampling scheme, no Gibbs scheme is available. Instead, one can
carry out a joint sample in a similar manner to that just described, by proposing θ* and then
proposing u as in (19). Acceptance is determined by the ratio of the proposed and current prior
densities for θ and proposed and current likelihoods, and any required Hastings ratio to account
for non-symmetric proposals for θ. Template code is given in Appendix B as Code H.

In Table 2, I show a comparison of mixing for the modified Wikle parameterization (14) with
1.) straightforward sampling of γ and ρ, 2.) joint sampling of (σ2, u) and of (ρ, u) based on
Gibbs samples from [u|σ2, ·] and [u|ρ, ·], and 3.) joint sampling via (19-20). Both joint sampling
approaches appear to mix much more quickly than the simple Metropolis-Hastings proposals
for the hyperparameters. The joint sampling with the full conditional sampling from [u|θ, ·]
does not mix as well as using (19-20), perhaps because the conditional Gibbs sample does not
modify λ and therefore does not involve the likelihood in the determination of proposal
acceptance. Note that for η2 ≡ 0.22, the improved mixing of the deterministic shift proposal
compared to the conditional Gibbs is even more marked (not shown).

5.3. Empirical comparison of sampling methods and recommendations
Based on the evidence provided in Section 5.2, it appears that joint sampling of θ and u in the
modified Wikle parameterization greatly improves mixing, with deterministic sampling of u
better than full conditional sampling for u. In Appendix A.4 I also consider reparameterizing
(σ2, ρ) to reduce potential posterior correlation between these parameters, but find little
improvement in mixing.
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Here I compare mixing for the three parameterizations in Section 4: the modified Wikle
approach with joint sampling of hyperparameters and coefficients, block sampling with joint
sampling of hyperparameters and coefficients, and the original approach of Wikle without joint
sampling. Since the latter is essentially the same as the modified Wikle approach with one extra
layer, I do not devise a joint sampling scheme for it, but rather consider mixing under the
sampling approach proposed by Wikle (2002) and Royle and Wikle (2005). In general, the
modified Wikle approach outperforms block sampling and the original Wikle approach. Table
3 shows that for the simple function (Data1 and Data2), block sampling is worse than the
modified Wikle approach but shows some degree of mixing, while for the more complicated
function (Data3 and Data5), the block sampling approach does not appear to have burned in
by 100,000 iterations. The original Wikle approach also has not burned in, as judged by the
log posterior density and ρ although the sample function values appear to be mixing somewhat.
Note that while the increase in sample size (from Data1 to Data2 and from Data3 to Data5)
seems to result in somewhat improved mixing, the effect is not substantial.

A key question is how fine a resolution to use for the grid. While one does not want to
oversmooth by virtue of using too coarse a resolution, finer resolution estimation takes longer
to run and can exhibit slower mixing, because of the higher-dimensionality of the coefficients
that are fit in the MCMC. My suggestion is to use a grid that is fine enough for reasonable
prediction with the expected heterogeneity of the surface, but to make use of sensitivity
analyses to choose the grid resolution in light of mixing performance and computational speed.
For the simple simulated data with an effective value of ρ ≈ 0.3 (Data1 and Data2), a resolution
of k = 128 is probably more than sufficient for good prediction (even coarser resolution might
be sufficient), and runs with k = 256 and k = 512 showed slower mixing. For the simulated
data with ρ = 0.05 (Data3, Data4, and Data5), k = 128 also seemed to be sufficient. Mixing
with k = 256 was not substantially degraded relative to k = 128, but for k = 512, mixing was
substantially worse.

These results suggest that mixing using the block sampling approach is substantially slower
than the modified Wikle approach, particularly with a more variable underlying process.
However, results may depend significantly on the form of the model and the exact data used.
In Paciorek (2007), with a coarse grid, simple spatial functions, and binary observations,
mixing was reasonable using the block sampling approach. In a multivariate setting within a
complicated hierarchical model (Paciorek and McLachlan 2007), with a compound Dirichlet-
multinomial likelihood for 10 categories and a coarse 32 by 32 grid, mixing was reasonable,
albeit slow, with the block sampling approach, and the modified Wikle approach provided no
improvement and was slower to compute.

6. Discussion
This paper introduces an R package for the Fourier basis representation of Gaussian processes,
pioneered by Wikle (2002), and provides template code for fitting Bayesian models for
exponential family data. The code can be readily adapted for more complicated hierarchical
models. I discuss several possible parameterizations, including models allowing for
overdispersion, and describe potential nonidentifiability in the hierarchical model of Wikle
(2002) that may impact mixing. I document some of the critical issues affecting MCMC mixing
in these models, in particular, the difficulty in mixing for ρ in particular and the dependence
of mixing speed on the dispersion parameter, η2. In models with little noise (interpolating
models) or non-Gaussian situations with little overdispersion, a small value of η2 can
substantially impede mixing. Based on a series of experiments with simulated Poisson data, I
recommend use of a modified version of the parameterization of Wikle (2002), with an
approach for joint sampling of the hyperparameters and the basis coefficients to more
efficiently sample the hyperparameters by tying them more closely to the data. In contrast,

Paciorek Page 19

J Stat Softw. Author manuscript; available in PMC 2007 December 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



while the block sampling approach of Paciorek (2007) works only somewhat less well for a
relatively smooth spatial function, it mixes very poorly for a very unsmooth spatial function.
However, the block sampling approach has the virtue of avoiding the overdispersion parameter
that, if small, can hurt mixing and of simplicity, which may be helpful in more complicated
hierarchical models. I could not achieve reasonable mixing of the parameterization and
sampling approach suggested in Wikle (2002), presumably because of dataset-dependent
differences in mixing, but also possibly because of the difficulty in replicating Bayesian
MCMC schemes. Note that these recommendations and conclusions are based on qualitative,
rather than exhaustive, testing.

The critical smoothing parameters (ρ and either σ or γ) appear to be the parameters that mix
most slowly in the Fourier basis representation, as they are in many spatial models. In particular,
ρ changes the amount of smoothing, by changing the prior weights on the basis functions,
which vary in their frequency. Changing this parameter changes the form of the model,
analogous to adding or subtracting basis functions in a free-knot spline model. Achieving
reasonable mixing across model spaces is generally difficult.

Some alternative spatial models, such as thin plate splines and radial basis function models
with fixed basis functions (Kammann and Wand 2003; Ruppert et al. 2003) have modeled
spatial functions without estimating a spatial correlation parameter, relying solely on variance
components (in the radial basis model) to achieve smoothing. O'Connell and Wolfinger
(1997) relate the ratio of σ2 and η2 in a Gaussian setting to the smoothing parameter in a thin
plate spline model, and Nychka (2000) speculates that this ratio may be more important than
the spatial correlation parameter in smoothing noisy data. Zhang (2004) found that ρ and σ2

cannot both be estimated consistently under infill asymptotics. I experimented with fixing ρ
and forcing σ2 to perform the smoothing role, but found that the model did not estimate the
right amount of smoothing and predictive performance was poor. It may be that in this and
perhaps other spatial models, models with estimated values of ρ are more efficient. This issue
appears not to have been addressed thoroughly in the literature (but see Laslett (1994) and
invited comments) and deserves more attention.

One might explore more sophisticated MCMC algorithms to improve mixing. For example,
Christensen et al. (2006) develop a data-dependent reparameterization scheme for improved
MCMC performance and apply the approach with Langevin updates that use gradient
information; while promising, the approach is computationally intensive, again involving n ×
n matrix computations at each iteration, and software is not available. For the Fourier
representation the high-dimensionality and complex values of the basis coefficients pose an
impediment to such an approach. Based on the results here, I believe that proposals that jointly
consider the key hyperparameters and the basis coefficients are critical in achieving adequate
mixing.

One drawback to the GP model presented here is its restriction to stationary GPs. Future work
on this model structure to allow for nonstationarity in the spatial process will consider wavelet
bases in place of the Fourier basis used here, in particular the two-dimensional wavelet basis
used by Matsuo, Paul, and Nychka (2006) to fit irregular Gaussian data in a non-Bayesian
fashion. However, mixing may be more challenging in a more complicated model with
additional hyperparameters. An alternative relates to the work of Pintore and Holmes (2006),
who have extended the Higdon/Paciorek/Stein (Higdon, Swall, and Kern 1999; Stein 2005;
Paciorek and Schervish 2006) nonstationary covariance model based on kernel convolutions
to the spectral domain. This allows one to build nonstationarity based on a latent process
representing spatially-varying ρ or ν. Given the widespread interest in nonstationary and space-
time representations, fast computation for such models is of obvious interest, but it is not clear
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how these covariance structures would be represented in the type of basis function approach
developed here.
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A. Technical details

A.1. Constructing the gridded process
The details that follow draw on Dudgeon and Mersereau (1984), Borgman, Taheri, and Hagan
(1984), and Wikle (2002). The first step in representing the function is to choose the grid size,
Md, in each dimension, d = 1, … , D, to be a power of two. The Md frequencies in the dth

dimension are then , where the superscript represents the
dimension. There is a complex exponential basis function for each distinct vector of

frequencies, , with corresponding complex-valued
basis coefficient, um1,…,mD.

First I show how to construct a random, mean zero, Gaussian process in one dimension from
the M spectral coefficients, um = am + bmi, m = 0, … , M − 1, and complex exponential basis
functions, ψm(sj) = exp(iωmsj), whose real and imaginary components have frequency ωm. The
circular domain of the process is S1 = (0, 2π) with the process evaluated only at the discrete

grid points, . To approximate real-valued processes, u0, … ,
uM/2 are jointly independent, u0 and uM/2 are real-valued (b0 = bM/2 = 0), and the remaining
coefficients are determined, uM/2+1 = ūM/2−1, … , uM−1 = ū1, where the overbar is the complex
conjugate operation. This determinism causes the imaginary components of the basis functions
to cancel, leaving a real-valued process,

(21)

Hence for a grid of M values, the process is approximated as a linear combination of M spectral
basis functions corresponding to M real-valued sinusoidal basis functions, including the
constant function (ω0 = 0). To approximate mean zero Gaussian processes with a particular
stationary covariance function, the coefficients have independent, mean zero Gaussian prior
distributions with the spectral density for the covariance function, ϕ(·;θ), e.g., (5), determining
the prior variances of the coefficients:

(22)
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.

The setup is similar in two dimensions, with a matrix of M = M1M2 coefficients, ((um1,m2)),

md ∈ {0, … , Md − 1}, and corresponding frequency pairs, , and a toroidal domain.
As seen in Table 4, many coefficients are again deterministically given by other coefficients
to ensure that the process is a linear combination of real-valued sinusoidal basis functions of
varying frequencies and orientations in ℜ2. The real and imaginary components of each
coefficient, um1,m2 = am1,m2 + bm1,m2i, are again independent. For

 and ,
while for the remaining complex-valued coefficients,

.

A.2. Periodicity and Euclidean domains
The construction produces periodic functions; in one dimension the process lives on a circular
domain, while in two dimensions the process lives on a torus. To work in Euclidean space, we
need to map Euclidean space onto the periodic domain. The goal is to use the representation
for Euclidean domains without inducing anomalous correlations between locations that are far
apart in Euclidean space, but close in the periodic domain. To do this, I suggest mapping the
Euclidean domain of interest onto a portion of the periodic domain and ignoring the remainder
of the periodic domain as follows.

In one dimension, g(0) = g(2π), so the correlation function, C(τ) = C(g(0), g(τ)) of the process
at distances τ ∈ (π, 2π) is the mirror image of the correlation function for τ ∈ (π, 0) with Cor
(g(0), g(2π)) = 1 (Figure 5). I avoid artifacts from this periodicity by mapping the interval (0,
2π) to (0, 2) and mapping the original domain of the observations to (0, 1), thereby computing
but not using the process values on (1, 2). Note that the use of πρ rather than ρ in (5) allows us
to interpret ρ on the (0, 1) rather than (0, π) scale. The modelled process on (0, 1) is a piecewise
constant function on an equally-spaced grid of size M/2 + 1. This setup ensures that the
correlation structure of the approximating process is close to the correlation structure of a GP
with the desired stationary correlation function (Figure 5).

As the higher-dimension analogue of the one-dimensional case, I estimate the process on (0,
1)D. To do so, I map the periodic domain (0, 2π)D to (0, 2)D and then map the observation
domain onto the (0, 1)D portion (maintaining the scale ratio in the different dimensions, unless
desired otherwise), thereby calculating but ignoring the process values outside this region. Note
that if the original domain is far from square, I unnecessarily estimate the process in large areas
of no interest, resulting in some loss of computational efficiency. Wikle (2002) and Royle and
Wikle (2005) do not mention the issue of periodicity; it appears that they use a somewhat larger
grid than necessary to include all observations (sometimes called padding) and rely on the
correlation decaying sufficiently fast that anomalously high correlations between distant
observations induced by the periodicity do not occur. For example, notice in Figure 5 that for
ρ = 0.05 the correlation does not start to rise again until the distance is almost 2.0, so a small
amount of padding would suffice).

A.3. Non-identifiability of u0,0 and μ
The Fourier basis function corresponding to the coefficient, u0,0, is a constant function. As
such, it is not identifiable with respect to an overall mean parameter, μ, specified outside of
the Fourier basis representation of the Gaussian process (12,14,16). One might choose to omit
μ from the model, but this would generally be a mistake as the covariance structure (22) imposes
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a restrictive prior on u0,0. A large value of γ or σ would allow for a process mean far from zero,
but this would also allow the function to have high variability. An example of where the
problem arises is a process with large mean, say 100, but whose variability places the function
entirely in (99, 101). Such a process would require a large value of u0,0 but if γ or σ is large
enough to allow this, each would be so large as favor process estimates that vary widely around
100. Instead, a separate mean parameter is a better choice that will help to avoid slow mixing
because of nonidentifiability. One can fix u0,0 = 0, without otherwise constraining the model.
The spectralGP package can fix the coefficient and ignore it when calculating the prior density
of the coefficients; this is done using const.fixed=TRUE as an argument to gp(). However,
simulate GP realizations using the Fourier basis approximation, one should not fix this constant,
in order to retain the desired approximate covariance structure.

A.4. Reparameterizing the covariance
In a GP model part of the difficulty in estimating the covariance parameters occurs because of
limitations on identifiability. The data cannot readily distinguish the overall variability in the
function, captured by γ or σ, from the decay in the spatial correlation, captured by ρ. In Bayesian
models, these parameters tend to have high posterior correlation, while Zhang (2004) has
shown that these two parameters cannot both be estimated consistently under infill asymptotics,
but that a functional of the two can be estimated consistently. Note that in thin plate spline
models and in the mixed model representation suggested by Kammann and Wand (2003) and
Ruppert et al. (2003), there is only one parameter in place of the two covariance parameters
here. However, as discussed further in Section 6, comparisons of estimates using the Fourier
basis approach here suggest that ρ cannot be fixed in advance without seriously affecting the
function estimates because the function heterogeneity is not adequately represented.

Given the results of Zhang (2004), in which the ratio, σ2/ρ2ν, can be estimated consistently,
consider reparameterizing on the log scale as ψ1 = log σ + log ρ and ψ2 = log σ − log ρ. This
approach uses the centered parameterization, fixing γ ≡ 1. The reparameterization will tend to
reduce posterior correlation and allow each parameter to move more freely. Joint sampling as
described in Section 5.2 can also be employed with this reparameterization. Template code for
sampling based on the reparameterization and joint sampling of the parameters and process
values using deterministic conditional proposals for u (19-20) is given in Appendix B as Code
I under the modified Wikle parameterization and code J under the block sampling approach.

Since the joint sampling of each of σ2 and ρ with u based on deterministic proposals for u and
λ appeared to be the best of the options in Section 5.2, in Table 5, I compare mixing for that
approach with the (σ2, ρ) parameterization and the same joint approach using deterministic
proposals with the (ψ1, ψ2) parameterization. There is little difference in mixing between the
two parameterizations. Table 6 shows posterior correlations of (σ, ρ) and of (ψ1, ψ2) based on
sampling under the original and the new parameterizations. For Data1, Data2, and Data3, ψ1
and ψ2 have little posterior correlation, suggesting that in principle, sampling using the new
parameterization would mix more quickly, although this is not the case in Table 5. The minimal
difference in mixing was also seen when using the joint sampling with the full conditional
samples from [u|θ, ·] and when fixing η2 = 0.22 and η2 = 0.52, as well as for an alternative
reparameterization, ψ1 = log σ and ψ2 = log σ − log ρ. In practice, the minimal difference in
mixing suggests that the posterior correlation between σ2 and ρ is not materially hurting mixing,
in sharp contrast to the importance of jointly sampling each covariance hyperparameter with
u.
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A.5. Starting values
Good starting values for the coefficients can be difficult to determine because of the high
dimensionality of the coefficients and lack of a maximum likelihood-based estimate due to the
need for shrinkage in estimating the coefficients. In addition, as described in Section A.2, a
portion of the domain contains no observations. For the grid points not used to represent the
domain of interest (((0, 1)2)C ∩ (1,2)2), it is helpful to initiate values for these buffering grid
points so as to keep the variability and spatial range features of the data similar across the whole
domain. This can be achieved by ‘mirroring’ the initial values from the portion of the domain
in which the observations lie, as follows, in one dimension,

(23)

In two dimensions, the mirroring occurs first across the the line s1 = 1 (for s2 < 1) and then
across the line s2 = 1, such that ĝ(sm1,m2) is defined, for m1 > M1/2+1 and m2 <= M2/2+1 as ĝ
(sm1,m2) ≡ ĝ(sM1−m1+2,m2 ). For m2 > M2/2 + 1, take ĝ(sm1,m2) ≡ ĝ(sm1,M2−m2+2).

In the data augmentation scheme for normal data, I suggest using a gam() fit to estimate the
process values, predicting Ỹ values at unobserved locations using the fitted model, mirroring
the values, and then doing a Gibbs sample for the coefficients. In the Wikle approach, one can
estimate the spatial process at the grid points based on a gam() fit, assign these values to z
(λ in the modified Wikle approach) and initialize u via a Gibbs sample. For the block sampling
scheme, one might use gam() to estimate the process on the grid, ĝs#, add error and mirror the

values, and then set , mimicing (15).

Some basic experiments with simulated datasets Data1, Data2, Data3, and Data5 suggest little
difference between starting the coefficients based on a Gibbs sample and starting at values
simulated from the prior conditional on the hyperparameter starting values. Reasonably rapid
burn-in occurred when the coefficients were simulated from their prior, although mixing for
Data1 was slightly better for the Gibbs sample starting values. For the coefficients
corresponding to low frequencies, the long-run estimates are comparable for the different
starting values. However, it may be the case that the Gibbs sample starting values are useful
in some circumstances.

B. Template code
I provide R template code for MCMC sampling under various parameterizations and sampling
schemes described in Sections 4 and 5. The code is designed for the simple model (1) in which
the data come from an exponential family distribution: normal, Poisson, or binomial. The code
assumes a constant mean, μ, in place of , and Matérn covariance function with ν fixed.
While this is a simple setting, users could take the template code and use it within a more
complicated hiearchical model or easily extend to a regression structure in the mean. The
contribution of this work is to provide code for easy manipulation and MCMC sampling of the
Fourier basis representation of the Gaussian process component in the model.

The code makes use of the spectralGP package and uses easily modifiable R functions for the
log-likelihood, prior distributions, and Gibbs sampling; the names of these will be obvious in
the code. Also note that parameters take the form of R lists, with components that will be
obvious from the code. The code does not save iterations, report acceptance rates, or adapt the
proposal variances based on acceptance rates, but these features could be readily added. The
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code assumes the default Matérn spectral density function but the only changes needed to use
a different covariance function are to define a new spectral density function, use that function
as the argument to the constructor gp(), and define an appropriate prior density for the
parameter(s) of the covariance function. If the covariance/spectral density function has a second
parameter, the code would need to be modified to allow for MCMC sampling of that parameter;
the code currently takes the second parameter, ν, of the Matérn to be fixed.

Next I provide a brief overview of the model structure and sampling approach used in each
template code file. The information is summarized in Table 7.

Code A (Section 4.1) In this template, data, Y, are assumed to be normally distributed and are
augmented with pseudo-observations, Ỹ,

which allows Gibbs sampling of the process coefficients, u. The pseudo-observations are also
sampled via a Gibbs step. Covariance hyperparameters are sampled individually by
Metropolis-Hastings. To speed mixing in some cases, joint sampling of η2 and Ỹ is also
possible.

Code B (Section 4.2) In this template, data, Y, are taken to be Poisson or binomial, and two
latent processes are embedded in the model,

Here λ is sampled via Metropolis-Hastings, and z and u are sampled via Gibbs steps. Covariance
hyperparameters are sampled individually by Metropolis-Hastings. There are two
overdispersion parameters, η2 and , in this model.

Code C (Section 4.2) In this template, data, Y, are taken to be Poisson or binomial, and one
latent processes is embedded in the model,

I divide the latent process values into a group whose grid cells contain data, λobs, which are
sampled via Metropolis-Hastings, and the remaining values, λ̃, which are sampled via a Gibbs
step. To speed mixing in some cases, joint sampling of η2 and λ̃ is also possible. Covariance
hyperparameters are sampled individually by Metropolis-Hastings. There is one
overdispersion parameter, η2, in this model.

Code D (Section 4.3) In this template, data, Y, are taken to be Poisson or binomial, and the
likelihood depends directly on the process coefficients,
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The coefficients, u, are sampled by Metropolis-Hastings in blocks. Covariance
hyperparameters are sampled individually by Metropolis-Hastings. The model contains no
overdispersion parameter.

Code E (Section 5.2) As in Code A, data, Y, are assumed to be normally distributed and are
augmented with pseudo-observations, Ỹ,

with the modification that γ ≡ 1 and σ2 in (5) is allowed to vary. The process coefficients, u,
and pseudo-observations are both sampled via Gibbs steps. In contrast to Code A in which
covariance hyperparameters are sampled by Metropolis-Hastings on their own, in this code,
each covariance hyperparameter, σ2 and ρ, is sampled jointly with u in a Metropolis-Hastings
step.

Code F (Section 5.2) As in Code C, data, Y, are taken to be Poisson or binomial, and one latent
process is embedded in the model,

As in Code C, I divide the latent process values into a group whose grid cells contain data,
λobs, which are sampled via Metropolis-Hastings, and the remaining values, λ̃, which are
sampled via a Gibbs step. In contrast to Code C in which covariance hyperparameters are
sampled by Metropolis-Hastings on their own, in this code, each covariance hyperparameter,
σ2 and ρ, is sampled jointly with u in a Metropolis-Hastings step. There is one overdispersion
parameter, η2, in this model.

Code G (Section 5.2) As in Code F, data, Y, are taken to be Poisson or binomial, and one latent
process is embedded in the model,

The one difference from Code F is that here, each covariance hyperparameter, σ2 and ρ, is
sampled jointly with both u and λ in a Metropolis-Hastings step.

Code H (Section 5.2) As in Code D, data, Y , are taken to be Poisson or binomial, and the
likelihood depends directly on the process coefficients,
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The coefficients, u, are sampled by Metropolis-Hastings in blocks. I divide the latent process
values into a group whose grid cells contain data, λobs, which are sampled via Metropolis-
Hastings, and the remaining values, λ̃, which are sampled via a Gibbs step. In contrast to Code
D in which covariance hyperparameters are sampled by Metropolis-Hastings on their own, in
this code, each covariance hyperparameter, σ2 and ρ, is sampled jointly with u in a Metropolis-
Hastings step. The model contains no overdispersion parameter.

Code I (Appendix A.4) As in Code G, data, Y , are taken to be Poisson or binomial, and one
latent process is embedded in the model,

The one difference from Code G is that here, the covariance parameters are reparameterized
as ψ1 = log σ + log ρ and ψ2 = log σ − log ρ. Each of ψ1 and ψ2 is sampled jointly with u and
λ in a Metropolis-Hastings step.

Code J (Appendix A.4) As in Code H, data, Y , are taken to be Poisson or binomial, and the
likelihood depends directly on the process coefficients,

The one difference from Code H is that here, the covariance parameters are reparameterized
as ψ1 = log σ + log ρ and ψ2 = log σ − log ρ. Each of ψ1 and ψ2 is sampled jointly with u in a
Metropolis-Hastings step.
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Figure 1.
Mean functions used in simulated datasets: simple function (left) with  and more
complicated GP (right) with ρ = 0.05.
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Figure 2.
Decay of proposal variances (scaled relative to prior variance) for three representative
coefficients as a function of the relative error variance (η2/γ2) for (left column) GPs with ρ =
0.1 and (right column) GPs with ρ = 0.4. Example process realizations are shown in the lower
row.
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Figure 3.
(a) ESS for a sample of 200 function values (boxplots) and for the log posterior density (‘LP’)
as a function of fixed η2 for Data2. (b) Posterior densities for η2 under an  prior and
a lognormal prior truncated at 0.02 for Data3.
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Figure 4.
Trace plots for Wikle approach applied to Data2, with lower right subplot showing prior and
posterior densities for η2 and .
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Figure 5.
Comparison of correlation structure of GPs based on the standard Matérn covariance on the
Euclidean domain, (0, 2) (dashed lines), and approximate GPs based on the Fourier basis for
the periodic domain, (0, 2π), mapped to (0, 2) (solid lines), for three values of ρ. Note that the
Euclidean correlation for ρ = 0.05 falls off to zero as rapidly as the periodic case and remains
at zero for all remaining distances.
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Table 1

For 200 function estimates, average 95% credible interval coverage and length, and test R2 of posterior mean
(indicating predictive ability), as a function of fixed η2 for Data3.

η2 coverage interval length test R2

0.012 0.73 1.60 0.33

0.12 0.92 2.45 0.57

0.32 0.93 2.54 0.57

0.52 0.97 2.75 0.53

0.752 0.97 2.89 0.49

12 0.95 2.93 0.50

22 0.94 3.43 0.04
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Table 2

ESS for log posterior density, ρ and median (range) of 200 sample function values by dataset for three sampling
approaches: 1.) sampling γ and ρ using simple Metropolis-Hastings, 2.) jointly sampling each of σ2 and ρ with
u based on conditional Gibbs sample for u, and 3.) jointly sampling each of σ2 and ρ with u and λ as in (19-20).
η2 is fixed at 0.32. ’NM’ indicates that the chain has not burned in or is mixing so slowly as to make calculation
of ESS uninformative.

Sampling Method

Quantity Dataset simple: γ,ρ joint, Gibbs: σ2,ρ joint, deterministic: σ2,ρ

Data1 NM 42 193

LP Data2 NM 87 205

Data3 NM 17 447

Data5 NM 143 646

Data1 NM 37 146

ρ Data2 NM 70 145

Data3 NM 15 414

Data5 NM 125 289

Data1 549 (28-1898) 510 (34-1338) 597 (90-1808)

f Data2 1806 (22-3496) 1805 (132-3763) 2137 (229-4231)

Data3 236 (5-2154) 611 (200-3062) 657 (307-3232)

Data5 1563 (17-6503) 1964 (519-8958) 2021 (467-8971)
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Table 3

ESS for log posterior density, ρ and median (range) of 200 sample function values by dataset for the three
parameterizations: 1.) modified Wikle with η2 fixed at 0.32, 2.) original Wikle parameterization and sampling
approach, and 3.) block sampling.

Sampling Method

Quantity Dataset modified Wikle original Wikle block sampling

Data1 193 NM 54

LP Data2 205 NM 25

Data3 447 NM 53

Data5 646 NM NM

Data1 146 NM 107

ρ Data2 145 NM 40

Data3 414 NM NM

Data5 289 22 NM

Data1 597 (90-1808) 125 (13-321) 551 (247-1166)

f Data2 2137 (229-4231) 56 (9-166) 473 (198-873)

Data3 657 (307-3232) 298 (106-737) 33 (7-139)

Data5 2021 (467-8971) 467 (127-1100) 25 (6-83)
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Table 4

Visual display of the spectral coefficients for a two-dimensional process. The frequencies in each dimension are

indicated by the row and column labels, with  for d = 1, 2. The & operation indicates that one takes the
matrix or vector, flips it in both the horizontal and vertical directions (just the horizontal or vertical in the case
of a vector) and then takes the complex conjugates of the elements.
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Table 5

ESS for log posterior density, ρ, and median (range) of 200 sample function values by dataset when sampling is
done using the parameterizations: 1.) (ρ,σ2) and 2.) (ψ1, ψ2). η2 is fixed at 0.32.

Parameterization

Quantity Dataset original: σ2, ρ Zhang: ψ1, ψ2

Data1 193 105

LP Data2 205 244

Data3 447 443

Data5 646 777

Data1 146 56

ρ Data2 145 157

Data3 414 431

Data5 289 426

Data1 597 (90-1808) 591 (89-1427)

f Data2 2137 (229-4231) 2154 (235-4274)

Data3 657 (307-3232) 656 (305-3169)

Data5 2021 (467-8971) 1972 (469-8879)
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Table 6

Posterior correlations for (log σ, log ρ) and (ψ1, ψ2) when sampling is done using the parameterizations: 1.) (σ2,
ρ) and 2.) (ψ1, ψ2). η2 is fixed at 0.32.

Parameterization

Dataset Posterior correlation original: σ2, ρ Zhang: ψ1, ψ2

Data1 Cor(log σ, log ρ) 0.70 0.79

Cor(ψ1, ψ2) 0.15 0.24

Data2 Cor(log σ, log ρ) 0.81 0.84

Cor(ψ1, ψ2) 0.08 0.13

Data4 Cor(log σ, log ρ) 0.20 0.21

Cor(ψ1, ψ2) 0.26 0.26

Data5 Cor(log σ, log ρ) 0.56 0.56

Cor(ψ1, ψ2) 0.11 0.12
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Table 7

Overview of model structure and covariance parameter sampling algorithms for template code.

Data distribution Latent structure Sampling of cov. parameters Template code

Normal data augmentation individually: θ ∊ {σ2,ρ} A

joint: {θ,u}, θ ∊ {σ2,ρ} E

Poisson/binomial two processes individually: θ ∊ {σ2,ρ} B

individually: θ ∊ {σ2,ρ} C

Poisson/binomial one process joint: {θ,u}, θ ∊ {σ2,ρ} F

joint: {θ,u,λ}, θ ∊ {σ2,ρ} G

joint: {θ,u,λ}, θ ∊ {ψ1, ψ2} I

individually: θ ∊ {σ2,ρ} D

Poisson/binomial no process joint: {θ,u}, θ ∊ {σ2,ρ} H

joint: {θ,u}, θ ∊ {ψ1, ψ2} J
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