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ABSTRACT Local Ca21 signaling controls many neuronal functions, which is often achieved through spatial localization of Ca21

signals. These nanodomains are formed due to combined effects of Ca21 diffusion and binding to the cytoplasmic buffers. In this
article we derived simple analytical expressions to describe Ca21 diffusion in the presence of mobile and immobile buffers. A
nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the
concentration term. The obtained formulas reproduce free Ca21 levels up to 50 mM and their changes in the millisecond range.
Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca21] transients, which participate in various
physiological processes.

INTRODUCTION

There is scarcely a reaction within the body that is not regu-

lated, directly or indirectly, by Ca21. It is a second mes-

senger, which is injected into the cytoplasm after the opening

of single channels in plasma membrane or internal stores.

Concomitant increases in intracellular [Ca21], [Ca21]i, are, in

general, local and their patterns are determined by combined

effects of Ca21 diffusion and buffering in the cytoplasm (1).

Such processes belong to a well-known reaction-diffusion

problem of mathematical physics, which is a persistent stum-

bling block for theorists, cf. literature (2,3) for recent reviews.

In the presence of N Ca21 buffers in the cytoplasm, one needs

to solve a set of 2N 1 1 nonlinear parabolic partial differential

equations (PDE)
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Here C is the concentration of free Ca21 and D is its

diffusion coefficient, Bn and Fn are the concentrations of free

and Ca21-bound forms of the nth buffer, for which the

diffusion coefficient is dn, and kon and koff are the rate con-

stants of Ca21 binding to and dissociation from the buffer.

The rate constants define the dissociation constant of the

buffer, Kd ¼ koff/kon, which determines its potency to bind

Ca21.

Due to the importance of Ca21 signaling, many theoretical

and experimental studies investigated the main characteris-

tics of local [Ca21]i changes and their possible role in

different physiological events. Hundreds of articles consid-

ered various aspects of the local [Ca21]i signals. Illustrative

results include the analysis of the form (4,5) and modeling of

the function of micro- and nanodomains (6,7), the measure-

ments of spatial widths of [Ca21]i increases around the single

channels (8–11), the effects of buffers on [Ca21]i oscillations

(12,13) and waves (14–18), and Ca21 dynamics in the den-

dritic compartments (19); also included are stochastic spread-

ing and integration of intracellular Ca21 release (20,21) and

the effects of exogenous buffers on [Ca21]i transients (22)

and waves (23). These and other studies delivered many

important insights on spatiotemporal patterns of Ca21 within

neurons and other cell types that is also summarized in

several reviews (1,24,25).

Ca21 entry through discrete channels produces Ca21 gra-

dients around the exit lumen (6). Assuming that buffer is in

excess, Neher (4) linearized the steady-state reaction-diffu-

sion problem and estimated the widths of local stationary

[Ca21]i increases as related to the rate of Ca21 binding to the

buffer. Normally the buffers are present in the cytoplasm at

concentrations .0.1 mM and most of them bind Ca21 with

the time constant t ¼ 1/konF � 1/[108 M�1s�1 . (.0.1 mM)]

, 0.1 ms. This is by 1–2 orders of magnitude smaller than

the time constant of Ca21 channel gating, therefore consid-

eration of steady-state gradients of [Ca21]i provides a good

first approximation for Ca21 nanodomains. Single channels

act as point sources and can produce big local [Ca21]i ele-

vations that would saturate the buffer(s). The ways to obtain

the steady-state solution of the resulting nonlinear problem

have been delineated by Wagner and Keizer (12), who de-

rived a transport equation for Ca21 in the presence of

multiple buffers. They estimated the effective Ca21 diffusion

coefficient and used it to describe a slow diffusion of Ca21.

The results of recent experiments indicate that in most

physiologically relevant situations, the local [Ca21]i levels

exceed 10 mM (22,26,27). Such increases are implicated in
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various forms of cellular (especially neuronal) plasticity.

Large-amplitude [Ca21]i transients can be correctly treated

only in simulations that explicitly consider the effects of mul-

tiple buffers and the kinetics of Ca21 binding (7,9,19,27,28).

Due to the choice of particular models, these numerical ex-

periments likely present special cases rather than giving

insight into the ways in which buffers can change the qual-

itative behavior of a system. It is important to have a more

general theory of the effects of buffers on the local transients

that could be used to understand specific results in terms of a

broader framework.

In this study, we propose an approximate treatment of the

problem of Ca21 diffusion/buffering, which is applicable in a

wide range of Ca21 and buffer concentrations. A nonlinear

character of the problem was circumvented by introducing

the variable ln(1 1 C/Kd) and by expanding the reaction-

diffusion equations in terms of this variable. We obtained

explicit solutions that reproduce [Ca21]i changes up to

50 mM and underestimate them at [Ca21]i ¼ 100 mM

by ;20%. The proposed approach can be useful in inter-

preting the local large-amplitude [Ca21]i transients in most

physiologically relevant situations. The outline of the article

is as follows: in ‘‘Ca21 binding by a single mobile buffer’’

we consider [Ca21]i transients in the presence of single

mobile Ca21 buffer; in ‘‘Mobile and immobile Ca21 buffers

with the same Kd’’ we add an immobile buffer with the same

dissociation constant; in ‘‘Mobile and immobile Ca21 buf-

fers with different Kd values’’ the general solution for mobile

and fixed buffers is obtained; in ‘‘Propagating Ca21 signals’’

the approach is applied to the propagating Ca21 signals; and

in ‘‘Rapid and slow Ca21 buffers’’ we compare the prop-

erties of fast and slow buffers and discuss the applicability of

the rapid buffer approximation. Appendix I recapitulates the

linearized approximation for multiple buffers and extends it

to quadratic terms, Appendix II presents a general formu-

lation of the logarithmic approximation for several Ca21

buffers, and Appendix III discusses the characteristics of the

cytoplasmic buffers.

RESULTS

Ca21 binding by a single mobile buffer

In all derivations below we consider a one-dimensional formu-

lation of the diffusion problem but all algebra and formulas

are readily transformed to the case of the three-dimensional

radial diffusion that, e.g., corresponds to the spread up of

Ca21 from the channel lumen into a hemisphere. For this,

one sets C ¼ U/r that transforms a three-dimensional

diffusion term (1/r2)@(r2@C/@r) into a simple second deriv-

ative. The radial concentration profiles are then obtained by

dividing the solution of the one-dimensional problem by the

distance from the channel lumen.

When we add first two Eq. 1, this removes the reaction

term and gives the equation of diffusion of total Ca21

@ðC 1 BÞ
@t

¼ @
2ðDC 1 dBÞ

@x2 : (2)

We solve this equation using a rapid buffer approximation

that assumes a fast binding of Ca21 (see Introduction and

‘‘Rapid and slow Ca21 buffers’’) and defines the bound

Ca21 as

B ¼ CBo

C 1 Kd

; (3)

where Kd is the dissociation constant and Bo is the total

concentration of the buffer. We first obtain a solution for one

mobile buffer. Normalizing Kd and all concentrations to Bo

and using Eq. 3, we transform Eq. 2 into the nonlinear PDE

for the variable y ¼ (1 1 c) ¼ (1 1 C/Kd)

@ðy� 1=KyÞ
@t

¼ @
2ðDy� d=KyÞ

@x
2 ; (4)

where K ¼ Kd / Bo. In the following, we drop or add appro-

priate constants in the derivatives when appropriate. Math-

ematically this changes nothing because these terms vanish

after differentiation. Thus, Eq. 4 can be presented in the form

of simple parabolic PDE as

@f ðayÞ
@t

¼ OðDdÞ @
2
f ðbyÞ
@x

2 ; (5)

for the function f(y) ¼ (y � 1/y), where a ¼ OK and b ¼
OKD/d. The equation is only seemingly simple and it cannot

be solved directly, because f(y) is generally not invariant to

linear transformations. However, an explicit solution can be

found by using the approximation f(y) � 2.3lny, which

follows from the expansion of both functions in the Taylor

series around y ¼ 1. Theoretical proportionality factor is 2,

but empirically we found that the approximation is better

when it is set to 2.3 (see the inset in Fig. 1). The quality of the

approximation is determined by the parameters of Ca21

buffering in the cytoplasm. For the typical values D ¼ 200

mm2/s, d ¼ 20 mm2/s, Kd ¼ 0.3 mM, and Bo ¼ 0.3 mM (see

Table 1 in Appendix III), the nondimensional parameters are

K ¼ 0.001, a ¼ 0.03, and b ¼ 0.1. Function f(ay) is well

fitted by the logarithm up to ay � 3.5 (Fig. 1) that cor-

responds to C/Kd¼ 100 (the quality of approximation can be

further improved by including quadratic logarithmic terms;

see Appendix II). Replacement of f(y) by logarithm gives a

linear diffusion equation

@u

@t
¼ D

@
2
u

@x
2; (6)

for u ¼ lny, where D ¼ ODd ¼ 40 mm2/s is an apparent

diffusion coefficient. The boundary condition is uo ¼ ln(1 1

Q/Kd) at x, t ¼ 0 and uo ¼ 0 otherwise (here Q is a surge of

Ca21 into the cytoplasm).

Equation 6 is closely related to a famous porous equation

(30,31). To show this, we introduce a new variable w ¼ 1/y
and neglect ay in the left-hand side of Eq. 5, which is usually
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smaller than 1/ay. This gives an equation for the logarithmic

diffusion (32)

@w

@t
¼ D9

@
2ðlnwÞ
@x

2 ;

which is a special case of the porous equation (see also

‘‘Mobile and immobile Ca21 buffers with the same Kd’’

below and Appendix II).

Returning to Eq. 6, we note that it has a form of a common

diffusion equation (33), which solution for a point source is

u ¼ uo

Oð4pDtÞ exp � x
2

4Dt

� �
: (7)

Presenting Eq. 7 in terms of calcium concentration, we

obtain

C ¼ Kd exp
uo

O4pDt
exp � x

2

4Dt

� �� �
� 1

� �
: (8)

Fig. 1 presents the [Ca21] profiles for the ‘‘logarithmic’’

and the ‘‘normal’’ diffusion. In the calculations we used the

same source amplitude and the apparent diffusion coeffi-

cient. The spatiotemporal patterns are clearly different and

it is seen that in the case of the logarithmic diffusion, the

changes in [Ca21] spread out faster. This becomes more

evident in the plots of normalized derivatives, (@C/@x)/C,

which depict the fronts of Ca21 concentration (Fig. 1, c and d).

We checked the applicability of the derived approach to

describe [Ca21] transients by performing numerical integra-

tion of Eq. 1 using the Crank-Nicolson algorithm (33). Fig.

2 a shows that the approximation works well for the levels of

[Ca21] , 50 mM, and at [Ca21] . 100 mM, the predictions

underestimate exact values by ;20% (Fig. 2 b).

Mobile and immobile Ca21 buffers with the
same Kd

In the cellular environment, Ca21 signals are shaped by

multiple endogenous buffers. Each buffer is characterized by

at least three parameters (concentration, dissociation con-

stant, and diffusion coefficient). Buffers enter Eq. 1 in the

same way, therefore their effects can be additive; that means

that [Ca21]i transients may not be very sensitive to the

FIGURE 1 ‘‘Logarithmic’’ and ‘‘nor-

mal’’ diffusion of Ca21 from the point

source. Shown are the time-dependent

profiles of Ca21 concentration, which

were obtained from Eqs. 8 and 7, de-

scribing the fast (a) and the normal (b)

diffusion, respectively. In both cases, the

effective diffusion coefficient was 40

mm2/s and the same amplitude of point

source was used. The inset (top) shows

the approximation of ‘‘total [Ca21]’’

term in Eqs. 4 and 5 by logarithm. Panels

a and b depict [Ca21] changes, and

panels c and d present normalized spatial

derivatives as indicators of the fronts of

Ca21 concentration.

FIGURE 2 Exact Ca21 transients and their approximation. Time-dependent

Ca21 concentration profiles obtained by numerical integration of reaction-

diffusion system using the Crank-Nicolson algorithm (dotted curves) are

approximated by the analytical solution for the logarithmic diffusion (solid

curves). The diffusion coefficients were DCa¼ 200 mm2/s, dBuffer¼ 20 mm2/s,

the on- and off-rate constants were kon¼ 108 M�1s�1 and koff¼ 100 s�1 (Kd¼
1 mM), and the total buffer concentration Bo ¼ 1 mM. For the logarithmic

diffusion the apparent diffusion coefficient D was 40 mm2/s. In panel b the

amplitude of instantaneous Ca21 source was seven times bigger than in panel

a. Note a close correspondence between the two solutions (a) and

underestimation of the large amplitude transients in the case of the logarithmic

diffusion (b).
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variations in the characteristics of specific buffers. To show

this, we first consider the case of two buffers with the same

dissociation constant (K) and different diffusion coefficients

(d1 and d2). Instead of Eq. 4 we now have

@ðy� 1=kyÞ
@t

¼ @
2½Dy� ðd1a 1 ð1� aÞd2Þ=Ky�

@x
2 ; (9)

where a ¼ Bo1/Bo is the mol fraction of the first buffer and

1 � a ¼ Bo2/Bo is the mol fraction of the second buffer. The

equation can be put in the form of Eq. 6, where the apparent

diffusion coefficient is now

D ¼ OD½d1a 1 ð1� aÞd2�: (10)

When one buffer is immobile, the diffusion coefficient is

simply D ¼ O(aDd), where d ¼ d1.

Fig. 3 shows the results of calculations for different mix-

tures of mobile and immobile buffers. It is seen that when the

concentration of mobile buffer decreases, the transients ap-

pear more localized and decreases in widths of the transients

are accompanied by increases in their amplitude.

We noticed that a reasonably good description of the total

Ca21 buffering capacity can be obtained by using a model

that consists of only two buffers with the same Kd, when it is

allowed to change according to the composition of the mix-

ture (Fig. 4). This reproduces well the general solution (Fig.

5) and it was used to approximate Ca21 buffering properties

of the cytoplasm (Appendix III).

Mobile and immobile Ca21 buffers with different
Kd values

A general solution in the case of multiple Ca21 buffers is

given in Appendix II. The derived equation corresponds to a

quadratically nonlinear diffusion. For one mobile and one

immobile buffer that have different Kd values, it can be pre-

sented as

@½au
2
1 bu�
@t

¼ g
@

2
u

@x
2; (11)

where the coefficients a ¼ (1 � a)AOK, b ¼ aOk 1 (1 �
a)BOK, and g ¼ aO(kDd). Here k and K are the normalized

dissociation constants for mobile and immobile buffers (it is

assumed that k , K; see Appendix III), u ¼ ln(1 1 c/k), a is

the mol fraction of the mobile buffer, and the coefficients A
and B are defined in Eq. B3. Rewriting Eq. 11 as

@½u 1 ðOb=4aÞ�2

@t
¼ g

a

@
2
u

@x
2; (12)

and changing the variable u to w ¼ [u 1 (Ob/4a)]2, we

obtain

FIGURE 3 Ca21 transients in the presence of mobile and immobile

buffers of the same affinity. Calculations were performed at fixed total buffer

concentration (1 mM) and the mol fraction of buffers was varied as indicated

in each panel. The diffusion coefficient of mobile buffer was 20 mm2/s and

the dissociation constant for both buffers was set to 0.3 mM. In the

calculations, we used the effective diffusion coefficient, which depended on

the [Mobile]/[Immobile] ratio; see Eq. 10. Note a sharpening of Ca21

transients with the increase in the mol fraction of the immobile buffer.

FIGURE 4 Effective dissociation constants in mixtures of mobile and

immobile Ca21 buffers. Solid traces indicate the Ca21 binding capacity in

the presence of two buffers with dissociation constants equal to 0.3 and 3

mM (see Appendix III). The dotted curves approximate the data by assuming

the same dissociation constant for both buffers. Its values are given in

parentheses (right of the curves) and depend on the mol ratio.
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@w

@t
¼ D

@
2ðOwÞ
@x

2 ; (13)

where D is given by Eq. B4 (it is smaller or equal to O(Dd)).

Equation 13 is also the porous equation, which describes a

fast diffusion (34). Its general solution (32) is

w ¼ exp3=2 �
ux

2

DF
2ðtÞ

� �
=FðtÞ; (14)

where F(t)¼ [1.5ut]2/3, u is the normalization constant, and

expq(z) ¼ [1 1 (1 � q)z]1/(1�q) is the stretched exponential

(at q ¼ 1 it becomes a simple exponential). The concentra-

tion of free Ca21 is obtained from Eq. 14 through the back

transformation steps (w2 / ln(u) / c ; exp(u)).

Fig. 5 presents the [Ca21] transients that were calculated

for a mixture of mobile and immobile Ca21 buffers with

different Kd values. It is seen that the amplitude of transients

decreases with the mol fraction of the mobile buffer that

resembles the behavior shown in Fig. 3. Notably, the data in

the left panel are well reproduced by the profiles in the right

panel that were obtained by using the same Kd for both

buffers, which depended on the mol fraction.

Propagating Ca21 signals

We next examined the effects of Ca21 diffusion and buf-

fering on the propagating Ca21 signals. We considered a spe-

cial case of Ca21 waves that are supported by the Ca21-induced

Ca21 release (CICR) from the internal stores (endoplasmic

reticulum and/or mitochondria (35)) that have been docu-

mented in various cell types. We used a sort of ‘‘diffuse-and-

fire’’ model (16,25), which assumes that at any time only one

release channel is open and the activation of neighboring

channel occurs only when the [Ca21] level in its vicinity

reaches a given threshold.

Wave velocities in the model were calculated as a ratio of

distance between the channels and the time needed for

[Ca21] to reach the threshold at another site. In one set of

calculations, we set a threshold to 0.2 mM (36) and varied the

distance between the release sites. Ca21 waves maintained

about the same velocity up to the separation of ;4 mm be-

tween the sites, after which a regenerative propagation

ceased (Fig. 6 a). When CICR threshold increased, the

velocity steadily declined (Fig. 6 b). It is seen that in both

cases the velocity is bigger for the logarithmic diffusion. It

becomes smaller when the immobile buffer was introduced

(middle traces in Fig. 6), but the differences remain.

Rapid and slow Ca21 buffers

The use of rapid Ca21 buffering approximation has certain

limitations. To assess its validity and restrictions, consider a

bimolecular reaction of Ca21 binding, which rate is

@C

@t
� �konCF ¼ �kappC: (15)

FIGURE 5 Ca21 transients in the

presence of mobile and immobile Ca21

buffers of different affinity. The panels

show Ca21 transients at different buffer

mol ratios as indicated. The total buffer

concentration was 1 mM, the dissocia-

tion constants of the mobile and the

immobile buffers were 0.3 mM and 3

mM, respectively, and the diffusion

coefficient for the mobile buffer was 20

mm2/s. The profiles in the left column

were obtained by explicitly considering

the effects of two buffers (Eq. 14). The

profiles in the right column show the

transients calculated by using effective

dissociation constants (Fig. 4) and diffu-

sion coefficients (Eq. 10), which both

depended on the mol ratio. Note a close

correspondence between the transients in

the two sets of data.
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Ca21 binding to the most Ca21 binding proteins occurs

with the on-rate constant kon � 108 M�1s�1, a so-called

diffusion limit (37). When the buffer concentration is bigger

than 0.1 mM, kapp . 104 s�1 corresponds to the reaction time

below 0.1 ms. However, for some buffers such as parval-

bumin and EGTA, the kinetics of Ca21 binding is slower.

Such effects of parvalbumin are implied in shaping long-

lasting transients [Ca21]i during muscle contraction (38) and

in some events that accompany neuronal plasticity (39).

EGTA (alone or in comparison with another buffer, BAPTA)

is often used as an exogenous buffer to examine the role of

Ca21 compartmentalization in various physiological responses

(1). The trick is that despite the fact that the two buffers have

similar Ca21 affinities, EGTA binds Ca21 hundreds of times

slower than BAPTA and therefore does not considerably

influence the fast local [Ca21]i transients (4).

From the physicochemical point of view, the classification

of Ca21 buffers into slow and fast deserves some comments.

In contrast to BAPTA, EGTA binds Ca21 with a high affinity

only at alkaline pH, when all its four carboxyl residues are

free. At physiological pH values, two out of four EGTA

carboxyls are protonated and the affinity shifts into the mil-

limolar range. The high-affinity form of EGTA is also pres-

ent at neutral pH, but it comprises only 1% of total EGTA.

According to Eq. 15, a 100-fold decrease in the concentra-

tion of the high-affinity form of EGTA would decrease kapp

by ;100-fold. This estimate is in line with the results of the

stopped-flow experiments (40–42). Therefore, the observed

slow Ca21 binding by EGTA can be attributed to a low

content of its high-affinity form. Ca21 binding certainly

shifts the equilibrium between the two forms of EGTA, but

the high-affinity form is replenished slowly and, in the case

of the fast local [Ca21] transients, the reaction can be neg-

lected. Parvalbumin binds Ca21 slowly, because its binding

sites are normally occupied by Mg21 and, in this sense,

parvalbumin mimics ‘‘slow’’ Ca21 buffers (43).

Fig. 7 shows the [Ca21]i transients that were calculated in

the presence of intrinsic buffer (0.1 mM) and BAPTA and

EGTA (either at 10 mM). For simplicity, we set Kd ¼ 1 mM

and the diffusion coefficients (20 mm2/s) the same for all

buffers (see Table 1 in Appendix III). In the calculations, we

considered only the high-affinity form of EGTA (0.1 mM)

and used the effective concentrations of mobile buffers of

10.1 mM (BAPTA) and 0.2 mM (EGTA). Fig. 7 shows that

the [Ca21]i peak in BAPTA had much smaller amplitude and

it was more localized. This can explain why BAPTA (but not

EGTA) inhibits such physiological responses, which require

big [Ca21] increases in nanodomains.

Another striking feature in Fig. 7 is that the changes in

bound Ca21 are much wider than those of free Ca21. This

seemingly presents a paradox as it contradicts the expected

slow diffusion of the buffer. The following explanation can

be suggested: the buffer readily captures Ca21 at the front of

its gradient and this reaction is transmitted faster than the

spread of free Ca21. Such effects can be important in the

functioning of the cytoplasmic Ca21 sensors. For example,

calmodulin is both a Ca21 buffer (see Table 1 in Appendix

III) and the Ca21 trigger, which activates various signaling

pathways. Capturing Ca21, these Ca21 buffers/sensors would

deliver Ca21 messages faster than Ca21 itself, which is in

line with recent theoretical suggestions (17) and experimen-

tal findings (19).

DISCUSSION

Many theoretical studies in the last two decades witness an

avalanche of theoretical and experimental investigations that

describe various aspects of Ca21 signaling in the cytoplasm

(1,4–6,12–18,24,25,27). Due to the development of new

methods of Ca21 imaging and the refinement of old ones, the

experimentalists are now able to monitor the [Ca21] tran-

sients with high spatial (but not yet temporal) resolution

(8,10,11). The theoretical predictions, which have been

developed to describe the localization and propagation of the

[Ca21] transients, now need to be combined with new re-

sults. Openings of single channels in the plasma membrane

or internal stores generate big local [Ca21] transients, which

can easily saturate both endogeneous Ca21 buffers and

FIGURE 6 Calculations of the velocity of Ca21 waves due to regenerative

Ca21 release from internal stores. The velocities were obtained as the ratios

of distances between the release sites and the times needed for a [Ca21]

transient to reach the threshold of release at the neighboring site. In panel a

the threshold was set to 0.2 mM and the distance between the release sites

was varied. In panel b the distance between the release sites was fixed at

1 mm and the threshold was varied. The parameters of intrinsic cytoplasmic

buffer were Bo ¼ 1 mM, Kd ¼ 1 mM, and d ¼ 20 mm2/s (mobile buffer).

Middle curves in each panel correspond to the case when the concentrations

of the mobile and immobile buffers were equal.
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Ca21-sensitive probes. Therefore previous analytical ap-

proaches, based on the linearized and/or steady-state ap-

proximations, may not be accurate in this case, because their

applicability is restricted to the transients of small amplitude

(Appendix I). For the data interpretation an integration of the

reaction-diffusion equations is required. Such numerical ex-

periments need corresponding software, careful adjustment

of model parameters, and perhaps lengthy analysis.

In this study we aimed to go beyond the linear and time-

independent considerations and developed a simple analyt-

ical approach that works well within two decades of the Ca21

concentrations. We obtained the solution for an instanta-

neous point source. It is important that it represents the Green

function for the diffusion equation (33), therefore the derived

equation also can be used to obtain solutions for other bound-

ary conditions. We can reproduce exact results obtained by

numerical integration of reaction-diffusion equations up to

50 mM (Fig. 2). For comparison, the linearized approxima-

tion can describe free [Ca21]i levels only up to ;0.4Kd,

which corresponds to 0.12 mM for a typical cytoplasmic

buffer. The results of recent simulations indicate that local

[Ca21]i increases may reach 100 mM (44,45). In this range,

our approach underestimates the transients by ;20%. How-

ever, it can be useful also in these cases, because such

deviations would produce smaller variations in the activa-

tion of Ca21-binding proteins, which translate the [Ca21]i

changes into specific intracellular responses. Consider a

protein with a single binding site with Kd¼ 100 mM. [Ca21]i

variations around this level by 620% (Fig. 2 b) change the

site occupancy by 65%. Calmodulin has four binding sites

that cooperatively bind Ca21, which is described by the Hill

isotherm. In this case a 20%-error in [Ca21]i would change

the degree of calmodulin activation by 8%. Perhaps such

deviations can be tolerated in the analysis of the experimen-

tal data.

The equations derived in Appendix II are applicable in the

case of multiple Ca21 buffers with different characteristics.

In the main text, we first considered the simplest case of one

mobile buffer and then extended the approach to the case of

one mobile and one immobile buffer. These two cases may

provide a sufficiently good approximation of the experi-

mental data. The reasoning is that the reaction-diffusion

system for Ca21 is likely ‘‘overdetermined’’ and it may well

be that similar spatiotemporal patterns can be obtained for

different Ca21 buffering systems. This also means that such

characteristics of cytoplasmic buffers as their content, dis-

sociation constant, and diffusion coefficient are difficult to

rigorously determine experimentally. Some literature data

illustrate this notion. For example, the intrinsic Ca21 buffers

in dendrites of the hippocampal neurons are assumed to be

either fixed (46) or mobile (29). In the modeling studies,

various buffer cocktails with different characteristics have

been used (5,9,19,28,29; Appendix III). The data indicate

that at least in the heart cells and neurons it is possible to

consider the cytoplasm as a mixture of one mobile buffer

with Kd� 0.4 mM and one immobile buffer with Kd� 2 mM,

which are taken in different proportions.

This study delivered some unexpected properties of Ca21

signals as related to the presence of buffers. The main finding

is that in the case of buffer saturation, the large-amplitude

[Ca21]i transients can spread out faster than it is predicted for

the ‘‘normal’’ diffusion (Fig. 1). This feature can be im-

portant for the propagating waves of Ca21 in the cytoplasm.

However, this issue needs further analysis because many pa-

rameters such as the geometry of cytoplasmic compartment,

the kinetics, the distribution and type of release channels, the

FIGURE 7 Local [Ca21] transients in the

presence of ‘‘slow’’ (EGTA) and ‘‘fast’’

(BAPTA) buffers. Spatiotemporal profiles of

free and bound Ca21 were obtained by using

Eq. 8 for the fast diffusion. The concentration

of intrinsic buffer was 0.1 mM, Kd¼ 1 mM, and

the diffusion coefficient was 20 mm2/s. Same

Kd and d values were assumed for EGTA and

BAPTA (both present at 10 mM). In the case of

EGTA we considered the Ca21 binding only to

its high-affinity form (1% of total at physio-

logical pH or 0.1 mM; see ‘‘Rapid and slow

Ca21 buffers’’).
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effects of Ca21 influx, and clearance from cytoplasm can

influence the wave velocity (11,13–17,20–25). Another in-

teresting aspect concerns the effects of the immobile buffer

on the form of the [Ca21]i transients (Figs. 3 and 5). When its

content increases, the amplitude of the transients increases

and their width decreases. Because immobile buffers cannot

diffuse, they probably saturate first. Therefore their bigger Kd

values may have ‘‘physiological’’ sense. Decreased buffer

capacity is compensated by the bigger content of immobile

buffers (see Appendix III). Combination of two effects

would make Ca21 buffering by fixed buffers comparable to

that of the mobile buffers.

We investigated the spatiotemporal patterns of local Ca21

transients, which are formed around single channels, the

Ca21 nanodomains (1). For consideration of global events in

Ca21 signaling, the model should be modified by first

including the Ca21 pumps. They would little affect the fast

local [Ca21]i transients, but the pumps will gain importance

in slow events in Ca21 homeostasis (47). One possibility will

be to split the reaction-diffusion problem into the fast and

slow systems and treat the latter as perturbation (48). How-

ever, this will produce a nonlinear diffusion with a ‘‘source’’

term (49), which needs further analysis.

We would like to conclude that despite the fact that the

explicit solutions derived in this study are approximate and

describe only the actions of buffers, the derived formula

cover about two decades of Ca21 concentrations. Therefore

we believe that the method (with discussed restrictions) can

be helpful in interpreting physiologically relevant [Ca21]i

transients and in revealing their possible functional role.

APPENDIX I: THE CASE OF MULTIPLE
BUFFERS—A ‘‘NORMAL’’ DIFFUSION

Rewriting the rapid buffer approximation (Eq. 3) as CBo/(C 1 Kd) ¼
Bo[1 � 1/(1 1 C/Kd)], we present Eq. 2 as

@½C� San=ð1 1 C=KnÞ�
@t

¼ @
2½DC� Samdm=ð1 1 C=KmÞ�

@x
2 :

(A1)

As in the main text, all concentration-dependent terms (C and Kd) are here

normalized to Bo, the total buffer concentration. Each buffer is characterized

by its normalized dissociation constant Kn, the diffusion coefficient dn and

its mol fraction an ¼ Bon/Bo. Note also that the sum in the right-hand side

(index m) runs only over mobile buffers. The left-hand and the right-hand

sides are derivatives and therefore we took a liberty to neglect or to add ap-

propriate constants that helped us to maintain a compact structure of equations.

Expanding each buffer term into the Taylor series as

1

1 1 C=Kn

¼ 1� C=Kn 1 ðC=KnÞ2; (A2)

we obtain the equation of nonlinear diffusion

@½BC� AC
2�

@t
¼ D

@
2½FC� EC

2�
@x

2 ; (A3)

where A ¼ S(an=K2
n ), B ¼ 1 1 S(an/Kn), E ¼ S(andm=K2

mD), and F ¼
1 1 S(amdm/KmD). Changing the time and concentration variables to

respectively T ¼ DE/A and u ¼ C � O(B/4A) 1 O(F/4E), we get the

diffusion-advection equation

ðu 1 pÞ@u=@T ¼ @2
u=@x

2
1 ð@u=@xÞ2;

which has polynomial solutions (34). Neglecting quadratic terms (note that

this reasonably approximates Eq. A2 only when C , 0.4 Kn), we linearize

Eq. A1 to

@C

@t
¼ D

@
2
C

@x
2 ; (A4)

where the effective diffusion coefficient is

Dl ¼ D
1 1 Sðamdm=KmDÞ

1 1 Sðan=KnÞ
: (A5)

For one mobile buffer with d ¼ 20 mm2/s, Kd ¼ 0.3 mM, and Bo ¼ 0.3 mM

(the nondimensional K ¼ 0.001), we obtain D � d, indicating that Ca21

predominantly diffuses in a bound form.

APPENDIX II: THE CASE OF MULTIPLE
BUFFERS—A LOGARITHMIC APPROXIMATION

Applying the transformation used in the main text to derive Eq. 5 from Eq. 4,

we can similarly simplify the general Eq. A1. For the reference, we choose

the mobile buffer with the lowest dissociation constant (k). Dividing free

[Ca21] and dissociation constants of other buffers by k, we decompose each

term in the derivative in the left-hand side of Eq. A1 and approximate it with

the logarithm as

C

k
k � Kn

kðC=k 1 Kn=kÞ ¼ yk � Kn

kðy 1 gnÞ

/OKn Olnðy 1 gnÞ �
1

Olnðy 1 gnÞ

� �

¼ OKnfn½lnðy 1 gnÞ� � OKnln½Olnðy 1 gnÞ�;

where y¼ 1 1 C/k, gn¼ Kn/k� 1 and ln¼ k/OKn. Because the minimal k is

chosen, all ln values are always smaller than Ok, which determines the

scaling terms a and b in Eq. 5. Thus, in comparison with the case of the

single mobile buffer considered in ‘‘Mobile and immobile Ca21 buffers with

the same Kd’’, the approximation of functions fn(y) with logarithm (the last

transformation step) is applicable in a wider range of Ca21 concentrations.

For the terms in the right-hand side we obtain a similar approximate

expression O(KmDdm)ln[Ohm(y 1 gm)] where hm ¼ kO[D/(Kmdm)]. After

dropping the constant terms ln and hm in logarithms, we present Eq. A1 as

@S½anOKnlnðy 1 gnÞ�
@t

¼ @
2
S½ðam=aÞOðKmDdmÞ lnðy 1 gmÞ�

@x
2 :

(B1)

Note that the right-hand side contains only mobile buffers and therefore we

normalized each coefficient am to their sum a ¼ Sam , 1.

Because the arguments of logarithms contain different offset terms, Eq. B1 is

not easier to solve than the original Eq. A1, but it can be done after ap-

proximating these terms with quadratic polynomials as ln(y 1 g)¼ A lny2 1

B lny 1 C. Fig. 8 shows that the approximation works well for more than

two decades of the normalized Ca21 concentrations (from 0 to 200kd or, in

terms of Ca21 concentration, up to 60 mM for kd ¼ 0.3 mM). In the fitting

functions, we used the same coefficient A¼ 0.07 and different B coefficients

(coefficients C do not play any role because they vanish after differenti-

ation). Using these approximations, we present Eq. B1 as
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@S½anOKnðAnu
2
1 BnuÞ�

@t

¼ @
2
S½ðam=aÞOðKmDdmÞðAmu

2
1 BmuÞ�

@x
2 ; (B2)

where u ¼ lny. Collecting the coefficients at the same power of u, we obtain

quadratically nonlinear diffusion equation

@½Au
2
1 Bu�
@t

¼ @
2½Fu 1 Eu

2�
@x

2 ; (B3)

with the coefficients A ¼ SanAnOKn; B ¼ SanBnOKn; E ¼ S(am/

a)AmO(KmDdm); F ¼ S(am/a)BmO(KmDdm). The equation has a form of

Eq. A3 and it has polynomial solutions (34). In the main text, we present explicit

solutions in the case of i), a single mobile buffer and ii), a mixture of mobile

and immobile buffers. Both cases correspond to the equation of fast diffusion

@U

@t
¼ D

@

@x
U

q@U

@x

� �

with q ¼ �1 (i) and q ¼ �1/2 (ii), respectively.

For u , 1, we can neglect quadratic terms in Eq. B3 that gives a linear PDE

with the effective diffusion coefficient

D ¼ F

B
¼ SBmðam=aÞOðKmDdmÞ

SanBnOKn

: (B4)

This expression clearly differs from that given by Eq. A5 for the ‘‘normal’’

diffusion.

APPENDIX III: CYTOPLASMIC CA21

BUFFERING SYSTEMS

Table 1 lists representative Ca21 buffering cocktails, which were used in

literature to model Ca21 homeostasis in different cell types. Ca21-sensing

probes were also included because they act as Ca21 buffers. Fig. 9 shows

that Ca21 binding capacity in the mixture of mobile or immobile buffers is

well reproduced by using only one buffer. For such mobile buffer the

effective dissociation constant is about 0.4 mM and the concentration ranges

from 0.1 to 0.3 mM. For the immobile buffer Keff � 2 mM and Bo is in the

range from 0.2 to 0.6 mM.

The authors thank S. Olson for critical reading of the manuscript and

helpful comments.
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